小四奥数 行程问题一
完整版)四年级奥数行程问题

完整版)四年级奥数行程问题行程问题是指关于物体运动速度、时间和路程的应用题。
主要的数量关系是路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。
练一:1.甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
求东西两地相距多少千米?解:两车在距中点32千米处相遇,即两车行的路程相差64千米。
有了路程差和速度差,可以求出相遇时间为8小时。
其他计算就容易了。
2.小玲每分钟行100米,每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3.一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。
当摩托车行到两地中点处,与汽车相距75千米。
求甲乙两地相距多少千米?4.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。
练二:1.快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米。
慢车每小时行多少千米?解:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。
因此慢车的速度为21千米/小时。
2.兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?3.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练三:1.甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
小学四年级奥数讲解:行程问题

⾏程问题(⼀) 专题简析: 我们把研究路程、速度、时间这三者之间关系的问题称为⾏程问题。
⾏程问题主要包括相遇问题、相背问题和追及问题。
这⼀周我们来学习⼀些常⽤的、基本的⾏程问题。
解答⾏程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲⼄两⼈分别从相距20千⽶的两地同时出发相向⽽⾏,甲每⼩时⾛6千⽶,⼄每⼩时⾛4千⽶。
两⼈⼏⼩时后相遇? 分析与解答:这是⼀道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲⼄两⼈相距20千⽶,以后两⼈的距离每⼩时缩短6+4=10千⽶,这也是两⼈的速度和。
所以,求两⼈⼏⼩时相遇,就是求20千⽶⾥⾯有⼏个10千⽶。
因此,两⼈20÷(6+4)=2 ⼩时后相遇。
练习⼀ 1,甲⼄两艘轮船分别从A、B两港同时出发相向⽽⾏,甲船每⼩时⾏驶18千⽶,⼄船每⼩时⾏驶15千⽶,经过6⼩时两船在途中相遇。
两地间的⽔路长多少千⽶? 2,⼀辆汽车和⼀辆摩托车同时分别从相距900千⽶的甲、⼄两地出发,汽车每⼩时⾏40千⽶,摩托车每⼩时⾏50千⽶。
8⼩时后两车相距多少千⽶? 3,甲⼄两车分别从相距480千⽶的A、B两城同时出发,相向⽽⾏,已知甲车从A城到B城需6⼩时,⼄车从B城到A城需12⼩时。
两车出发后多少⼩时相遇? 例2:王欣和陆亮两⼈同时从相距2000⽶的两地相向⽽⾏,王欣每分钟⾏110⽶,陆亮每分钟⾏90⽶。
如果⼀只狗与王欣同时同向⽽⾏,每分钟⾏500 ⽶,遇到陆亮后,⽴即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为⽌,狗共⾏了多少⽶? 分析与解答:要求狗共⾏了多少⽶,⼀般要知道狗的速度和狗所⾏的时间。
根据题意可知,狗的速度是每分钟⾏500⽶,关键是要求出狗所⾏的时间,根据题意可知:狗与主⼈是同时⾏⾛的,狗不断来回所⾏的时间就是王欣和陆亮同时出发到两⼈相遇的时间,即2000÷(110+90)=10分钟。
小学奥数---行程问题

行程问题1、某运动员要跑24里,她先以平均每小时8里的速度跑完这段距离的三分之二,而后她加大速度,问:能否在跑完剩下路程时,使全程的平均速度提高到每小时12里?2、一只小蚂蚁在一根弹性充分好的橡皮筋上的A点,以每秒1厘的速度向前爬行.从小蚂蚁开始爬行的时候算起,橡皮筋在第2秒、第4秒、第6 秒、第8秒、第10秒……时均匀的伸长为原来的2倍.那么,在第9秒时,这只小蚂蚁离A点-________厘米、3、狗追狐狸,狗跳一次前进1、8米,狐狸跳一次前进进1、1米,狗每跳两次时狐狸恰好跳3次.如果开始时狗离狐狸有30米,那么狗跑多少米才能追上狐狸?4、冯老师每天早上做户外运动,第一天她跑步2000米,散步1000米,共用24分钟;第二天她跑步3000米,散步500米,共用22分钟.冯老师跑步时的速度就是一样的,散步时的速度也总就是一样的.求冯老师跑步的速度.5、老师每天早上晨练,她第一天跑步1000米,散步1600米,共用25分;第二天跑步2000米,散步800米,共用20分钟.假设王老师跑步的速度与散步速度均保持不变.求:(l)王老师跑步的速度;(2)王老师散步800米所用的时间.6、兄弟两人骑白行车同时从甲地到乙地,弟弟在前一半路程每小时行5千米,后一半路程每小时行7千米,哥哥按时间分段行驶,前1/3时间每小时行4千米,中间1/3时间每小时行6千米,后1/3时间每小时行8千米,结果哥哥比弟早到20分,甲、乙两地的路程就是________ 千米、7、甲、乙两人从A地到B地,甲前三分之一路程的行走速度就是5千米/小时,中间三分之一的路程的行走速度就是4。
5千米/小时,最后三分之一的路程的行走速度就是4千米/小时;乙前二分之一路程的行走速度就是5千米/小时,后二分之一路程的行走速度就是4千米/小时.已知甲比乙早到30秒,A地到B地的路程程就是______千米.8、张、王两人骑摩托车同时从甲地出发,沿着同一条公路前进,张的速度比王的速度每小时快6千米.张比王早20分钟到达乙地,又继续前进,当王到达乙时,张比王已经多走了20千米,那么,甲、乙两地的距离就是______千米。
(完整版)小学奥数行程问题经典整理

第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
小学奥数训练第33周行程问题(一)

第33周行程问题(一)专题简析行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘法、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相]离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况。
(1) 相向而行:相遇时间=距离+速度和。
(2) 相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差。
在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
王牌例题1两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到48分钟,当甲车到达时,乙车还距工地24 千米。
甲车行完全程用了多少小时?【思路导航】解答本题的关键是正确理解“已知甲车比乙车早到48分钟,当甲车到达时,乙车还距工地24千米”,结合图意,不难理解这句话的实质就是乙车48分钟行了 24千米”。
可以先求乙车的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲车行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/时)甲车行完全程用的时间= 165 ÷30—=4. 7(时)解法二:48×(165÷24) — 48=282(分)=4. 7(时)答:曱车行完全程用了 4. 7小时。
举一反三11. 甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆汽车每小时行42千米,第二辆汽车每小时行28 千米。
第一辆汽车到达乙地后立即返回。
两辆车从开出到相遇共用多少小时?2. A,B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
小学奥数行程问题及公式

小学奥数《行程问题及公式》1、 行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
3)静水速度=(顺水速度+逆水速度)/2 4)水流速度=(顺水速度–逆水速度)/25、基本数量关系是火车速度×时间=车长+桥长1)超车问题 (同向运动,追及问题) 路程差=车身长的和 超车时间=车身长的和÷速度差2)错车问题 (反向运动,相遇问题)路程和=车身长的和 错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例1:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B 城,汽车在后半段路程时速度应加快多少?例2:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?例3:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。
例4:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?例5:骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?例6:一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?例7:有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡,平路及下坡的路程相等,某人骑车过桥时,上坡平路,下坡的速度分别为每秒4米、6米、8米,求他过桥的平均速度。
(完整版)小学奥数行程问题汇总

小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
小学奥数行程专题经典练习50道详解解答版

经典行程专题50道详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解答:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差,所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题(一)
我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.
在对小学数学的学习中,我们已经接触过一些简单的行程应用题,并且已经了解到:上述三个量之间存在这样的基本关系:路程=速度×时间.因此,在这一讲中,我们将在前面学习的基础上,主要来研究行程问题中较为复杂的一类问题——反向运动问题,也即在同一道路上的两个运动物体作方向相反的运动的问题.它又包括相遇问题和相背问题.所谓相遇问题,指的就是上述两个物体以不同的点作为起点作相向运动的问题;所谓相背问题,指的就是这两个运动物体以同一点作为起点作背向运动的问题,下面,我们来具体看几个例子.
例1 甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?
例2 一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?
例3 两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长.
例4 甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A 地48千米处第二次相遇,问两次相遇点相距多少千米?
例5 甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时.在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?
例6 某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?
例7 甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在它们出发后的5小时.6小时,8小时先后与甲、乙、丙三辆车相遇,求丙车的速度.。