(完整版)长方体和正方体的体积____知识点及练习题

合集下载

五年级数学下册《长方体正方体体积》知识点及重点习题

五年级数学下册《长方体正方体体积》知识点及重点习题

五年级数学下册《长方体正方体体积》知识点及重点习题【知识点】1.体积:在这里,我们把一个物体(如土豆)所占空间的大小,叫做这个物体的体积。

2.棱长为1厘米的正方体的体积为1立方厘米。

通常用cm³表示立方厘米。

棱长为1分米的正方体的体积是1立方分米。

通常用dm³表示立方分米。

棱长为1米的正方体的体积是1立方米。

通常用m³表示立方米。

3.相邻两个体积单位的进率是1000。

4.容积:箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米;1毫升=1立方厘米;1升=1000毫升长方体和正方体的体积计算1.长方体的体积=长×宽×高, V=a×b×c;长=体积÷宽÷高,a=V÷b÷h ;宽=体积÷长÷高,b=V÷a÷h。

2.正方体体积=棱长×棱长×棱长;V=a×a×a=a³。

3.长(正)方体的体积=底面积×高,V=S(a×b)×h高=体积÷底面积 ,h=V÷S(a×b)4.计算某样东西的体积时,可以直接用体积公式,也可以先算出底面的面积,然后乘高。

【练习题及答案】1.一个长方体,它的长是2米,宽和高都是0.6米。

它的体积是(0.72)立方米。

2.一块正方体石料,棱长为0.6米。

这块石料的体积是(0.216)立方米。

3.一个长方体的饼干盒,长10cm,宽6cm,高12cm,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?(10×12+6×12)×2=384(平方厘米)答:这张商标纸的面积至少有384平方厘米。

4.一个长方体的无盖水族箱,长是6m,宽是60cm,高是1.5m,这个水族箱占地面积多大?需要用多少平方米的玻璃?它的体积是多少?60厘米=0.6米 6×0.6=3.6(平方米)6×0.6+6×1.5×2+0.6×1.5×2=23.4(平方米)0.6×6×1.5=5.4(立方米)答:这个水族箱占地面积是3.6平方米,需要用23.4平方米的玻璃,它的体积是5.4立方米。

长方体和正方体的体积知识点

长方体和正方体的体积知识点

长方体和正方体的体积知识点1、体积和容积。

(1)体积:物体所占空间的大小(2)容积:容器所能容纳物体的体积像这个长方体木箱的体积除了里面能容纳物体的体积外,还有做成木箱的木板的体积。

一个物体的体积要比一个物体的容积大,因为体积还包括自身材料的体积。

2、体积(容积)单位。

(1)用列表的形式来表述体积单位的大小,以利于记忆。

体积与容积单位之间的关系:1立方厘米=1毫升 1立方分米=1升升和毫升之间的进率是1000,因为1升是1立方分米,1毫升是1立方厘米。

升和毫升相比,升是高级单位,毫升是低级单位,把高级单位的数量换算成低级单位的数量,都要乘相应的进率。

3、因为长方体的体积都是由它的长、宽、高决定的,它的体积=长×宽×高。

正方体是特殊的长方体,长=宽=高,因而它的体积是由棱长决定的,体积=棱长×棱长×棱长。

因为长方体和正方体的底面积是两条棱长决定的,即长方体底面积=长×宽;正方体的底面积=棱长×棱长;所以长方体和正方体的体积又可以说是由底面积和高决定的,它们的体积=底面积×高。

(1)长方体的体积=长×宽×高(2)正方体的体积=棱长×棱长×棱长(3)长方体的体积=底面积×高4、求这根长方体木料的体积要用“底面积×高”,从中间截成两段,表面积实质上增加了两个底面,如果是截成三段,就是截了两次,增加了四个面。

也就是说每截一次,增加两个面。

5、综合运用体积单位、长度单位的知识。

将一个大的形体分成一个小的形体。

将小正方体紧紧地排成一排,能排多少米,实际上就是将这些小正方体的棱长加起来,看有多长。

长方体和正方体的体积基础巩固一、填空题。

1、把一个容积是500ml的量杯里先注入200ml的水,然后放入一个土豆,这时测量杯里的容量为350ml,这个土豆的体积是()cm22、一个底面周长是1。

《长方体和正方体》必背概念知识点整理

《长方体和正方体》必背概念知识点整理

第一单元《长方体和正方体》知识点一、长方体和正方体的特征:1.长方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。

2.正方体的特征:正方体有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

3.长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

4.长方体的棱长总和=(长+宽+高)×4 用字母表示:(a+b+h)×4正方体的棱长总和= 棱长×12 用字母表示:12a二、长方体和正方体的表面积的计算1.什么叫表面积:长方体或正方体6个面的总面积叫做它的表面积。

2.长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×23.正方体的表面积= 棱长×棱长×6 用字母表示:S=6a24.常用的面积单位:平方厘米、平方分米、平方米5.面积单位间的进率:1m2 =100dm2 1dm2 =100cm2三、长方体和正方体的体积的计算1.什么叫体积:物体所占空间的大小叫做物体的体积。

2.长方体的体积= 长×宽×高用字母表示:V=abh3.正方体的体积= 棱长×棱长×棱长用字母表示:V=a34.常用的体积单位:立方厘米、立方分米和立方米5.体积单位间的进率:1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm36.长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高用字母表示:V=Sh7.体积单位的互化:把高级单位化成低级单位,用高级单位数乘进率;------大乘小把低级单位聚成高级单位,用低级单位数除以进率。

-----------小除以大8.容积:容器所能容纳物体的体积。

长方体和正方体的体积知识点总结

长方体和正方体的体积知识点总结

长方体和正方体的体积知识点总结长方体和正方体是几何学中常见的立体形状,它们的体积是初中数学中的重要知识点。

本文将对长方体和正方体的体积进行知识点总结。

一、长方体的体积计算公式长方体是一种六个面都是矩形的立体形状。

我们可以通过计算长方体的体积来了解其中所包含的空间大小。

长方体的体积计算公式为:V = l × w × h其中,V代表长方体的体积,l表示长方体的长度,w表示长方体的宽度,h表示长方体的高度。

二、正方体的体积计算公式正方体是长方体的特殊情况,它的六个面都是正方形,边长相等。

正方体的体积计算公式为:V = a × a × a其中,V代表正方体的体积,a表示正方体的边长。

三、长方体和正方体的体积关系正方体可以看作是长方体的一种特殊情况,边长相等时可以使用正方体的体积计算公式。

这意味着在计算正方体的体积时,可以将其边长代入长方体的体积计算公式中。

即正方体的体积公式可以写作:V = l × l × l其中,l表示正方体的边长。

四、实例分析假设我们有一个长方体,其长度l为3cm,宽度w为4cm,高度h 为5cm。

我们可以使用长方体的体积计算公式来计算其体积:V = l × w × h = 3cm × 4cm × 5cm = 60cm³所以,该长方体的体积为60立方厘米。

如果我们有一个正方体,其边长a为2cm,我们可以使用正方体的体积计算公式来计算其体积:V = a × a × a = 2cm × 2cm × 2cm = 8cm³因此,该正方体的体积为8立方厘米。

五、总结通过以上的学习,我们了解到长方体和正方体的体积计算方法。

长方体的体积计算公式为V = l × w × h,正方体的体积计算公式为V = a × a × a。

长方体与正方体的体积与面积知识点总结

长方体与正方体的体积与面积知识点总结

长方体与正方体的体积与面积知识点总结长方体和正方体是几何学中常见的立体形状,它们在日常生活和学习中都有着广泛的应用。

了解它们的体积与面积计算方法,是我们学习几何学和解决实际问题的基础。

本文将对长方体与正方体的体积与面积知识点进行总结与归纳。

一、长方体长方体是一种具有六个矩形面的立体形状,它的六个面两两相对且相等。

我们可以通过长方体的长、宽和高来计算其体积和面积。

1. 体积计算长方体的体积是指其所占据的三维空间的大小。

体积的计算公式为:体积 = 长 ×宽 ×高。

例如,若一个长方体的长为3cm,宽为4cm,高为5cm,则它的体积为3cm × 4cm × 5cm = 60cm³。

2. 表面积计算长方体的表面积是指其所有面的总面积。

表面积的计算公式为:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)。

以前述长方体为例,其表面积为2 × (3cm × 4cm + 3cm × 5cm + 4cm × 5cm) = 94cm²。

二、正方体正方体是一种六个面都是正方形的立体形状,它的所有边长相等。

正方体与长方体相比,具有更多的对称性质,计算相对简单。

1. 体积计算正方体的体积计算公式为:体积 = 边长³。

例如,若一个正方体的边长为3cm,则它的体积为3cm × 3cm ×3cm = 27cm³。

2. 表面积计算正方体的表面积计算公式为:表面积 = 6 ×边长²。

以前述正方体为例,其表面积为6 × 3cm² = 54cm²。

三、长方体与正方体的比较长方体和正方体在形状和性质上存在一些差异,下面进行简要比较:1. 定义:- 长方体:有六个矩形面,且对面相等。

- 正方体:有六个正方形面,所有边长相等。

完整版)长方体和正方体知识点总结

完整版)长方体和正方体知识点总结

完整版)长方体和正方体知识点总结长方体和正方体是几何学中常见的三维图形。

它们有许多相同和不同的特征。

首先,它们都有12条棱和8个顶点。

然而,长方体的6个面是长方形,而正方体的6个面是正方形。

此外,长方体的相对面积可以不同,而正方体的相对面积总是相等的。

长方体和正方体的表面积是它们的6个面积总和。

对于长方体,表面积可以通过计算长、宽和高的组合来得到。

对于正方体,表面积可以通过计算棱长的平方并乘以6来得到。

在计算表面积时,需要注意实际情况并确定要计算哪些面积。

体积是指物体所占的空间大小。

容积是指所能容纳的物体的体积。

常见的单位包括立方分米、立方厘米和立方米。

在计算体积和容积时,需要注意单位之间的转换。

长方体和正方体在生活中有许多应用。

例如,油箱、罐头盒和纸箱子等物品通常是六面体。

水池和鱼缸等物品可能只有五个面。

而水管和烟囱等物品可能只有四个面。

了解这些特征可以帮助我们更好地理解和应用这些几何图形。

计量容积通常使用立方厘米、立方分米和立方米作为体积单位。

然而,液体的容积,例如水、油等,通常使用升和毫升(即L和ml)作为容积单位。

其中,1升等于1000毫升,1毫升等于1立方厘米,1升等于1立方分米。

长方体的体积可以通过长×宽×高来计算,而正方体的体积则可以通过棱长的三次方来计算。

另外,长方体和正方体的体积也可以通过底面积×高来计算。

容积和体积的计算方法相同,只是测量时容积是测量物体内部的数据,而体积是测量物体外部的数据。

对于不规则物体(不溶于液体),可以通过将其放入水中测量水的位移来计算其体积。

练:1.一大瓶可乐是2升,一瓶哇哈哈矿泉水是600毫升,一个集装箱是20立方米,一块橡皮大约是10立方厘米。

2.6.09立方米=6,090,000立方厘米,32.05L=0.立方米=32,050立方厘米=32,050毫升。

3.这个长方体的棱长为30厘米,其中,从一个顶点引出的三条棱的长度总和为22厘米。

长方体和正方体知识点及类型题总结

长方体和正方体知识点及类型题总结

一,概念和定义:1,长方体:由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

1,棱长:两个面相交的边叫做棱。

2,顶点:三条棱相交的点叫做顶点。

3,长宽高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

2,长方体的特征: 1,有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

2,一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

3,正方体:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

4,正方体特点: 1,有6个面,8个顶点,12条棱,12条棱长度都相等,6个面的面积都相等。

2,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5,长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。

6,表面积 1,意义:长方体或正方体6个面的总面积,叫做它的表面积。

2,长方体表面积:长方体的表面积=(长×宽+宽×高+长×高)×2 字母表示S=2(ab+ah+bh)3,正方体表面积:正方体的表面积=棱长×棱长×6(任意一个面积×6),字母表示 S=a×a×64,无底(或无盖)长方体表面积= (长×宽+长×高+宽×高)×2 - 长×宽5,无底又无盖长方体表面积=(长×宽+长×高+宽×高)×2 - (长×宽)×26,没盖的正方体表面积=棱长×棱长×57,体积 1,意义:物体所占空间的大小叫做物体的体积。

2,体积单位:立方米,立方分米,立方厘米;用字母表示为:3,体积单位之间的进率:每两个相邻的体积单位之间的进率是1000.4,长方体的体积=长×宽×高=底面积×高字母表示V=abh 或 V=S h5,正方体的体积=棱长×棱长×棱长=底面积×高字母表示 V=a×a×a = a3读作“a的立方”表示3个a相乘,(即a·a·a)6,特殊体积:在一个有水的容器里放入一个物体(如:石头等),水面会上升,水面上升那部分水的体积,就是物体的体积。

苏教版六年级上册数学第二单元正方体与长方体知识点及练习题

苏教版六年级上册数学第二单元正方体与长方体知识点及练习题

教学过程第二单元:长方体和正方体知识点:1、长方体和正方体的认识。

2、长方体和正方体的表面积。

3、长方体和正方体的体积(容积)。

4、相邻间体积(容积)单位之间的进率。

考点:1、长方体和正方体表面积的计算。

长方体的表面积=(长×宽+宽×高+长×高)×2正方体的表面积=棱长×棱长×62、长方体和正方体体积的计算。

长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长例如:(1)、做一个长方体的盒子,长是10分米,宽是8分米,高是5分米,做这样的长方体盒子,需要木板多少平方米?(木板的厚度不计)这个盒子的容积是多少?(2)、一个正方体的储物箱,棱长5分米,做这个储物箱需要铁皮多少分米?这个储物箱占地面积是多少?所占空间有多大?3、体积间单位之间的换算。

一、填空题。

1、有1个小正方体的魔方,长是6厘米,它的表面积是( )平方厘米,体积是( )立方厘米。

2、一个长方体的底面积是80平方米,高是7米,它的体积是()立方米。

3、一个长方体的纸盒长是10厘米,宽是8厘米,高是4厘米,最大的面的长是()厘米,宽是()厘米,一个这样的面的面积是()平方厘米;最小的面的面积是()平方厘米。

这个长方体的体积是( )立方厘米。

.4、一个长方体的棱长总和是96分米,长是14分米,宽是5分米,高是()分米,这个长方体有()个面是正方形,每个面的面积是()平方分米;这个长方体的表面积是()平方分米,体积是()立方分米。

5、一个正方体的棱长是8分米,它的棱长总和是(),表面积是(),体积是()6、在括号里填上适当的数5.6立方分米=()升8600平方厘米=()平方分米980立方分米=()立方米9.4立方米=()立方分米2.7升=( )毫升=( )立方厘米 75立方厘米=( )立方分米=( )升7、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,制作这个鱼缸至少需要玻璃( )平方分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、体积和容积。

(1)体积:物体所占空间的大小
(2)容积:容器所能容纳物体的体积
像这个长方体木箱的体积除了里面能容纳物体的体积外,还有做成木箱的木板的体积。

一个物体的体积要比一个物体的容积大,因为体积还包括自身材料的体积。

2、体积(容积)单位。

(1)用列表的形式来表述体积单位的大小,以利于记忆。

体积与容积单位之间的关系:1立方厘米=1毫升 1立方分米=1升
升和毫升之间的进率是1000,因为1升是1立方分米,1毫升是1立方厘米。

升和毫升相比,升是高级单位,毫升是低级单位,把高级单位的数量换算成低级单位的数量,都要乘相应的进率。

3、因为长方体的体积都是由它的长、宽、高决定的,它的体积=长×宽×高。

正方体是特殊的长方体,长=宽=高,因而它的体积是由棱长决定的,体积=棱长×棱长×棱长。

因为长方体和正方体的底面积是两条棱长决定的,即长方体底面积=长×宽;正方体的底面积=棱长×棱长;所以长方体和正方体的体积又可以说是由底面积和高决定的,它们的体积=底面积×高。

(1)长方体的体积=长×宽×高
(2)正方体的体积=棱长×棱长×棱长
(3)长方体的体积=底面积×高
4、求这根长方体木料的体积要用“底面积×高”,从中间截成两段,表面积实质上增加了两个底面,如果是截成三段,就是截了两次,增加了四个面。

也就是说每截一次,增加两个面。

5、综合运用体积单位、长度单位的知识。

将一个大的形体分成一个小的形体。

将小正方体紧紧地排成一排,能排多少米,实际上就是将这些小正方体的棱长加起来,看有多长。

一、填空题。

1、把一个容积是500ml的量杯里先注入200ml的水,然后放入一个土豆,这时测量杯里的容量为350ml,这个土豆的体积是()cm2
2、一个底面周长是1。

6分米的正方体鱼缸的容积是()升。

3、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。

4、挖一个容积为48 m3的长方体土坑,占地面积为24 m2,这个土坑深()m。

5、把一根长3米的长方体木料,锯成两个等长的长方体,表面积增加了40平方厘米,这根木料原来的体积是
()立方分米。

二、判断题。

1、一个长方体木箱,竖着放和横着放时所占的空间不一样大。

()
2、一个棱长为6分米的铁皮箱,体积和表面积完全相等。

()
3、正方体的棱长扩大2倍,它的体积就扩大8倍。

()
4、一块长20厘米,宽长10厘米,厚5厘米的长方体木板与一块棱长为10厘米的正方体,体积相等。

()
5、物体的体积越大,所占的空间就越大。

()
6、体积相等的长方体和正方体,它们的表面积也相等。

()
7、把体积是1 dm3的纸盒放在桌面上,纸盒所占桌面的面积是1 dm2。

()
8、一个长方体木箱从外面量长5分米,宽为4分米,高为2分米,那么这个木箱的容积应比40升少。

()
5、挖一条水渠大约需挖泥土500立方厘米。

()
三、选择题。

1将一个正方体钢坯锻造成长方体,正方体和长方体()
A体积相等,表面积不相等。

B体积和表面积都不相等。

C表面积相等,体积不相等。

2、棱长1米的正方体可以切成()个棱长1分米的小正方体。

A10 B100 C1000 D10000
3、一个长6dm,宽4dm,高5dm的长方体盒子,最多能放()棱长为2dm的正方体木块。

A12 B13 C14 D15
四、解决问题。

1、用36厘米长的铁丝做成一个正方体框架,这个正方体的体积是多少?
2、把两块棱长5厘米的正方体拼成一个长方体,这个长方体的体积是多少立方厘米?
3、一个底面是正方形的长方体,所有棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?
4、一个长方体鱼缸,长是8分米,宽是5分米,高是6分米,不小心左面的玻璃打坏了,修理时配上的玻璃的面积是多少平方米?这个鱼缸的体积是多少立方分米?
长方体和正方体的认识·自主探索
1、把300立方米的土垫在长50米,宽30米的空地上,可垫多厚?
2、有一块棱长是8厘米的正方体的铁皮,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?
3、把一块棱长是2分米的正方体钢坯,锻造成高和宽都是4厘米的长方体钢材。

锻造成的长方体钢材的长是多少?(用方程和算术法两种方法解答)
4、两栋楼之间砌一道长30米,厚32厘米,高3。

5米的砖墙。

每立方米要用砖500块,一共需要多少块砖?
5、在一个棱长24厘米的正方体鱼缸中放入一石块(石块完全侵入水中),水面上升了1。

5厘米,这个石块的体积是多少立方厘米?
6、一个长5分,宽4分米,高2分米的长方体鱼缸,,原来水面高1。

2分米。

向里面放入10条金鱼后,水面的高度是1。

5分米。

这10条金鱼占据多大的空间?
7、一块长方形的铁皮,长40厘米,宽30厘米。

从四个角都剪掉边长为5厘米的小正方形后,焊成一个无盖的长方体盒子,这个盒子最多能容纳多少毫升的液体?
8、一个长方体蓄水池要蓄水2。

4米深,如果每分钟注水30立方米,40分钟注满,这个水池的底面积是多少?
9、正方体玻璃容器棱长2dm,向容器中倒入5L水,再把一块石头放入水中,这时最得容器内水深15cm。

石头的体积是多少立方厘米?
10、把一块长10米的长方体木材据成了完全相同的两块小长方体(如图示),表面积增加了12平方分米,这根木材原来体积是多少立方米?
11.一个长方体油箱,长6分米,宽5分米,高4分米。

做这个油箱需要多少平方分米铁皮?每升油重0.85千克,这个油箱可装油多少千克?
12、有一个底面积是300平方厘米、高10厘米的长方体,里面盛有5厘米深的水。

现在把一块石头浸没到水里,水面上升2厘米。

这块石头的体积是多少立方厘米?
13、教师节时,王婧想送给老师一件礼物,她测量了一下,礼物长18cm,宽12cm,高10cm,她想把它装在一个长20cm,宽15cm,体积为2。

34立方米的包装盒里,能否装得下?
14、施工队修筑一条长2600米的路基,它的横截面是梯形,上底14米,下底16米,高0。

8米,一共需要挖土石多少立方米?。

相关文档
最新文档