人教版八年级数学 分式方程 部分

合集下载

人教版八年级数学上册分式方程(含答案)

人教版八年级数学上册分式方程(含答案)

15.3分式方程专题一 解分式方程 1.方程32x 31-x 1+=的解是 . 2.解分式方程:3x 911x 3x 32-=-+.3.解分式方程:32x ++1x =242x x+.专题二 分式方程无解4.关于x 的分式方程211x m x x -=--无解,则m 的值是( )A .1B .0C .2D .–25.若关于x 的方程2222x m x x ++=--无解,则m 的值是______. 6.若关于x 的分式方程2233x m x x -=--无解,则m 的值为__________. 专题三 列分式方程解应用题7.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是( )A .60702x x=+ B .60702x x =+C.60702x x =- D.60702x x =-8.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前4天完成任务.原计划每天种多少棵树?39.某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.状元笔记【知识要点】1.分式方程分母中含未知数的方程叫做分式方程.2.解分式方程的一般步骤【温馨提示】1.用分式方程中各项的最简公分母乘方程的两边,从而约去分母.但要注意用最简公分母乘方程两边各项时,切勿漏项.2.解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.参考答案:1.x=6 解析:去分母,得2x+3=3(x-1),解得x=6,经检验x=6是原方程的解.所以,原分式方程无解.3.解:方程两边乘x(x+2),得3x+x+2=4,解得x=21.经检验:x=21是原方程的解.4.A 解析:方程两边成x -1,得x -2(x -1)=m ,解得x=2-m .∵当x=1时分母为0,方程无解,∴2-m=1,即m=1时,方程无解.故选A .7.B 解析:设甲班每天植树x 棵,则乙班每天植树(x+2)棵,甲班植60棵树所用的天数为x ,乙班植70棵树所用的天数270+x ,可列方程为x 60=270+x .故选B . 8.解:设原计划每天种x 棵树,实际每天种树113x ⎛⎫+⎪⎝⎭棵,根据题意,得 4804804113x x -=⎛⎫+ ⎪⎝⎭.解这个方程,得x=30.经检验x=30是原方程的解且符合题意.答:原计划每天种树30棵.9.解:不能相同.理由如下:设该校购买的乒乓球拍每副x 元,羽毛球拍每副(x +14)元,若购买的乒乓球拍与羽毛球拍的数量相同,则1428002000+=x x ,解得x =35.经检验x =35是原方程的解.但当x =35时,74001428002000=+=x x ,不是整数,不合题意. 所以购买的乒乓球拍与羽毛球拍的数量不能相同.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

初中数学八年级下册第十六章《分式方程》

初中数学八年级下册第十六章《分式方程》

新课标人教版初中数学八年级下册第十六章《16.3分式方程》精品教案教学目标(一)知识与技能目标经历分式方程概念、分式方程的解法过程,会解可化为一元一次方程的分式方程的解法,会检验根的合理性,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.(二)过程与方法目标经历“实际问题-分式方程方程模型-求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.(三)情感与价值目标在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点和难点1.教学重点:分式方程的解法及应用.2.教学难点:理解解分式方程时产生增根的原因,分式方程的应用.教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法与应用.教学过程1、情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量.你能找出这一问题中的所有等量关系吗?分组交流若设第一块试验田每公顷的产量为x kg,则第二块试验田每公顷的产量是__________kg.根据题意,可得方程_____________________2、解读探究(1)从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.求该客车由高速公路从甲地到乙地所需的时间.这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为x h,那么它由普通公路从甲地到乙地所需的时间为_________h.根据题意,可得方程_________________.学生分组探讨、交流,列出方程等量关系:①客车在高速公路上行驶的平均速度=在普通公路上的平均速度+45②由高速公路从甲地到乙地所需的时间×2=普通公路从甲地到乙地所需的时间方程:=+45(2)王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元;后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元;原定的人数是多少?你能找出这一问题中所有的等量关系吗?如果设原定是x人,那么每人平均分摊________元;人数增加到原定人数的2倍后,每人平均分摊________元;根据题意,可得方程________议一议:上面所得到的方程有什么共同特点?分母中含有未知数的方程叫做分式方程.分式方程与整式方程有什么区别?做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x满足怎样的方程?3、随堂练习(1)据联合国《2003年全球投资报告》指出,中国吸收外国投资额达530亿美元,比上一年增加了13%.设我国吸收外国投资额为亿美元,请你写出满足的方程.你能写出几个方程?其中哪一个是分式方程?(2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2.5千米/小时,求轮船的静水速度.(3)根据分式方程编一道应用题,然后同组交流,看谁编得好4、学习小结本节课你学到了哪些知识?有什么感想?作业:P80习题3.6教学反思:。

人教版八年级数学上册课件:15.3 分式方程(第二课时)

人教版八年级数学上册课件:15.3 分式方程(第二课时)
设,注意单位要统一,选择一个未知量用未知数表示, 并用含未知数的代数式表示相关量. (3)列:即列方程,根据等量关系列出分式方程. (4)解:即解所列的分式方程,求出未知数的值. (5)验:即验根,要检验所求的未知数的值是否适合分式 方程,还要检验此解是否符合实际意义. (6)答:即写出答案,注意单位和答案完整.
3.(2019新疆)两个小组同时从甲地出发,匀速步行到乙 地,甲乙两地相距7500米,第一组的步行速度是第二 组的1.2倍,并且比第二组早15分钟到达乙地.设第 二组的步行速度为x千米/小时,根据题意可列方程是 (D)
4.某学校食堂需采购部分餐桌,现有A、B两个商家,A
商家每张餐桌的售价比B商家的优惠13元.若该校花 费2万元采购款在B商家购买餐桌的张数等于花费1.8 万元采购款在A商家购买餐桌的张数,则A商家每张餐
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬 衫售完后的总利润不低于1950元,则第二批衬衫每件 至少要售多少元? (2)设第二批衬衫每件售价y元.根据题意,得 30×(200-150)+15(y-140)≥1950, 解得y≥170. 答:第二批衬衫每件至少要售170元.
桌的售价为( A )
A.117元
B.118元
C.119元
D.120元
5.某园林队计划由6名工人对180平方米的区域进行绿 化,由于施工时增加了2名工人,结果比计划提前3小 时完成任务,若每人每小时绿化面积相同,求每人每 小时的绿化面积.设每人每小时的绿化面积为x平方
米,请列出满足题意的方程是

6.某校学生捐款支援地震灾区,第一次捐款总额为 6600元,第二次捐款的总额为7260元,第二次捐款的 总人数比第一次多30人,而且两次人均捐款额恰好相 等,则第一次捐款的总人数为 300 人.

人教版数学八年级上册第15章:分式方程的无解与增根

人教版数学八年级上册第15章:分式方程的无解与增根

例4、当a为何值时,关于 x的方程
2 x-
2
+
ax x2 -
4
=
x
3 +
2
①有增根; ②无解。
解:方程两边都乘以(x+2)(x-2),
得2(x+2)+ax=3(x-2)
整理得(a-1)x=-10

(无(综把1解 2上x))=。 所当当若则把解2述或aa原增得x,--=-11分根,≠a2=20=式为a或0代时=即1方x-入,或-=a程22方=xa4代或1有==或程入x时增2一6=②或.方(-根4a2中--程1,或,)2②xa时得==中-,1a6,0=原时无-方,解4程原,或无分原6.解式方,方程 程无解.
x2
课堂小结
复习完本课后你有哪些收获?
课后作业:
1、已知关于 x的方程
2x m x-2

3的解为正数,
则的范围是
2、若关于 x的方程
x x
k
1

x
k

1

1的解为负数,
则k的取值范围是
人教版 八年级上册 第十五章
分式方程的增根与无解
知识回顾:
解分式方程的一般步骤
分式方程 去分母 整式方程
一化
解整式方程
二解
目标
X=a
检验
三检验
a是分式 最简公分母不为0 最简公分母为0 a不是分式
方程的解
方程的解
a就是分式 方程的增根
例1 解方程: 2 4x 3 x 2 x2 4 x 2
1)原方程去分母后的整式方程无解,
2)原方程去分母后的整式方程有解,但解 是增根。
关于分式方程的增根与无解问题 的一般步骤:

八年级上册数学15.3第2课时列分式方程解决实际问题

八年级上册数学15.3第2课时列分式方程解决实际问题

课堂练习
7.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以 体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球 ,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价 格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买 足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元?
.
甲队 乙队
工作时间(月) 工作效率
1 1
1
2
3
1
1
2
x
工作总量(1)
(1 1 ) 1 23
11 2x
探索新知
知识点 列分式方程解决实际问题
等量关系: 甲队完成的工作总量+乙队完成的工作总量=“1”
(1 1 ) 1
11
23
2x
列得分式方程:1 1 1 1 1 1.
2 3 2 x
探索新知
解得 x sv
.
50
检验:由v,s都是正数,得 x sv
时,x(x+v)≠0.
50
所以,原分式方程的解为 x sv
.
50
答:提速前列车的平均速度为 sv
50
km/h.
探索新知
知识点 列分式方程解决实际问题
列分式方程解决实际问题的一般步骤 1.审:审清题意,分清题中的已知量、未知量; 2.找:找出题中的相等关系, 3.设:设出恰当的未知数,注意单位和语言的完整性; 4.列:根据题中的相等关系,正确列出分式方程; 5.解:解所列分式方程;


=30
课堂练习
6.某网店开展促销活动,其商品一律按8折销售,促销期间用400元 在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每 件多少元?

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)
0 ,方程 无意义
探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5

人教版八年级数学上册教案:15.3分式方程-分式方程的应用

人教版八年级数学上册教案:15.3分式方程-分式方程的应用
在实践活动和小组讨论中,我注意观察学生的参与情况。有的小组能够迅速进入状态,讨论得非常热烈,但也有一些小组在建立分式方程时遇到了困难。我及时进行了个别指导,帮助他们理解如何从问题中抽象出数学模型。
我也注意到,在解决分式方程的难点部分,如去分母和移项,学生们的操作还不够熟练。这提示我,在接下来的课程中,需要设计更多的练习来加强这一部分的训练。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果,这些成果将被记录在黑板上或投影仪上。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式方程的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对分式方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
人教版八年级数学上册教案:15.3分式方程分式方程的应用。本节课将围绕以下内容展开:
1.掌握分式方程在实际问题中的应用;
2.学会列出分式方程解决实际问题;
3.能够运用等式性质和分式运算解决分式方程相关问题;
4.举例说明分式方程在生活中的应用,如速度、浓度、比例等问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分式的方程,它能够帮助我们解决涉及比例、速度、浓度等实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设有两人合作完成一项工作,甲工作效率是乙的两倍,他们合作3天完成了任务。我们可以通过分式方程来计算他们各自完成的工作量。
举例:在浓度问题中,若将5克盐溶解在水中得到20%的盐水,求所需水的质量。难点在于如何将“20%的盐水”这一描述转化为数学表达式,并建立正确的分式方程。
在教学过程中,需要针对以上难点进行详细讲解和反复练习,确保学生能够透彻理解分式方程的核心知识,并在实际问题中能够灵活应用。通过对重点和难点的强调,帮助学生建立起分式方程的解题框架,提高解题能力。

15.3分式方程-增根(教案)-人教版八年级数学上册

15.3分式方程-增根(教案)-人教版八年级数学上册
在学生小组讨论环节,我注意到有些学生发言积极,但也有一些学生较为沉默。为了鼓励更多学生参与讨论,我将在下一次教学中尝试采取一些激励措施,如对积极发言的学生给予表扬和奖励,以提高学生的积极性。
举例:在去分母时,要注意将等式两边的每一项都乘以分母的最小公倍数,避免漏乘或乘错。
(3)解整式方程后的检验:学生在解整式方程后,容易忽视对解的检验。教师应强调检验的重要性,并教授具体的检验方法。
举例:求解分式方程$\frac{1}{x-2} = \frac{2}{x+1}$,解得$x=5$,需将$x=5$代入原方程检验是否成立。
1.教学重点
(1)理解增根的定义:增根是指使分式方程分母为零的根。这是本节课的核心概念,教师需通过实例讲解,使学生深刻理解增根的含义。
举例:分式方程$\frac{1}{x-a}= \frac{2}{a}$,当$x=a$时,分母为零,此时$x=a$为增根。
(2)掌握求解含增根分式方程的方法:包括识别增根、去分母、求解整式方程、检验解等步骤。教师需详细讲解并举例说明每个步骤的操作方法。
2.教学难点
(1)增根的识别:对于初学者来说,判断何时会产生增根是一大难点。教师可通过列举不同类型的分式方程,帮助学生识别增根。
举例:分式方程$\frac{1}{x-a} + \frac{1}{x-b} = \frac{2}{x-c}$,增根可能为$x=a$、$x=b$或$x=c$。
(2)去分母过程中易出现的错误:在求解含增根分式方程时,去分母是关键步骤,但学生容易在此过程中出现错误。教师应详细讲解并强调注意事项。
五、教学反思
在本次教学过程中,我发现学生们对增根的概念和求解含增根分式方程的方法掌握程度有所不同。有些学生能够迅速理解并运用到实际题目中,但也有一些学生在识别增根和处理分母为零的情况时遇到困难。这让我意识到,在教学过程中,我们需要针对不同水平的学生进行有针对性的指导。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程应用题班级姓名1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。

2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。

又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。

已知B的速度是A的速度的3倍,求两车的速度。

4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。

乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。

求A、B每小时各做多少个零件。

6、某甲有25元,这些钱是甲、乙两人总数的20%。

乙有多少钱?7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?8、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。

已知水流的速度是3千米/时,求轮船在静水中的速度。

10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。

求先遣队和大队的速度各是多少?11、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。

12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。

13、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。

14、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。

小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?15、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?16、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?17、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?18、某种商品价格,每千克上涨1/3,上回用了15元,而这次则是30元,已知这次比上回多买5千克,求这次的价格。

19、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?20、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。

21、某商品每件售价15元,可获利25%,求这种商品的成本价。

22、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?23、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度24、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?分式方程应用题1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。

2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。

某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。

已知B的速度是A的速度的3倍,求两车的速度。

4、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。

乙型拖拉机单独耕这块地需要几天?求A、B每小时各做多少个零件。

6、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少?7、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。

8、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。

已知水流的速度是3千米/时,求轮船在静水中的速度。

10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。

求先遣队和大队的速度各是多少?11、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。

12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。

13、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d。

14、某人沿一条河顺流游泳l米,然后逆流游回出发点,设此人在静水中的游泳速度为xm/s,水流速度为nm/s,求他来回一趟所需的时间t。

(1)小芳在一条水流速度是0.01m/s的河中游泳,她在静水中游泳的速度是0.39m/s,而出发点与河边一艘固定小艇间的距离是60m,求她从出发点到小艇来回一趟所需的时间。

(2)志勇是小芳的邻居,也喜欢在该河中游泳,他记得有一次出发点与柳树间来回一趟大约用了2.5min,假设当时水流的速度是0.015m/s,而志勇在静水中的游泳速度是0.585m/s,那么出发点与柳树间的距离大约是多少?15、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。

16、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。

小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(3)这个八年级的学生总数在什么范围内?(4)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?17、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数X 人,那么X应满足怎样的方程?18、一个正多边形的每个内角都是172度,求它的边数N应满足的分式方程。

19、退耕还林还草是我国西部地区实施的一项重要生态工程,某地规划退耕面积69000公顷,退耕还林与退耕还草的面积比是5:3,设退耕还林的面积是X公顷,那么应满足的分式方程是什么?20、某运输公司需要装运一批货物,由于机械设备没有到位,只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,1小时完成了后一半,如果设单独采用机械装运X小时可以完成后一半任务,那么应满足的方程是什么?21、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?22、某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率乙厂高5%,求甲厂的合格率?23、某单位将沿街的一部分房屋出租,每年房屋的租金第二年比第一年要多500元,所有房屋的租金第一年为9。

6万元,第二年为10.。

2万元,(1)你能找出这一情景中的等量关系吗?(2)根据这一情景你能提出那些问题?(3)你能利用方程求出这两年每间房屋的租金各是多少吗?24、某市从今年1月1日起调整居民用水价格,每立方水费上涨1/3,小利家去年12月的水费是15元,而今年7月份的水费则是30元,已知小利家今年7月的用水量比去年12月份的用水量多5立方米,求该市今年居民的用水的价格。

25、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?26、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。

27、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。

28、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17。

5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?29、甲乙两地相距360千米,新修的高叔公路开通后,在甲乙两地间行驶的长途客运车平均车速提高了50%,而从甲到乙的时间缩短了2小时,求原来的平均速度30、八年级(1)班学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车的1。

相关文档
最新文档