两级厌氧消化工艺处理高浓度有机废水
高浓度废水处理)

第一节高浓度有机废水的处理高浓度有机废水的处理技术取决于废水的性质,根据高浓度有机废水的性质和来源可分为三类,每一类再选择适宜的处理方法。
1.易于生物降解的高浓度有机废水,它一般来自以农牧产品为原料的工业废水,如食品工业废水,它们是一种宝贵的资源,可用来生产细胞蛋白和或用厌氧消化回收能源。
2.高浓度有机废水中有机物是可以生物降解的,但废水中含有有害物质,这类废水主要来自制药工业和化学工业等。
它们可以采取适当的预处理控制和去除废水中的有害物质后再采用微生物处理,这样做比物化方法处理经济。
3.难于生物降解的和有害的高浓度有机废水,它主要来自有机合成化学工业和某些农药厂等,这类废水首先通过焚烧或湿法氧化等理化手段处理,再进行补充的生物处理。
一、酒糟废液生产饲料酵母1.糖蜜和淀粉原料酒糟的化学成分酒糟的化学组成随原料的品种、质量和酒精生产工艺的不同而有较大的变化。
下列组成(表9-1,表9-2)只是参考值。
2.糖蜜酒糟生产干饲料酵母工艺流程见图9-1。
3.淀粉原料酒糟生产干饲料酵母工艺流程见图9-2。
干燥以下的工艺同糖蜜酒糟生产干饲料酵母工艺流程。
4.酒糟生产饲料酵母工艺过程说明(1)菌种应采用繁殖迅速,无毒和营养成分好的菌株,常用的有:产朊假丝酵母(Candida utilis)、热带假丝酵母(C.tropicalis)和球拟酵母(Torulopsis pinus)等。
(2)培养液制备①糖蜜酒糟制备培养液的工艺流程见图9-3。
②淀粉原料酒糟制备培养液的工艺流程见图9-4。
③有关操作条件酒糟浓度在6.8%~7.2%之间,冷却温度25℃左右,酵母增殖罐温度在33℃~35℃,酵母培养最适pH在4.0~4.2。
培养液中投入营养盐的数量为磷酸0.9kg/m3~1.0kg/m3、尿素1.0kg/m3~1.1kg/m3或者磷酸二氢铵1.3kg/m3、尿素0.5kg/m3。
(3)酵母种子纯培养试管斜面→茄形瓶斜面→一级纯培养种子罐0.06m3→二级培养种子罐0.6m3→种子罐6m3→酵母增殖罐20m3~25m3有关培养工艺条件见表9-3。
厌氧生物处理的特点

厌氧生物处理的特点厌氧生物处理,也称为厌氧消化或厌氧发酵,是一种在无氧环境下利用微生物将有机废弃物转化为甲烷、二氧化碳等小分子有机物和无机物的生物技术。
这种处理方法在环境保护、能源利用以及农业废弃物处理等领域具有广泛的应用前景。
本文将详细介绍厌氧生物处理的特点。
厌氧生物处理具有高效性。
在无氧环境下,微生物通过厌氧呼吸将有机物转化为能量和新的细胞物质。
由于没有氧气竞争,厌氧微生物能够更有效地利用有机物中的能量,使得处理效率高于传统的好氧处理方法。
厌氧生物处理能够产生能源。
在转化有机物的过程中,厌氧微生物会产生大量的甲烷和二氧化碳等小分子有机物,这些物质可以用于生产燃料和化工产品。
因此,厌氧生物处理不仅解决了废弃物处理问题,还为能源生产提供了新的途径。
再者,厌氧生物处理对环境的影响较小。
由于处理过程中不需要氧气,因此不会产生大量的氧化还原产物,对环境造成的污染较小。
同时,由于厌氧处理能够产生甲烷等可燃性气体,可以减少温室气体的排放,对气候变化产生积极影响。
厌氧生物处理能够促进农业废弃物的利用。
农业废弃物如畜禽粪便、秸秆等是丰富的有机资源,通过厌氧消化技术可以将其转化为能源和有机肥,促进农业废弃物的资源化利用。
厌氧生物处理具有高效性、能源产生、环境友好和促进农业废弃物利用等特点,使得它在废弃物处理、能源生产和环境保护等领域具有广泛的应用前景。
然而,厌氧生物处理也存在一些挑战,如启动慢、对水质和气候的适应性差等问题,需要进一步研究和改进。
未来,随着科技的进步和环保意识的增强,厌氧生物处理将在更多领域得到应用和发展。
污水厌氧生物处理的新工艺——IC厌氧反应器引言随着城市化进程的加快,污水处理已成为一个重要的环境问题。
厌氧生物处理作为一种污水处理技术,通过微生物的作用将有机污染物转化为无机物,具有节能、环保等优点。
然而,传统厌氧生物处理工艺存在处理效率低、效果差等问题,因此研发新型的厌氧生物处理工艺势在必行。
常见污水处理工艺对比

常见污水处理工艺对比常见污水处理工艺对比1. 活性污泥法优点:处理效率高,可以去除大部分有机物质和氮、磷等营养物质;对于有机物的负荷冲击能力较强,适用于变化较大的污水水质;操作简单,运行稳定,占地面积相对较小。
缺点:能耗较高,需要投入大量能源来维持活性污泥的运行;对有机物质中的微量有毒物质处理效果较差;产生大量污泥,需要进行后续处理。
2. 厌氧消化法优点:可以处理高浓度有机废水,适用于一些工业废水的处理;过程中产生的沼气可回收利用,节约能源;产生的污泥较少,处理相对简单。
缺点:处理效率相对较低,无法去除大部分有机物质和氮、磷等营养物质;对pH值和温度变化较为敏感,操作较为复杂。
3. 植物修复法优点:对于低浓度的有机废水和富营养化水体有较好的修复效果;需要的设备和投资成本相对较低;对植物的生长和生态环境的改善有积极作用。
缺点:适用范围相对有限,对于高浓度或有毒废水的处理效果较差;修复周期较长,需要较长时间才能达到理想效果。
4. 离子交换法优点:对于一些含金属离子、重金属离子等的废水有较好的去除效果;能够在较短时间内达到理想的水质要求。
缺点:对废水中的有机物质处理效果较差,无法去除大部分有机物质;对于大量产生的废弃物进行处理比较困难。
5. 膜分离法优点:处理效果稳定,可以去除大部分有机物质和细菌等微生物;占地面积较小,适用于空间有限的场所;膜分离过程中无需添加化学药剂。
缺点:膜材料和设备成本较高,投资成本较大;对于水质波动较大的废水处理效果较差。
以上是常见的污水处理工艺的优缺点对比。
不同的处理工艺适用于不同的水质和废水特点,选择合适的工艺可以更有效地进行污水处理。
两相厌氧消化法的原理及其特点是什么

两相厌氧消化法的原理及其特点是什么?传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态。
影响了反应器的效率。
两相厌氧消化工艺的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元。
各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。
两相厌氧消化的特点如下。
(1)两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。
两相厌氧消化工艺和单相厌氧消化工艺相比前者的产甲烷率为0.168m3CH4/(kgCOD·d),明显高于单相厌氧消化系统的产甲烷率0.055m³CH4(kgCOD·d)。
(2)反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。
(3)产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能力。
(4)产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率,产酸反应器的体积总是小于产甲烷反应器的体积。
(5)两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。
10种污水处理工艺

10种污水处理工艺污水处理是保护环境、维护人类健康的重要工作。
随着城市化进程的加快和工业化的发展,污水处理工艺也在不断创新和完善。
本文将介绍10种常见的污水处理工艺,包括生物处理工艺、物理处理工艺和化学处理工艺等。
1. 活性污泥法活性污泥法是一种常见的生物处理工艺,通过在容器中培养活性污泥来分解有机物质。
污水经过初级处理后,进入活性污泥池,活性污泥中的微生物会分解有机物质,并将其转化为二氧化碳和水。
该工艺处理效果好,适用于处理有机污水。
2. 厌氧消化法厌氧消化法是一种利用厌氧菌分解有机物质的处理工艺。
污水经过初级处理后,进入厌氧消化池,在无氧环境下,厌氧菌会分解有机物质产生沼气和有机肥料。
该工艺适用于处理含有高浓度有机物质的污水。
3. 植物湿地法植物湿地法是一种利用湿地植物和微生物处理污水的工艺。
污水经过初级处理后,进入植物湿地,湿地植物和微生物会吸收和分解污水中的有机物质和营养物质。
该工艺具有景观效果好、运行成本低的特点,适用于处理低浓度有机物质的污水。
4. 活性炭吸附法活性炭吸附法是一种利用活性炭吸附有机物质的物理处理工艺。
污水经过初级处理后,进入活性炭吸附池,活性炭会吸附污水中的有机物质和重金属等污染物。
该工艺适用于处理有机物质浓度较低、含重金属的污水。
5. 膜分离法膜分离法是一种利用膜的选择性通透性分离污水中的物质的物理处理工艺。
常见的膜分离工艺包括微滤、超滤和反渗透等。
该工艺可以有效去除悬浮物、胶体、细菌和病毒等污染物,适用于处理高浓度有机物质和海水淡化等。
6. 氧化法氧化法是一种利用氧化剂氧化污水中的有机物质的化学处理工艺。
常见的氧化剂有臭氧、过氧化氢等。
该工艺可以高效去除难降解有机物质和色度等,适用于处理工业废水和高浓度有机物质的污水。
7. 离子交换法离子交换法是一种利用离子交换树脂去除污水中的离子的化学处理工艺。
离子交换树脂具有选择性吸附离子的特点,可以去除污水中的重金属离子和硝酸盐等。
污水厌氧处理与好氧处理特点比较

污水厌氧处理与好氧处理特点比较污水处理是保护环境和维护人类健康的重要措施之一。
在污水处理过程中,厌氧处理和好氧处理是两种常用的方法。
本文将对污水厌氧处理和好氧处理的特点进行比较,以便更好地了解它们的优缺点和适合范围。
一、污水厌氧处理特点1. 厌氧处理是在无氧条件下进行的,不需要氧气供应。
这使得厌氧处理更加经济高效,因为不需要额外的能源消耗。
2. 厌氧处理过程中产生的污泥可以用于能源回收。
在厌氧消化过程中,有机物会被转化为沼气,可以用作燃料或者发电。
这种能源回收有助于减少对传统能源的依赖。
3. 厌氧处理可以有效去除有机物和氮磷等营养物质。
厌氧菌可以分解有机物质,并将有机物质转化为沼气和污泥。
同时,厌氧处理还可以去除污水中的氮磷等营养物质,减少对自然水体的污染。
4. 厌氧处理适合于高浓度有机废水的处理。
相比于好氧处理,厌氧处理对高浓度有机废水的处理效果更好,可以达到更高的有机物去除率。
二、污水好氧处理特点1. 好氧处理需要提供足够的氧气供应。
好氧菌在氧气的存在下进行代谢,将有机物质分解为二氧化碳和水。
因此,好氧处理需要额外的能源供应,增加了处理成本。
2. 好氧处理过程中产生的污泥可以用于土壤改良。
好氧处理产生的污泥富含有机物质,可以用于农田的施肥和土壤改良,提高土壤质量。
3. 好氧处理可以有效去除有机物和氮磷等营养物质。
好氧菌在氧气的存在下可以高效地分解有机物质,同时可以去除污水中的氮磷等营养物质,减少对水体生态系统的影响。
4. 好氧处理适合于低浓度有机废水的处理。
相比于厌氧处理,好氧处理对低浓度有机废水的处理效果更好,可以达到更高的有机物去除率。
综上所述,污水厌氧处理和好氧处理各有其特点和适合范围。
厌氧处理适合于高浓度有机废水的处理,具有经济高效和能源回收的优势;好氧处理适合于低浓度有机废水的处理,具有高效去除有机物和氮磷等营养物质的优势。
根据具体的污水特性和处理要求,可以选择合适的处理方法,以达到理想的处理效果。
2019年注册环保工程师《专业知识考试(上)》真题及详解

2019年注册环保工程师《专业知识考试(上)》真题及详解一、单项选择题(每题1分。
每题的备选项中只有一个最符合题意)1.某废水处理工程拟釆用Fenton工艺深度处理高浓度难生物降解废水,下列关于运行控制不合理的是哪项?()A.投加H2O2和催化剂Fe2+的质量比为2∶1B.调节废水pH值为2.5~4C.冬季适当增加H2O2投加量D.使溶液中Fe2+的量超过H2O2量答案:D解析:D项,根据《水处理工程师手册》P211页,在Fenton体系中,Fe2+为催化剂,应该H2O2过量。
2.下列关于超滤系统影响因素描述错误的是哪项?()A.夏天产水量比冬天高B.当压力值在0.3MPa~0.5MPa时,压力升高产水量随之显著增加C.进水浊度越大则产水量越小D.进水流速快慢影响产水量答案:B解析:A项,根据《膜分离法污水处理工程技术规范》(HJ 579—2010)第6.2.3.1条公式(2),温度修正水量的公式,温度下降,产水量会降低。
B项,根据《新三废》P546页,当溶液性质符合渗透压模型时,膜的水通量与压力成正比关系。
当处理介质为高浓度有机废水或废液时,溶液的透过量用凝胶极化模型表示,膜透过量与压力无关,此时的透过通量为临界透过通量,相对应的压力称为临界压力。
C项,根据《膜分离法污水处理工程技术规范》(HJ 579—2010)第5.1.1条规定,为了防止膜降解和膜堵塞,须对进水中的悬浮固体、尖锐颗粒、微溶盐、微生物、氧化剂、有机物、油脂等污染物进行预处理。
第4.1.2条表1和第4.1.3条表2,也对进水浊度进行了阐述,可见,进水的浊度对产水量有不良影响。
D项,影响膜通量的因素有进水流速、操作压力、温度、进水浓度和原水预处理等。
进水流速快慢会影响产水量。
3.下列关于活性炭吸附描述正确的是哪项?()A.活性炭对甲酸的吸附能力强于对四氯化碳的吸附能力B.活性炭对有机物的吸附性能不受pH值的影响C.活性炭的孔隙可分为微孔、中孔和大孔,中孔孔径在100nm~200nm之间D.采用有机溶剂萃取再生法再生活性炭时,可以回收吸附质答案:D解析:A项,根据相似相吸的规律,活性炭为非极性吸附剂,吸附非极性的四氯化碳能力强于吸附极性的甲酸。
污水厌氧处理与好氧处理特点比较

污水厌氧处理与好氧处理特点比较污水处理是保护环境、维护人类健康的重要工作。
在污水处理过程中,厌氧处理和好氧处理是两种常见的处理方式。
本文将对污水厌氧处理和好氧处理的特点进行比较,以便更好地了解它们的优缺点和适用场景。
1. 处理原理污水厌氧处理是在无氧环境下进行的,微生物在缺氧条件下分解有机物质。
厌氧处理通常包括厌氧消化和厌氧反硝化过程。
厌氧消化是通过厌氧菌将有机物质分解为甲烷和二氧化碳等气体,同时产生有机酸和酒精等物质。
厌氧反硝化是利用厌氧菌将硝酸盐还原为氮气。
好氧处理则是在充氧条件下进行的,通过好氧菌的作用将有机物质氧化为二氧化碳和水。
好氧处理通常包括好氧消化和好氧硝化过程。
好氧消化是将有机物质氧化为二氧化碳和水,并产生微生物生长所需的能量。
好氧硝化是将氨氮氧化为硝态氮。
2. 适用污水类型厌氧处理适用于高浓度有机物质的处理,如工业废水、农业废水和城市污泥等。
由于厌氧菌对有机物质的降解效率高,能够处理高浓度有机物质的废水。
此外,厌氧处理还可以产生甲烷等可再生能源。
好氧处理适用于低浓度有机物质的处理,如生活污水和轻度工业废水等。
好氧菌对有机物质的降解效率较高,能够有效地去除废水中的有机物质和氨氮等污染物。
3. 能耗和投资成本厌氧处理相比好氧处理,能耗较低。
由于厌氧处理过程中不需要供氧,节省了供氧设备的能耗。
此外,厌氧处理还可以产生甲烷等可再生能源,可以用于发电或供热,进一步降低能耗。
好氧处理相比厌氧处理,投资成本较低。
好氧处理过程中需要供氧设备,但供氧设备的成本相对较低。
此外,好氧处理过程相对简单,操作和维护成本也较低。
4. 污泥处理厌氧处理产生的污泥相对较少,且污泥稳定性较好。
厌氧处理过程中,有机物质被分解为甲烷等气体,产生的污泥量较少。
此外,厌氧处理的污泥稳定性较好,适合用于土壤改良和农业用途。
好氧处理产生的污泥相对较多,且污泥稳定性较差。
好氧处理过程中,有机物质被氧化为二氧化碳和水,产生的污泥量较多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两级厌氧消化工艺处理高浓度有机废水作者:朱昱陆浩洋廖华丰刘怀丰刘克摘要:介绍了高温+中温两级厌氧消化工艺处理酒精生产高浓度有机废水,两级厌氧处理对原水中COD、SS的去除率分别可达90%和80%,厌氧消化产气指标达0.5Nm3沼气/kgCOD,可产生30万~35万Nm3/d的沼气用于外售,且为后续好氧处理的达标排放提供了保障,在达到较好处理效果的同时,也为企业带来了可观的经济效益。
关键词:高浓度有机废水两级厌氧消化生物能搅拌沼气Two-stage anaerobic digestion process to treat high concentration organic wastewateryZhu Yu1,Lu Haoyang2,Liao Huafeng1,Liu Huaifeng1,Liu ke2Abstract:The two-stage anaerobic digestion process,which was operated under high-temperature and middle-temperature in different stages,was employed to treat high concentration organicwastewater from alcohol industry.It was reported that the removal rates of COD and SS were 90%and 80%respectively.The anaerobic digestion gas production index in this process was 0.5Nm3methane/kgCOD and it could produce 300 000~350 000Nm3 methane every day for selling.Thisprocess also offered security for the clean discharge of the following aerobic treatment,whichbrought significant profit to the enterprise at the precondition of satisfying treatment effects.Keywords:High concentration organic wastewater;Two-stage anaerobic digestion;Biologicalenergy mixing;Methane河南天冠企业集团有限公司在南阳市已拥有30万t/a燃料乙醇项目及30万t/a玉米深加工项目,在生产过程中都产生一定量的可生化性较强的高浓度有机废水,对这些高浓度有机废水进行厌氧处理产生沼气,不仅可以减少水环境污染,还可生产出沼气供城市居民使用,产生显著的经济效益。
南阳市城市民用沼气工程基于这一思路而立项,工程概算总投资4.39亿元。
日处理高浓度有机废水25 000m3,日产沼气49.5万Nm3。
工程于2009年3月开工,2011年5月底竣工投产,具备向南阳市中心城区供应沼气的条件。
1 两级厌氧处理工艺设计1.1 进出水水质天冠公司燃料乙醇项目有机废水水量为10 500m3/d,水质为:COD 55 000mg/L,BOD530 000mg/L,SS 50 000mg/L,pH 4~5,水温80℃;玉米深加工项目有机废水水量为11 000m3/d,水质为:COD40 000mg/L,BOD522 000mg/L,SS 8 000mg/L,pH4~5,水温40℃。
以沼气生产为目的的废水两级厌氧处理段,设计进水水质为以上两种废水混合的高浓度有机废水,设计出水水质根据南阳酒精厂运行中的高温罐和中温罐对各项污染物指标的平均去除效率而拟定。
两级厌氧处理段设计进出水水质见表1。
1.2 厌氧生物处理技术厌氧消化是指在无分子氧参与的条件下,通过多种微生物的协同作用,把有机物最终分解为甲烷(CH4)和CO2等产物的过程。
厌氧生物处理技术是以保护环境和获取能源为目的,把厌氧消化的原理应用到有机废水和有机固体废物的处理过程。
厌氧生物处理是一个复杂的过程,大致可分为水解发酵阶段、产酸脱氢阶段和产甲烷阶段。
温度是影响微生物生命活动和代谢速率最重要的因素之一。
目前应用的厌氧工艺一般有3个不同的温度范围:①常温发酵:温度为10~30℃,一般是在自然气温或水温下进行的厌氧消化过程;②中温发酵:温度为35~38℃;③高温发酵:温度为50~55℃。
高温厌氧消化对COD的去除率通常比中温时高25%~50%,常温厌氧消化的COD去除率约为中温消化的10%~20%。
厌氧消化时,温度与有机负荷、产气量关系如图1所示[1]。
1.3.1 预处理阶段进厂高浓度有机废水首先进入调节池1进行水质、水量的均质和水温的调节,再经泵1提升至高温厌氧发酵罐。
对进水温度高于55℃,经冷却塔1冷却达到高温发酵所需温度;对进水温度低于55℃,采用蒸汽加温达到高温发酵所需温度。
1.3.2 高温厌氧处理阶段高温厌氧处理阶段采用了厌氧生物接触工艺(anaerobic contact process,ACP)。
废水进入完全混合柱锥形厌氧发酵罐(水温55℃±2~3℃)进行厌氧分解,产生的沼气收集后进入沼气净化、利用系统。
经高温厌氧发酵处理后的消化液进入冷却塔2迅速冷却,再依次送至细格栅、沉淀池、气浮浓缩装置进行泥水分离,实际运行中可根据出水水质达标情况超越气浮浓缩装置。
沉淀池的排泥经污泥泵房以50%的污泥回流比回流至高温厌氧发酵罐,在高温罐内实现污泥的停留时间(SRT)大于废水的停留时间(HRT),以提高罐内污泥浓度,从而获得更高的处理效率。
剩余污泥排至后续污泥处理系统。
1.3.3 中温厌氧处理阶段气浮浓缩装置出水进入调节池2,再由泵2提升至中温UASB反应器(水温35℃±2~3℃),经中温厌氧发酵使大部分有机污染物降解。
UASB反应器上部设三相分离器,废水、沼气及污泥上升流到三相分离器完成固、液、气分离,将沼气送至沼气净化、利用系统,出水进入后续好氧处理系统进行进一步处理至达标排放。
1.3.4 两级厌氧段废水处理各单元预计处理效果两级厌氧段废水处理各单元预计处理效果见表2。
生物能搅拌装置由分布伞、观察孔、人孔、喷射嘴、分离斗、挡板等部分组成。
该装置中物料在微生物菌体的作用下,迅速产生沼气,沼气在装置内以鼓泡形式自下而上运动;气流上升过程中挟带物料、菌胶团、固体颗粒,呈现出气液混合流动相;混合流渐进喷射嘴时,流速加快,聚集在喷嘴出口处以一定的速度冲出,流体形成翻卷和涡流。
另一方面由于装置内气体和液体的溢出,空出的容积则被下方容器底部周围的液体涌入而得以补充;由此周而复始形成环流造成大的扰动,达到物料、温度、酸度的均布,微生物与物料的充分混合接触,加快消化速度,提高物料的转化率和设备利用率。
生物能搅拌装置的特点是结构简单、不耗电能、管理方便、运行稳定,耐冲击负荷能力强。
设计采用了20座生物能搅拌高温厌氧发酵罐,单座有效容积10 000m3,进水容积负荷6kgCOD/(m3·d),消化停留时间8d,单罐每天沼气产量约为30 000m3,分析产气指标为0.5Nm3沼气/kgCOD。
罐体为钢制柱锥形消化罐,设计采用普通低合金钢16MnR钢材,平均壁厚16mm,单座用钢量约370t。
圆柱体部分直径24m,总高度30m,其中地下部分锥体高度为5.5m。
罐内外均严格按有关要求进行防腐处理;罐壁外采用岩棉保温,保温厚度为100mm。
罐群基座为C30钢筋混凝土整体板基础。
罐体要求按照《大型焊接低压储罐的设计与建造》(SY/T 0608—2006)技术要求进行制造、检查和验收。
2.2 中温UASB反应器设计采用10座中温UASB反应器,单座有效容积4 000m3,进水容积负荷3.75kgCOD/(m3·d),单罐每天沼气产量约为7 500Nm3。
罐体为钢制圆柱形罐,设计采用16MnR钢材,平均壁厚14mm,单座用钢量约168t。
圆柱体直径16.5m,总高度22m,上部为三相分离器。
罐体防腐、保温及罐群基础设计同高温罐。
2.3 泥水分离设施工程中常用的泥、水分离有以下几种方法:①在消化池和沉淀池之间设真空脱气器,分离混合液中的沼气;②在沉淀池之前设热交换器,对混合液进行急剧冷却处置,抑制污泥在沉淀过程中继续产气,同时在混合液冷却过程中释放其中存在的气体,有利于后续混合液的固液分离;③向混合液投加混凝剂促进固液分离;④用超滤器代替沉淀池,提高固液分离效果。
方法①和④仅在小规模食品行业中有所应用,不适用于工程规模较大、废水浓度较高的工程。
方法②能有效改善污泥沉降性能,在国内已有中等规模酒精厂采用且效果良好,分离出的污泥为厌氧状态、不含或只含少量絮凝剂,适用于高温厌氧接触工艺段的污泥回流。
方法③向消化液内投加一定量的混凝剂,可以有效改变污水中悬浮颗粒的亲水性并促使细小的悬浮颗粒絮凝成较大的絮凝体,适用于气浮固液分离段。
因此,设计采用消化液急速冷却脱气后重力静置沉淀、辅以投加絮凝剂的气浮浓缩池,促进固液分离效果。
在高温发酵罐后即设置工业冷却塔1座,将消化液温度由55℃迅速降至约35℃(满足后续中温消化要求),抑制消化液产气,促进污泥的凝聚沉淀,保证沉淀效果。
设计采用中心进水、周边出水的圆形辐流式沉淀池2座,单座直径28m,有效水深3.5m,表面负荷0.85m3/(m2·h),停留时间4h;每池设周边传动半桥式单管吸泥机1台进行机械排泥。
在沉淀池后设规格为500m3/h的气浮浓缩装置2套,包含进料泵、管式加药反应器、斜板溶气气浮机,以及配套电气、自控、仪表等,进一步将在沉淀池中不易沉淀分离的污泥采用投加混凝剂并气浮法进行固液分离。
使用天冠公司现有酒精生产废水进行设备中试,结果表明:进水SS为8~10g/L时,PAC投加量380mg/L,PAM投加量3~5mg/L,气浮装置对SS去除率可达60%~80%,单位废水处理耗电0.23kW·h/m3(包括气浮本体和配套设施)。
为适应进水水质变化并达到节能目的,沉淀池、气浮装置均设超越管。
3 工程运行效果工程于2011年5月底竣工,经半年时间的调试运行,开始稳定产出沼气。
外供沼气量从10万Nm3逐步提升到目前的30万~35万Nm3,沼气的应用也从单一民用拓展到车用压缩天然气领域和生物电力项目,为天冠企业带来了可观的经济效益。
根据上游酒精生产废水的进水量和COD浓度以及商品沼气的需求量,厂内目前启用了16座高温罐和10座中温UASB反应器。