新人教版八年级数学分式方程

合集下载

最新人教版八年级数学上册《15.3 分式方程(第1课时)》优质教学课件

最新人教版八年级数学上册《15.3 分式方程(第1课时)》优质教学课件
基本思路:将分式方程化为整式方程.
一般步骤:
(1)去分母;(2)解整式方程;(3)检验.
注意:由于去分母后解得的整式方程的解不一定是原分式方程的
解,所以需要检验.
巩固练习
指出下列方程中各分母的最简分母,并写出去分母后得
到的整式方程.
1
2


2x
x 3
2
4
2

x 1
x 1
解:①最简公分母2x(x+3),去分母得x+3=4x;

=
+1
2x
x+ 3 x - 5
x - 25
x+1 3 x+3
与上面的方程有什么共同特征?
分母中都含有未知数.

探究新知
分式方程的概念:
分母中含有未知数的方程叫做分式方程.
分式方程的特征:分母中含有未知数.
追问2:你能再写出几个分式方程吗?
注意:我们以前学习的方程都是整式方程,它们
的未知数不在分母中.


A)
D.x=–3
= 解为x=4,则常数a的值为
( D )
A.a=1
B.a=2
C.a=4
D.a=10
课堂检测
基础巩固题
1.若关于x的分式方程
(B
A.5
C.3


= 的解为x=2,则m的值为

B.4
D.2
课堂检测

2.方程

A.x=–1
C.x=


=

+
的解为( D )
解得x=–3,
经检验:x=–3是原方程的根.

人教版八年级数学上册教案:15.3分式方程

人教版八年级数学上册教案:15.3分式方程
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有未知数的分式等于另一个分式或整式的方程。它在解决按比例分配、速度与距离等问题中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了分式方程在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调去分母法和换元法这两个重点。对于难点部分,如含有绝对值、不等式的分式方程,我会通过举例和比较来帮助大家理解。
举例:解方程如$\frac{x-1}{2} = \frac{3}{4}$,通过去分母法求解,强调分式方程解法的基本步骤和关键点。
(2)分式方程在实际问题中的应用:学会将现实问题抽象成分式方程,能够运用数学知识解决实际问题。
举例:速度、比例分配等实际问题的建模与求解。
2.教学难点
(1)分母的去除与转换:学生在解分式方程时,往往在去除分母这一步骤上遇到困难,如何正确地转换分母,避免解题错误。
1.讨论主题:学生将围绕“分式方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
举例:解方程$\frac{2}{x+1} - \frac{1}{x-1} = \frac{1}{x}$,如何找到合适的公共分母,并转化为整式方程。
(2)换元法的运用:在解决含有多项式的分式方程时,如何恰当选择换元,简化方程结构,是学生需要掌握的难点。

八上数学分式方程

八上数学分式方程

八上数学分式方程数学作为一门学科,无处不在,贯穿于我们生活的方方面面。

而在数学的学习中,分式方程是一个非常重要且常见的内容。

在八年级的数学课程中,我们将开始接触和学习关于分式方程的知识。

什么是分式方程呢?简单来说,分式方程就是含有分式的方程。

分式是数的比的形式。

而分式方程则是含有未知数的分式的等式。

解分式方程的过程就是找出未知数的值,使得等式成立。

学习八年级的数学分式方程,需要掌握一些基本的知识。

首先要了解分式的概念,明确分子和分母的含义。

然后要学会如何化简分式,将分式化为最简形式。

接着就是学习如何解分式方程,常见的方法有通分、去分母、因式分解等。

在解题过程中,还需要注意约束条件,确保得到的解符合题目的要求。

在学习过程中,要多做练习,熟练掌握各种解题方法。

可以通过做题册、练习册、习题集等方式进行练习,巩固所学知识。

同时,要注意归纳总结,将不同类型的题目进行分类整理,形成自己的解题思路和方法。

除了理论知识外,实际问题的分析和解决也是学习分式方程的重要内容。

在解决实际问题时,要将问题转化为数学语言,建立分式方程,然后通过求解方程得到问题的答案。

这样可以帮助我们将抽象的数学知识与实际生活相结合,提高解决问题的能力。

此外,学习数学分式方程也需要培养逻辑思维和分析问题的能力。

在解题过程中,要善于观察、分析和推理,找出问题的关键点和解题思路。

通过不断练习和思考,提高自己的数学思维能力,培养解决问题的能力。

总的来说,八年级数学分式方程是一个重要且必要的学习内容。

通过学习分式方程,可以帮助我们提高数学能力,培养逻辑思维,解决实际问题。

希望大家在学习数学的过程中,能够认真对待,多加练习,提高自己的数学水平。

愿大家都能在数学的海洋中畅游,享受数学带来的乐趣!。

人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。

本章主要内容是让学生了解分式方程的定义、解法以及应用。

通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。

二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。

但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。

三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。

2.掌握解分式方程的基本方法,能够熟练地求解分式方程。

3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。

四. 教学重难点1.分式方程的定义及其与一般方程的区别。

2.分式方程的解法及其应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。

2.案例材料:收集一些实际问题,用于教学过程中的案例分析。

3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。

同时,结合实际问题,让学生了解分式方程在生活中的应用。

3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。

人教版八年级上册数学教案:15.3分式方程

人教版八年级上册数学教案:15.3分式方程
分式方程(第1课时)教学设计
设计教师
工作单位
学科
数学
课型
新授课
所教内容
新人教版数学八年级上册第十五章第三节第一课时
课程标准
讨论分式方程的概念及解法,主要涉及可以化为一元一次方程的分式方程.从章引言中的实际问题出发,分析分式方程的特点,给出分式方程的概念,接着从分式方程的特点入手,引出解分式方程的基本思路,即通过去分母将分式方程化为整式方程,再解出未知数.
教材分析
《分式方程》是人教版八年级数学《分式方程》第三节内容,从知识上讲,分式方程是在掌握方程、分式相关概念基础上的一次知识拓展,本节课为分式方程第一课时,让学生初步感知分式方程,认识分式方程,初步掌握分式方程的一般解法,为以后学习解打基础。从思想方法上讲,分式方程的求解是转化为已经学习的整式方程的解法,从而找到解分式方程的途径,让学生逐步理解并掌握应用转化的思想方法。
(师总结新的根的检验方法:将整式方程的解代入最简公分母,如果最简公分母不为0,则整式方程的解是原分式方程的解,否则,就不是原分式方程的解。
问:你能概括出解分式方程的基本思路和一般步骤吗?解分式方程应该注意什么?
观察分式方程的两种检验方法,你发现了什么?
学生自愿上讲台解题,其他学生在下面独立完成.
学生自愿举手评价板书学生的解题过程.
1、如何把它化成整式方程?
2、如何去分母?
3、在方程两边乘什么样的式子才能把每一个分母都约去?
4、这样做的依据是什么?
师生共同分析解法,微视频展示系统地分析过程,师按照严格的格式板书详细的解方程过程)
再次展示规范的解题过程:
追问:x=6是原分式方程的解吗?怎样检验?
师总结道:在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(分式方程转化为整式方程----化分为整)。

人教版八年级上册数学精品教学课件 第1课时 分式方程及其解法3

人教版八年级上册数学精品教学课件 第1课时 分式方程及其解法3

8
8
x 2 2x 15 x 2 16x 48
x2
x2x159
x2
16x
48
2
经检验, x 9 是原方程的根
2
11 1 1 x 3 x 4 x 5 x 12
1 1 11 x 3 x 12 x 5 x 4
2x 9 0
x
2x
3x
9 12
x
2x 9
5x
4
x 9 2
x2 9x 36 x2 9x 9
经检验, x 9 是 2
原方程的根
例3 :解方程 y 4 y 5 y 7 y 8 y5 y6 y8 y9
点拨: 此方程的特点是:各分式的分子与分母的次数相
同, 这样一般可将各分式拆成: 整式+分式 的形式。
解:1 1 1 1 1 1 1 1
y 5
y6
y 8
y9
1
1
1
y 1 y 2y01yy12y1,y2102yyy1121y,y220 20
下面的过程请同学们自己完成 相信你们能行
以下各方程能利用换元法进行换元吗?
x x2 1
x2 1 x
5 2
能 y 1 5 y2
( x )2 5( x ) 3 能 y2 5y 3
x 1
x 1
x2 x2
1 1
3(x2 1) x2 1
2x
0
不能
小结
有些分式方程用常规方法-----------去分母,是很复 杂 ,甚至无法求解,有时要采取其他的方法
①采取局部通分法,会使解法很简单.这种解 法称为 ——通 分 法
②各分式的分子、分母的次数相同,且相差 一定的数,可将各分式拆成几项的和。这种 解法称为 —— 拆 项 法

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)
0 ,方程 无意义
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5

初中数学分式方程教案

初中数学分式方程教案

初中数学分式方程教案教案内容:一、教学内容:本节课的教学内容选自人教版初中数学八年级上册第四章第一节《分式方程》。

本节课的主要内容有:分式方程的定义、分式方程的解法以及分式方程的应用。

二、教学目标:1. 理解分式方程的定义,掌握分式方程的解法。

2. 能够运用分式方程解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点:重点:分式方程的定义,分式方程的解法。

难点:分式方程的解法,分式方程的应用。

四、教具与学具准备:教具:黑板、粉笔、多媒体设备。

学具:课本、练习本、铅笔、橡皮。

五、教学过程:1. 实践情景引入:教师可以通过展示一些实际问题,引导学生发现这些问题可以用分式方程来表示。

例如,某商品的原价是100元,商店进行了一次8折优惠活动,请问优惠后的价格是多少?2. 例题讲解:教师可以通过讲解一些典型的分式方程题目,引导学生掌握分式方程的解法。

例如,解方程:$$\frac{x2}{3}= \frac{4x}{2}$$3. 随堂练习:教师可以布置一些随堂练习题,让学生独立完成,以巩固所学知识。

例如,解方程:$$\frac{2x+1}{5}= \frac{3x}{4}$$4. 分式方程的应用:教师可以通过讲解一些分式方程在实际问题中的应用,让学生体会分式方程的重要性。

例如,某工厂生产A、B两种产品,生产A产品需要2小时,生产B产品需要3小时,如果每天工作8小时,那么一天可以生产A、B产品各多少件?六、板书设计:板书内容主要包括分式方程的定义、解法以及应用。

例如:分式方程:$$\frac{x2}{3}= \frac{4x}{2}$$解法:去分母,得:2(x2)=3(4x)去括号,得:2x4=123x移项,得:2x+3x=12+4合并同类项,得:5x=16系数化为1,得:x=$$ \frac {16}{5}$$七、作业设计:1. 解方程:$$\frac{3x1}{4}= \frac{52x}{3}$$答案:x=$$ \frac {13}{18}$$2. 某商店进行了一次8折优惠活动,原价是100元的商品,优惠后的价格是80元,请问原价是多少?答案:原价是100元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程(1)
【学习目标】
1.了解分式方程的概念,和产生无解的原因。
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的解。
【重点】会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的解。
【自主学习】
1、预习内容:自学教材第149页
2、预习检测:
1)中含有的方程叫做分式方程。
合并同类项:合并同类项:
系数化为1:
归纳:解分式方程的思路是将分式方程转化成,基本的方法是(一般是方程两边同乘)。且解分式方程必须。
例1解方程 例2解方程
2、解分式方程
例3、若关于 的方程 无解,求 的值
3、课后作业
1、 时,关于 的方程 的解为零;
2、若关于 的方程 无解,则 的值为。
3、若代数式 的值为零,则
2)你能再写出几个分式方程吗?
3)下列式子中,属于分式方程的是,属于整式方程的是。
① ② ③ 解法
1、解下列方程:
(1) (2) ;
解:去分母(各项乘以公分母)解:去分母(各项乘以最简
公分母_________)
约分得: 约分得:
去括号:去括号:
移项:移项:
4、若 与 互为相反数,则可得方程,解得
5、解方程:
(1) (2) (3)
相关文档
最新文档