八年级数学分式方程的解法

合集下载

八年级数学分式方程

八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。

华东师大版数学八年级下册16.分式方程及其解法课件(共22张)

华东师大版数学八年级下册16.分式方程及其解法课件(共22张)
视察这个方程与我们学过的一 元一次方程有什么不同?
新课推动
轮船在顺水中航行80千米所需的时间和 逆水航行60千米所需的时间相同.已知水流的 速度是3千米/时,求轮船在静水中的速度.
分析 设轮船在静水中的速度为x千米/时,
根据题意,得
80 60 x3 x3
(*)
概 括 方程(*)中含有分式,并且分母中含 有未知数,像这样的方程叫做分式方程.
概括
上述解分式方程的过程,实质上是将方 程的两边乘以同一个整式,约去分母,把分 式方程转化为整式方程来解.所乘的整式通常 取方程中出现的各分式的最简公分母.
例1
解方程:
1 x1
2 x2 1
解:方程两边同乘以(x2-1), 约去分母,得x+1=2. 解这个整式方程,得x=1.
思考:x=1是不是原分式方 程的解(或根)呢?
当x=1时,原分式方程左边和右边的分母 (x-1)与(x2-1)都是0,方程中出现的 两个分式都没有意义,因此,x=1不是原分式 方程的解,应当舍去.所以原分式方程无解.
概括 在解分式方程时,产生不合适原分式方
程的解(或根),这种根通常称为增根.因此, 在解分式方程时必须进行检验.
如何判定一个值是否为这个分式方程 的根呢?分式方程如何检验呢?
ቤተ መጻሕፍቲ ባይዱ
分式方程的检验
解分式方程进行检验的关键是看所求得 的整式方程的根是否使原分式方程中的分式 的分母为零.有时为了简便起见,也可将它代 入所乘的整式(即最简公分母),看它的值 是否为零.如果为零,即为增根.
例2
解方程:
100 30 x x7
解:方程两边同乘以x(x-7),约
去分母,得 100(x-7)=30x.

明老师初中数学课堂八年级下册分式方程

明老师初中数学课堂八年级下册分式方程

明老师初中数学课堂八年级下册分式方程本文主要针对八年级下册分式方程这个数学知识点进行讲解。

介绍分式方程的定义、解法和注意事项。

希望通过本文的讲解,能为初中八年级学生更好地掌握这一知识点提供帮助。

一、分式方程是什么?分式方程是指方程中含有未知数在分式中或分式的分母中,通常表示为$\frac{a}{x}+b=c$或$\frac{a}{x}+\frac{b}{x^2}=c$等形式。

其中$\frac{a}{x}$和$\frac{b}{x^2}$为分式项,$c$为常数项,$x$为未知数。

二、分式方程的解法解分式方程的方法和解一元一次方程类似,主要分为以下步骤:步骤一:去分母。

将方程两端的分式化为通分式,使方程转化为一元一次方程。

步骤二:移项。

将常数项移到等式的右边,将含有未知数的项移到等式的左边。

步骤三:化简。

对于复杂的式子,可以利用乘法分配律、化简平方等方法将式子化简为更简单的形式。

步骤四:求解。

使用解一元一次方程的方法求解未知数的值。

步骤五:检验。

将求得的解代入原方程中,检验方程是否成立。

例如,对于方程$\frac{2}{x-3}=4$,我们可以首先将其化简为$2=4(x-3)$,然后移项得$2=4x-12$,进一步化简为$x=\frac{2+12}{4}=3$。

最后,将$x=3$代入原方程中检验可知这个解是正确的。

三、分式方程的注意事项1.分母不能为0。

在消去分母的过程中,需要确保分母不为0,否则方程无解。

2.化简时要注意符号。

由于分数中含有分子和分母,因此在化简过程中需要特别注意符号的变化,防止出现错误。

3.求解时要考虑特殊情况。

有时候方程解可能存在特殊情况,如等式两边可能同时为0,或者含有根号时可能会出现正负号的问题,需要在求解时特别注意。

四、分式方程的实际应用分式方程在实际生活中有着广泛的应用,如在化学中用于计算物质的比例、计算机网络中用于计算带宽利用率等等。

此外,分式方程还可以用于求解有关人口、财富、能源等方面的实际问题,具有很重要的意义。

北师大版八年级数学下册 第五章 5.4 分式方程 第2课时 分式方程的解法【名师教案+集体备课】

北师大版八年级数学下册 第五章 5.4 分式方程 第2课时 分式方程的解法【名师教案+集体备课】

4 分式方程第2课时分式方程的解法【教学目标】【知识与技能】1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程;3.学生掌握解分式方程的基本方法和步骤.【过程与方法】通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】1、掌握分式方程的解法、解,分式方程要验根.2、在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;【教学难点】1、掌握分式方程的解法、解,分式方程要验根.2、了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.【教学过程】一、情境导入问题1:填空:(1)分母中不含未知数的方程叫做整式方程;(2)分母中含有未知数的方程叫做分式方程.问题2:判断下列说法是否正确: ①2x +32=5是分式方程; ②34-4x =4x +3是分式方程; ③x 2x =1是分式方程; ④1x +1=1y -1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.问题3:方程5x -2=3x与以前学习的方程有什么不同?怎样解这样的方程? 二、合作探究探究点一:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2;(2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】由分式方程的解确定字母的取值范围关于x的方程2x+ax-1=1的解是正数,则a的取值范围是____________.解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程2x+ax-1=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点二:分式方程的增根【类型一】求分式方程的增根若方程3x-2=ax+4x(x-2)有增根,则增根为( )A.0 B.2 C.0或2 D.1解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x -2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值如果关于x的分式方程2x-3=1-mx-3有增根,则m的值为( )A.-3 B.-2C.-1 D.3解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.四、教学反思这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。

北师大版数学八年级下册5.4.2《分式方程的解法》 教案

北师大版数学八年级下册5.4.2《分式方程的解法》 教案

4分式方程第2课时分式方程的解法教学目标【知识与技能】1.知道解分式方程的步骤;2.明确分式方程产生增根的原因及分式方程检验的方法;【过程与方法】经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】掌握分式方程的解法【教学难点】掌握分式方程的解法、解分式方程要验根.教学过程一.问题导引,初步认知我们已经学过一元一次方程,你还记得一元一次方程的解法吗?你能想象一下,如何得到分式方程的解吗?二.思考探究,获取新知探究:分式方程的解法1.解下列分式方程:【教学说明】通过观察,使学生发现可以将分式方程通过去分母转化成一元一次方程来求解.通过教师对例题讲解,让学生明确解分式方程的一般步骤.【归纳结论】1.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验2.下列哪种解法准确?解分式方程解法一:将原方程变形为方程两边都乘以x-2,得:1-x=-1-2解这个方程,得:x=4.解法二:将原方程变形为方程两边都乘以x-2 ,得:1-x=-1-2(x-2)解这个方程,得:x=2你认为x=2是原方程的根?与同伴交流.【归纳结论】增根概念:将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根;认识增根:①增根是去分母后所得的根;②增根使最简公分母的值为0;③增根不是原方程的根.三.运用新知,深化理解A.2个 B.3个 C.4个 D.5个答案:B.()是分式方程,()是整式方程.答案:B;A、C3.王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?如果设原定是x人,那么x满足怎样的分式方程?解:方程两边都乘以y(y-1),得2y2+y(y-1)=(y-1)(3y-1),2y2+y2-y=3y2-4y+1,3y=1,解得y=1/3.检验:当y=1/3时,y(y-1)=1/3×1/3-1=-2/9≠0,∴y=1/3是原方程的解,∴原方程的解为y=1/3.解:两边同时乘以(x+1)(x-2),得x(x-2)-(x+1)(x-2)=3.解这个方程,得x=-1.检验:x=-1时(x+1)(x-2)=0,x=-1不是原分式方程的解,∴原分式方程无解.(3)解:方程的两边同乘(x-1)(x+1),得3x+3-x-3=0,解得x=0.检验:把x=0代入(x-1)(x+1)=-1≠0.∴原方程的解为:x=0.(4)解:方程的两边同乘(x+2)(x-2),得2-(x-2)=0,解得x=4.检验:把x=4代入(x+2)(x-2)=12≠0.∴原方程的解为:x=4.再两边同乘以3x-1,得3(3x-1)-1=2,3x-1=1,x=2/3.检验:把x=2/3代入(3x-1):(3x-1)≠0,∴x=2/3是原方程的根.∴原方程的解为x=2/3.(6)解:方程两边同乘以2(3x-1),得:-2+3x-1=3,解得:x=2,检验:x=2时,2(3x-1)≠0.所以x=2是原方程的解.【教学说明】通过学生的反馈练习,考察学生对分式方程概念的理解;以及解分式方程.使教师能全面了解学生对解分式方程是否清楚,以便教师能及时地进行查缺补漏.四.师生互动,课堂小结1.什么样的方程是分式方程?2.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验:把整式方程的根代入最简公分母,使最简公分母的值不等于零的根是原分式方程的_____,使最简公分母的值等于零的根是原方程的_____.五.作业布置作业:教材“习题5.8”中第1、2、3、4题;作业本本节习题。

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)
0 ,方程 无意义
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5

八年级数学分式方程

八年级数学分式方程一、分式方程的概念。

1. 定义。

- 分式方程是方程中的一种,是指分母里含有未知数(字母)的方程。

例如:(1)/(x)+1 = 2,(x)/(x - 1)-(1)/(x)=1等都是分式方程。

2. 与整式方程的区别。

- 整式方程的分母中不含有未知数,如2x+3 = 5是整式方程。

而分式方程的分母含有未知数,这是两者最本质的区别。

二、分式方程的解法。

1. 基本思想。

- 分式方程的基本思想是将分式方程转化为整式方程来求解。

这一转化过程通常是通过去分母来实现的。

2. 去分母的方法。

- 给分式方程两边同时乘以各分母的最简公分母。

例如,对于方程(2)/(x)+(x)/(x - 1)=1,分母x和x - 1的最简公分母是x(x - 1),方程两边同时乘以x(x - 1)得到:2(x - 1)+x· x=x(x - 1)。

- 找最简公分母的方法:- 取各分母系数的最小公倍数。

- 凡单独出现的字母连同它的指数作为最简公分母的一个因式。

- 同底数幂取次数最高的。

例如,对于分式(1)/(3x),(1)/(2x^2),最简公分母是6x^2。

3. 求解整式方程。

- 按照整式方程的解法求解去分母后的整式方程。

如上面得到的整式方程2(x - 1)+x^2=x(x - 1),展开式子得2x-2 + x^2=x^2-x,移项合并同类项得2x+x = 2,解得x=(2)/(3)。

4. 检验。

- 分式方程可能会产生增根,所以必须检验。

把求得的整式方程的解代入原分式方程的最简公分母中,如果最简公分母不等于0,则这个解是原分式方程的解;如果最简公分母等于0,则这个解是增根,原分式方程无解。

例如,对于上面解得的x = (2)/(3),代入最简公分母x(x - 1)=(2)/(3)×((2)/(3)-1)=(2)/(3)×(-(1)/(3))=-(2)/(9)≠0,所以x=(2)/(3)是原分式方程的解。

八年级数学上册教学课件《分式方程及其解法》

(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(3) 2 4 x 1 x2 1
【课本P152 练习 】
1
3
x
1
1
1
8
解得x=-3, 经检验:x=-3是原方程的根.
课堂小结
解分式方程的一般步骤:
去分母
分式方程
整式方程
解整式方程
x=a
检验
x=a是分式 最简公分母不为0 最简公分母为0 x=a不是分
方程的解
式方程的解
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义,因 此x=5不是分式方程的解,实际上,这个分式方 程无解.
练习1 下列方程哪些是分式方程?__⑤___
①x+y=1
② x 2 2y z ③ 1
5
3
x2
④ y 3 ⑤x 1 1 ⑥ x 3 2 x
例1 解方程
2
3
.
x3 x
解:方程两边乘 x(x-3),得
2x = 3x-9 x=9
检验: 当 x = 9时, x(x-3)≠0,
所以,原分式方程的解为 x =9.
例2
解方程
x
x
1
1
(x
3 1)(x
2)
.
解:方程两边乘(x-1)(x+2),得

八年级数学上册分式方程式概念定义及解题方法整理

八年级数学上册分式方程式概念定义及解题方法整理一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。

在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。

因为解分式方程时可能产生增根,所以解分式方程时必须验根。

三、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.知识点一分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式的值不变。

典例变式练习点评:利用分式的性质进行化简时必须注意所乘的(或所除的)整式不为零。

知识点二分式方程定义:分母中含未知数的方程叫做分式方程。

整根:使最简公分母为0的根叫做分式方程的整根。

检验分式方程解的方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解释原分式方程的解;否则,这个解不是原分式方程的解。

分式方程的解的步骤:(1)去分母,把方程两边同乘以各分母的最简公分母。

(产生增根的过程)(2)解整式方程,得到整式方程的解。

(3)检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

八年级上册数学15.3第1课时分式方程及其解法


方法
如何把它转化为整式方程呢?
去分母
怎样去分母?
把方程的两边乘各分母的最简公分母
在方程两边乘什么样的式子才 能把每一个分母都约去?
(30+v)(30-v)
探索新知
知识点2 分式方程的解法
90 60 30 v 30 v
解:方程两边乘(30+v)(30-v),得
90(30-v)=60(30+v).
一元一次方程:
指只含有一个未知数,未知数的最高次数
为1且两边都为整式的等式.
二元一次方程:
指含有两个未知数,并且含有未知数的项
的次数都是1的整式方程.
两者都是整式方程. 方程里面所有的未知数都出现在分子上,分 母只是常数而没有未知数.
复习导入
练一练
解方程: x 2 2x 3 1.
4
6
解:去分母,得3(x+2)-2(2x-3)=12.
a
x x 1
.
探索新知
判断一个式子是否为分式方程的注意事项 (1)分式方程必须满足的条件:①是方程;②含有分母;③分 母中含有未知数.三者缺一不可. (2)分母中含有字母的方程不一定是分式方程,如关于x的方程 x 2 x(m为非0常数), 分母中虽然含有字母m,但m不是未知数,
m
所以该方程是整式方程.
课堂练习
1.下列关于x的方程,是分式方程的是( B )
4
A.
3
x
x
2
5
x
B.
3
1
x
1Leabharlann 2 xC.πx 1 8
x
D. 2x 1 x 75
2.方程 1 1 x 1去分母后的结果正确的是( C )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滚球软件哪个最好用
[单选]分包工程发包人没有将其承包的工程进行分包,在施工现场所设项目管理机构的①项目负责人、②技术负责人、③项目核算负责人、④质量管理人员、⑤安全管理人员不是工程承包人本单位人员的,视同()。A.肢解发包B.劳务分包C.再分包D.允许他人以本企业名义承揽工程 [单选]我国多发的肿瘤是()A.鼻咽纤维血管瘤B.鼻咽癌C.喉咽癌D.扁桃体癌E.霍奇金病 [单选,A2型题,A1/A2型题]下列哪项不是紫外线的特点()A.穿透力较弱B.其杀菌作用与波长相关C.可干扰细菌DNA的复制D.主要适用于不耐高温的物体的消毒E.对人的皮肤、眼睛有一定灼伤性 [单选]在程序查询方式下控制外设,()进行数据传输。A、随时B、外设准备就绪C、外设没有准备就绪D、外设正பைடு நூலகம்进行其他工作时 [多选]引起性病性淋巴肉芽肿的沙眼衣原体亚型是()A.L-1型B.L-2型C.L-3型D.L-4型 [单选]按《中国药典》2010版(一部)药材取样法规定,对待检的一般药材1600件,应抽检的包件数是A.160B.16C.56D.80E.32 [单选]下列哪一项不是胎儿十二指肠闭锁的超声表现A.双泡征B.双泡征中大的无回声区是胃泡C.双泡征中小的无回声区是十二指肠D.羊水过多E.结肠扩张 [单选]患者女性,40岁,风心病二尖瓣狭窄并关闭不全,发热5周,间断口服抗生素治疗,镜下血尿1周,结膜下可见数个出血点,疑诊亚急性细菌性心内膜炎,最可能的致病菌是()A.金黄色葡萄球菌B.草绿色链球菌C.肠球菌D.真菌E.衣原体 [名词解释]船体装配 [问答题,简答题]日本的化妆品,首推资生堂。近年来,它连续名列日本各化妆品公司榜首。资生堂之所以长盛不衰,与其独具特色的营销策略密不可分。八十年代以前,资生堂实行的是一种不对顾客进行细分的大众营销策略,即希望自己的每种化妆品对所有的顾客都适用。八十年代中期,资生 [单选]外阴瘙痒最常见原因()A.滴虫阴道炎B.维生素缺乏C.糖尿病D.药物过敏E.尿液刺激 [多选]安装工程一切险专门承保各类安装工程,即在安装和试车考核过程中因自然灾害或意外事故所导致的损失。在这里意外事故通常包括()。A.火灾B.雷电C.火山爆发D.爆炸E.设计错误 [填空题]国际单位制规定质量的单位是千克,符号为()。 [问答题,简答题]简述我国国库的产生。 [单选]测量电流时,应把万用表()在电路中。A.串联B.并联C.混联 [单选,A2型题,A1/A2型题]下列哪项不属于女性特殊生理现象()A.月经B.痛经C.妊娠D.带下E.哺乳 [单选]王某,已婚育龄妇女,心功能Ⅰ~Ⅱ级,无心力衰竭且无其他并发症,来医院咨询关于妊娠的建议,护士对她的建议是()。A.绝对不能妊娠B.密切监护下可以妊娠C.终生不孕D.可以妊娠E.不可以妊娠 [单选]甲公司与乙公司签订了一份房屋买卖合同,双方合同约定因房屋买卖发生的一切争议均提交A市仲裁委员会仲裁。乙公司将房屋交付给甲公司后,甲公司认为房屋质量存在瑕疵拒绝付款,随后甲公司将房屋转租于丙公司。乙公司向A市仲裁委员会提出仲裁申请,请求解除合同。下列说法正确 [单选,A2型题,A1/A2型题]DSA要使一直径2mm的血管及其内径1mm的狭窄与一直径4mm的血管及其内径2mm的狭窄成像一样清晰,可以()A.将碘浓度加倍B.将曝光量加倍C.将视野加倍D.将矩阵加倍E.将像素大小加倍 [单选]患者,男性,20岁,患狭窄性腱鞘炎,下面哪项体征不会出现()A.弹响指B.弹响拇C.扳机指D.鼓槌指E.握拳尺偏试验阳性 [单选,A1型题]下列关于具有抗过敏作用的药物,错误的是()A.大青叶B.黄芩C.黄连D.苦参E.金银花 [单选]儿茶酚胺症最常见的病因是()A.垂体瘤B.嗜铬细胞瘤C.肾上腺髓质增生D.肾上腺皮质球状带腺瘤E.外伤 [单选]信访人对提供公共服务的企业、事业单位及其工作人员的()不服,可以向有关行政机关提出信访事项。A.行政行为B.其他行为C.职务行为D.职业行为 [单选,A2型题,A1/A2型题]38岁女性,复视2天来诊。查体:右眼内收位,外展不能,除此以外,神经系统检查均正常。其病变部位最可能是()。A.右动眼神经B.右展神经C.左展神经D.左动眼神经E.右脑干 [单选]下列不属于情报分析内部意义的是()。A、对情报资料进行分类、登记、加工、整理和规范化表述B、对情报的合法性,情报来源的可靠性,情报的确实性,情报的秘密等级等进行判断C、可以产生新的情报D、为决策提供依据,利于处罚的正确作出 [单选]在影响深度知觉的线索中,人们看远物纹理模糊,看近物纹理清楚,属于()因素的影响A.物质重叠B.空气透视C.线条透视D.结构极差 [单选]窦性心动过缓很少见于下列哪种临床情况().A.正常健康人B.运动员C.贫血D.急性下壁心肌梗死E.甲状腺功能减退 [多选]根据《破产法》第六十一条规定,以下属于债权人会议职权的有()。A.核查债权B.监督管理人C.通过重整计划D.通过债务人财产的管理方案E.通过和解协议 [单选]设在地下一层且室内地面与室外出入口地坪高差不大于10m的歌舞娱乐放映游艺场所应设()楼梯间。A.开敞楼梯间B.敞开楼梯间C.封闭楼梯间D.防烟楼梯间 [单选,A1型题]儿童一日膳食中碳水化合物提供的能量应该占总能量的比例大约为()A.30%~50%B.50%~60%C.70%~80%D.65%~70%E.40%~60% [判断题]材料的伸长率、断面收缩率数值越小,表明其塑性越好。()A.正确B.错误 [单选]邀请招标的公开程度()公开招标的公开程度。A.高于B.低于C.等于D.不确定 [填空题]硅酸盐水泥熟料主要矿物组成是()、()、()、()。 [单选]下列不属于涉烟案件调查取证方案作用的是()。A、有利于为决策提供依据,辅助决策,支持处罚B、有利于保证调查取证工作的依法进行C、有利于提高调查取证的效率D、有利于保障执法人员和相对人的人身和财产安全 [单选,A1型题]患儿男,9岁。患急性淋巴细胞性白血病,给予化疗药物静脉注射时药物渗入局部软组织引起坏死,如何给予正确处理()A.用25%的硫酸镁湿敷B.用酒精消毒C.用冰袋外敷D.用抗生素软膏涂搽E.用红花油水涂搽 [单选,B1型题]聚合性痤疮()。A.表现为严重结节、囊肿、窦道及瘢痕,好发于男性青年B.少数患者病情突然加重,并出现发热、关节痛、贫血等全身症状C.雄激素、糖皮质激素、卤素等所致的痤疮样损害D.婴儿期由于母体雄激素在胎儿阶段进入体内E.与月经周期密切相关 [多选]需归档的技术档案包括()。A.施工技术档案B.工程技术档案C.施工队伍档案D.大型临时设施档案E.经济指标档案 [单选]要约的撤回和撤销的两者的不同之处在于()。A.要约的撤销是使一个未发生法律效力的要约不发生法律效力,要约的撤回是使一个已经发生法律效力的要约失去法律效力B.要约的撤销发生在要约生效之前,而要约的撤回发生在要约生效之后C.要约的撤回发生在要约生效之前,而要约的撤 [单选]接种卡介苗后,局部化脓形成小溃疡,恰当的处理方法是()A.切除脓肿溃疡B.切开引流C.局部涂抗生素软膏D.局部涂异烟肼软膏E.不做任何处置 [单选]获准飞出或者飞入中华人民共和国领空的航空器,实施飞出或者飞入中华人民共和国领空的飞行和各飞行管制区间的飞行:()。A.必须经相关管制单位批准B.必须经中国人民解放军空军批准C.必须经由国务院﹑中央军委空中交通管制委员会批准
相关文档
最新文档