长方体和正方体知识点

合集下载

(完整版)长方体和正方体知识点汇总(最新整理)

(完整版)长方体和正方体知识点汇总(最新整理)

第二讲 长方体和正方体一、长方体和正方体的认识【知识点1】棱面顶点要素立体图形数量特征数量特征数量特征长方体12互相平行的棱长度相等6相对的面完全相同8特殊长方体12垂直于正方形面的棱长度相等6两个面是正方形,其余四个面是完全相同的长方形8正方体12所有的棱长度都相等6所有面都是正方形且完全相同8同一个顶点引出的三条棱分别叫做长、宽、高一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。

( )7、长方体的三条棱分别叫做长、宽、高。

( )8、有两个面是正方形的长方体一定是正方体。

( )9、有三个面是正方形的长方体一定是正方体。

( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。

( )12、长方体和正方体最多可以看到3个面。

( ) 14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。

( ) 15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。

( )16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。

( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。

2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。

3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。

4、把长方体放在桌面上,最多可以看到( )个面。

最少可以看到( )个面。

【知识点2】棱长和公式:长方体棱长和=(长+宽+高)长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。

长方体和正方体知识点汇总

长方体和正方体知识点汇总

长方体和正方体知识点汇总一、长方体长方体是一种具有六个面,每个面均为长方形的立体图形。

它的特点是长宽高不相等,分别对应着长方体的三条棱。

下面总结一些长方体的基本知识:1. 长方体的表面积公式为:S=2×(ab+bc+ac),其中a、 b、 c 分别为长方体的三个面的长宽高。

2. 长方体的体积公式为:V=abc,其中a、b、c分别为长方体的三个面的长宽高。

3. 长方体的对角线长度公式为:d=√(a²+b²+c²),其中a、b、c 分别为长方体的三个面的长宽高。

4. 长方体的中心对称轴是一条连接长方体两面中心点的直线,它与长方体的三条棱垂直。

5. 长方体的垂直截面是长方形,水平截面是正方形或长方形。

6. 长方体的立体对称轴有3条:一条是连接对角面中心的对称轴,另外两条是互相垂直的,分别连接相对边中心的对称轴。

7. 长方体的顶点个数为8个。

顶点是立方体的八个角。

二、正方体正方体是一种有六个面,每个面均为正方形的立体图形。

它具有的特点是长宽高相等,都是边长,下面总结一些正方体的基本知识:1. 正方体的表面积公式为:S=6a²,其中a为正方体的边长。

2. 正方体的体积公式为:V=a³,其中a为正方体的边长。

3. 正方体的对角线长度公式为:d=√3a,其中a为正方体的边长。

4. 正方体的中心对称轴是一条连接正方体两面中心点的直线,它与正方体的任何一边垂直。

5. 正方体的垂直截面和水平截面都是正方形。

6. 正方体的立体对称轴有4条:一条是连接对角面中心的对称轴,另外三条是互相垂直的,分别连接相对边中心的对称轴。

7. 正方体的顶点个数为8个。

顶点是正方体的八个角。

总结:长方体和正方体相比,长方体的三条棱长度不相等,而正方体的三条棱长度相等。

在实际生活中,我们可以用长方体来描述一些长宽高不相同的物品,例如房屋、柜子等;而正方体通常用来描述一些长宽高相同的物品,例如小盒子等。

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单一、长方体和正方体的定义及特征长方体:有6个面的立体图形,每个面都是长方形,任意两个相邻面都是全等的,相对的面是平行的。

正方体:是一种特殊的长方体,所有的面都是正方形。

二、长方体和正方体的面、棱和顶点1. 面:长方体有6个面,分别是底面、顶面和4个侧面。

正方体同样有6个面,每个面都是正方形。

2. 棱:长方体有12条棱,正方体有12条棱。

3. 顶点:长方体有8个顶点,正方体也有8个顶点。

三、长方体和正方体的名字长方体和正方体的命名按底部的形状来命名,如下所示:1. 底面为长方形的长方体,我们称为长方体;2. 底面为正方形的长方体,我们称为正方体。

四、长方体和正方体的面积和体积1. 面积:长方体的面积计算公式:面积 = 底面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 = 2ab + 2bc + 2ac(其中a、b、c分别为长方体的长、宽、高)正方体的面积计算公式:面积 = 正方形的边长 ×正方形的边长 ×6 = a × a × 6(其中a为正方体的边长)2. 体积:长方体的体积计算公式:体积 = 底面积 ×高 = 底面积 × c(其中c 为长方体的高)正方体的体积计算公式:体积 = 正方形的边长 ×正方形的边长 ×正方形的边长 = a × a × a(其中a为正方体的边长)五、长方体和正方体的应用及实例长方体和正方体在日常生活中有许多应用,比如:1. 盒子和容器:我们常见的纸箱、塑料盒子、储物箱等都是长方体或正方体的形状,它们能够容纳各种物品。

2. 建筑:很多建筑物的砖块、砖石等都是长方体形状的,如砖墙、柱子等建筑结构。

3. 学习用具:书包、文具盒等也常常是长方体或正方体的形状。

举例:1. 如果一座长方体的长、宽、高分别为3厘米、4厘米、5厘米,则该长方体的面积为36平方厘米,体积为60立方厘米。

长方体和正方体单元知识点

长方体和正方体单元知识点

长方体和正方体单元知识点1. 长方体(Rectangular Prism):长方体是由6个矩形面组成的立体图形。

它的所有对面都是相等的,并且相对的面是平行的。

长方体有8个顶点、12条边和6个面。

1.1定义:长方体的定义可以用以下几个要素来描述:-一个有6个矩形面的立体图形。

-每个面都是直角相邻的。

-所有面的边长都不相等。

-所有对面都是平行的。

1.2特征:长方体具有以下特征:-所有边长不相等。

-所有对面都是平行的。

-每个面上的相对边长相等。

-所有的角都是直角。

1.3表面积计算:长方体的表面积可以通过计算每个面的面积,并将结果相加得到。

表面积 = 2lw + 2lh + 2wh其中,l、w和h分别代表长方体的长度、宽度和高度。

1.4体积计算:长方体的体积可以通过将长度、宽度和高度相乘来计算。

体积 = lwh2. 正方体(Cube):正方体是一种特殊的长方体,其所有边长相等。

正方体有8个顶点、12条边和6个面。

正方体具有更多的对称性和特殊性质。

2.1定义:正方体的定义可以用以下几个要素来描述:-一个具有6个正方形面的立体图形。

-所有边长相等。

-所有的角都是直角。

2.2特征:正方体具有以下特征:-所有边长相等。

-所有对面都是平行的。

-每个面上的角度都是直角。

-具有更多的对称性,即旋转或反射一个正方体的结果仍然是一个正方体。

2.3表面积计算:正方体的表面积可以通过计算每个面的面积,并将结果相加得到。

表面积=6s^2其中,s代表正方体的边长。

2.4体积计算:正方体的体积可以通过将边长三次幂(即三次方)来计算。

体积=s^3其中,s代表正方体的边长。

总结:长方体和正方体都是由矩形面组成的三维立体图形。

长方体具有所有边长不相等的特征,而正方体具有所有边长相等的特征。

它们在计算表面积和体积时的公式也有所不同。

长方体的表面积为2lw + 2lh + 2wh,体积为lwh;而正方体的表面积为6s^2,体积为s^3、正方体具有更多的对称性和特殊性质。

正方体长方体知识点归纳

正方体长方体知识点归纳

正方体长方体知识点归纳一、正方体知识点1. 正方体的概念正方体就是那种超级规整的立体图形啦,它的六个面都是正方形,而且这六个正方形的大小完全一样哦。

就像是那种特别精致的魔方,每个小方块都是正方体的一个小缩影呢。

2. 正方体的棱长棱长就是正方体每条边的长度。

这个棱长可重要啦,它决定了正方体的大小。

比如说,棱长为3厘米的正方体就比棱长为2厘米的正方体要大一些。

而且呀,正方体的12条棱长度都相等,这就像是一个小团队,大家都一样长,没有谁特殊哦。

3. 正方体的表面积表面积呢,就是正方体六个面的面积之和。

一个面的面积是棱长乘以棱长,那正方体的表面积就是棱长×棱长×6啦。

想象一下给正方体穿上一层纸做的衣服,这层纸的大小就是正方体的表面积啦。

比如说棱长是4厘米的正方体,一个面的面积就是4×4 = 16平方厘米,那表面积就是16×6 = 96平方厘米。

4. 正方体的体积体积就是正方体所占空间的大小。

计算方法是棱长×棱长×棱长,就像在一个小盒子里能装多少东西一样。

例如棱长为5厘米的正方体,体积就是5×5×5 = 125立方厘米。

二、长方体知识点1. 长方体的概念长方体是一个有六个面的立体图形,不过和正方体不同的是,它的六个面不一定都是正方形,可能是长方形,当然也有可能有两个相对的面是正方形哦。

就像是我们生活中的书本、盒子之类的,很多都是长方体的形状。

2. 长方体的棱长长方体有12条棱,这12条棱可以分成三组,每组有4条棱,而且每组的4条棱长度是相等的呢。

比如说,一个长方体的长、宽、高分别是5厘米、3厘米、2厘米,那长这条棱对应的就有3条和它一样长的棱,宽和高也是这样。

3. 长方体的表面积长方体的表面积计算稍微复杂一点,公式是(长×宽+长×高+宽×高)×2。

这是因为长方体的六个面两两相对,而且面积有三种不同的情况,把这三种情况的面积加起来再乘以2就得到表面积啦。

正方体与长方体知识点总结

正方体与长方体知识点总结

正方体与长方体知识点总结一、正方体1、正方体有8个顶点、12条棱、6个面。

2、公式: 棱长总和=棱长×12棱长=棱长总和÷12正方体表面积=棱长×棱长×6正方体体积=棱长×棱长×棱长(V=a·a·a=a³)二、长方体1、长方体有8个顶点、12条棱、6个面。

2、公式: 棱长总和=(长+宽+高)×4长=棱长总和÷4-宽-高宽=棱长总和÷4-长-高高=棱长总和÷4-长-宽长方体表面积=(长×宽+长×高+宽×高)×2前面/后面:长×高左边/右面:宽×高上面/下面:长×宽长方体体积=长×宽×高=底面积×高=横截面面积×长长=体积÷宽÷高宽=体积÷长÷高高=体积÷长÷宽三、常用知识点总结1、正方体的棱长扩大n倍,棱长总和也扩大(n)倍,表面积扩大(n×n)倍,体积扩大(n×n×n)倍。

2、面积与体积无法比较,因为它们的意义不同。

3、占地面积=底面积=长×宽长方体体积公式可改写为:长方体体积=底面积×高高=体积÷底面积4、将一个物体投入水中,物体的体积=水面上升部分的体积。

5、将一个正方体模型熔化变成长方体模型,解题关键在于变化前后的体积不变。

6、单位换算口诀:大变小~乘进率~小数点向右移动小变大~除以进率~小数点向左移动。

7、几个同样大小的小正方体,搭成一个长方体,如何摆放长方体的表面积最大?(一条龙一样的摆放)如何摆放表面积最小?(形状越接近于正方体,表面积越小)。

四、关于涂色的正方体的一些规律正方体棱等分的份数三面涂色的个数(在顶点处)两面涂色的个数(在棱中间)一面涂色的个数(在面中间)没有涂色的正方体个数2 8个0 0 03 8个4 8个n 8个12x(3-2)=1212x(4-2)=2412x(n-2)6 x(3-2)²6 x(4-2)²6 x(n-2)²(3-2)³(4-2)³(n-2)³。

《长方体和正方体》必背概念知识点整理

《长方体和正方体》必背概念知识点整理

第一单元《长方体和正方体》知识点一、长方体和正方体的特征:1.长方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。

2.正方体的特征:正方体有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

3.长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

4.长方体的棱长总和=(长+宽+高)×4 用字母表示:(a+b+h)×4正方体的棱长总和= 棱长×12 用字母表示:12a二、长方体和正方体的表面积的计算1.什么叫表面积:长方体或正方体6个面的总面积叫做它的表面积。

2.长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×23.正方体的表面积= 棱长×棱长×6 用字母表示:S=6a24.常用的面积单位:平方厘米、平方分米、平方米5.面积单位间的进率:1m2 =100dm2 1dm2 =100cm2三、长方体和正方体的体积的计算1.什么叫体积:物体所占空间的大小叫做物体的体积。

2.长方体的体积= 长×宽×高用字母表示:V=abh3.正方体的体积= 棱长×棱长×棱长用字母表示:V=a34.常用的体积单位:立方厘米、立方分米和立方米5.体积单位间的进率:1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm36.长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高用字母表示:V=Sh7.体积单位的互化:把高级单位化成低级单位,用高级单位数乘进率;------大乘小把低级单位聚成高级单位,用低级单位数除以进率。

-----------小除以大8.容积:容器所能容纳物体的体积。

长方体和正方体数学知识点

长方体和正方体数学知识点

长方体和正方体数学知识点长方体和正方体数学知识点知识点是在教育实践中,对某一个知识的泛称,多用于口语化,特指教科书上或考试的知识,下面是店铺整理的长方体和正方体数学知识点,一起来看看吧。

长方体和正方体数学知识点1长方体(正方体)的特征1.长方体的特征:有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点2.正方体的特征:正方体的6个面完全相同;12条棱的长度全相等;有8个顶点。

3.长方体长、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体和正方体的表面积1.表面积的意义:长方体或正方体6个或5个面的总面积,叫做它的表面积。

2.长方体的表面积的计算方法:(2个)3.正方体表面积的计算方法:正方体的表面积=棱长2×6长方体和正方体的体积1.体积的意义:物体所占的空间的大小叫做体积。

2.体积单位:立方米、立方分米、立方厘米;字母表示:m3,dm3,cm3。

3.体积单位间的进率:1 m3 =1000dm3 dm3 =1000cm3.4.容积的意义:箱子、油桶等所能装下物体的体积,叫做箱子等的容积。

5.容积的单位和容积单位之间的进率:1L=1000ml6.容积单位和体积单位之间的换算:1L= dm3 1 cm3.=1 ml7.长方体体积计算公式和正方体体积计算公式。

8.容积与体积的'计算方法相同,只是要从里面量它的长、宽和高。

长方体和正方体数学知识点2长方体、正方体的特征1、长方体有()个面,()个点,()条棱长。

相对的面(),每个面都是()形,特殊情况有()个面是正方形;棱长分为()、()和(),各有()条。

长方体最少有()个面是长方形。

2、长方体最多有()个相对面是正方形,最多有()个面的完全相同。

3、正方体有()个面,这些面都是()形,()个点,()条棱长。

它所有的棱长都()。

4、要焊接一个长10cm,宽8 cm,高6 cm的长方体框架,要准备10cm,8 cm,6 cm的铁丝各()条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体知识点 Prepared on 24 November 2020
长方体(一)(二)复习重点
一、知识点一:长方体和正方体的认识
1、长方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。

2、正方体的特征:正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

3、长方体的长、宽、高各有4条。

长方体的棱长总和=(长+宽+高)×4或长方体的棱长总和=长×4+宽×4+高×4
4、正方体的棱长总和= 棱长×12
练习:1、一个正方体的棱长是2cm,它的棱长总和是()cm
2、用36cm长的铁丝,可以围成一个长3cm,宽2cm,高()cm的长方体。

3、8根长4cm,6根长3cm,4根长2cm的木棒,最多能围成()种不同的长方体。

二、知识点二:长方体和正方体的表面积的计算
5、长方体或正方体6个面的总面积叫做它的表面积。

6、长方体的表面积=(长×宽+长×高+宽×高)×2
用字母表示:S=(ab+ah+bh)×2
正方体的表面积= 棱长×棱长×6
用字母表示:S=6a2
7、表面积单位:平方厘米、平方分米、平方米
8、1m2 =100dm2 1dm2 =100cm2
练习:1、长方体的长是5cm,宽和高都是4cm,这个长方体的表面积是
()cm2
2、要在一个长6米,宽4米,深2米的游泳池的四周及底面贴上瓷砖,要贴上()平方米的瓷砖。

3、做一个长2dm,宽3dm,高3m的长方形的烟囟,要用()平方分米的铁板。

三、知识点三:长方体和正方体的体积的计算
9、体积:物体所占空间的大小叫做物体的体积。

10、长方体的体积= 长×宽×高用字母表示:V=abh
正方体的体积= 棱长×棱长×棱长用字母表示:V=a3
11、体积单位:立方厘米、立方分米和立方米
1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm3
12、长方体正方体体积统一计算公式:
长方体或正方体的体积=底面积×高用字母表示:V=Sh
13、单位换算:把高级单位化成低级单位,用高级单位数乘以进率;
把低级单位聚成高级单位,用低级单位数除以进率。

练习;1、千米=()米,20分=()时
240ml=()l =()dm3
=()cm 56dm2=()cm2
2、有一个长方体和一个正方体,长方体的长是5分米,宽是4分米,高是6分米,正方体的棱长是5分米,()的体积大,大()立方分米。

3、把一个体积是216立方分米的正方体棱长扩大2倍后,它的体积是()方方分分。

4、有两个体积相等的长方体和正方体,正方体的棱长是6cm,长方体的底面积是18cm2,这个长方形的高是()cm。

四、知识点四:长方体和正方体的容积的计算
14、容积:容器所能容纳物体的体积。

15、容积单位:升和毫升(L和ml)
1L=1000ml 1L= 1dm3 1ml= 1cm3
16、容积单位的计算单位:长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

17、有趣的测量:水面上升的体积就是物体的体积。

练习;1、填一填:
橡皮擦的体积是15();一个杯子的容积是500
();
一本书的封面的面积是165();一瓶牛奶约500();
一个讲台的体积约是();一本词典的体积约是900
();
2、一个长方体容器,底面长2分米,宽分米,放入一个土豆后水面升高了分米,这个土豆的体积是()立方分米。

五、知识点五:正方体展开图。

练习;用自己喜欢的图标出上面展开图中相对的面。

六、知识点六:包装中的学问。

最节约材料的包装方法:用大面重叠。

练习;把两盒糖果包成一包(糖果盒是一个长20厘米,宽15厘米,高5厘米的长方体),共有()种包装方法,至少要()平方厘米的包装纸。

相关文档
最新文档