(完整版)等差数列专题

合集下载

(完整版)等差、等比数列》专项练习题

(完整版)等差、等比数列》专项练习题

《等差、等比数列》专项练习题一、选择题:1.已知等差数列{a n }中,a 1=1,d=1,则该数列前9项和S 9等于( ) A.55 B.45 C.35 D.252.已知等差数列{an}的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( ) A .180 B .-180 C .90 D .-90 3.已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( )A.18B.27C.36D.454.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( ) A .1B .-21C .1或-1D .-1或21 5.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .26.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( ) A .x 2-6x +25=0 B .x 2+12x +25=0 C .x 2+6x -25=0 D .x 2-12x +25=0 7.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅ 等于A .102B .202C .162D .1528.等比数列的前n 项和S n =k ·3n +1,则k 的值为( )A .全体实数B .-1C .1D .3二、填空题:1.等差数列{}n a 的前n 项和n n S n 32+=.则此数列的公差=d .2. 数列{a n },{b n }满足a n b n =1, a n =n 2+3n +2,则{b n }的前10次之和为 3.若{}n a 是首项为1,公差为2的等差数列,11+=n n n a a b ,则数列{}n b 的前n 项和n T= . 4.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____. 5.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.三、解答题:1. 设{a n }为等差数列,S n 为{a n }的前n 项和,S 7=7,S 15=75,已知T n 为数列{S nn}的前n 项数,求T n . 2.已知数列{}n a 是等差数列,其前n 项和为n S ,12,633==S a . (1)求数列{}n a 的通项公式;(2)求.nS S S 11121+++ 3.已知数列满足a 1=1,a n +1=2a n +1(n ∈N *)(1) 求证数列{a n +1}是等比数列;(2) 求{a n }的通项公式.4.在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,且前n 项和S n =126,求n 及公比q .参考答案一、选择题:1.B 提示: 998911452s ⨯=⨯+⨯=2.A 提示:由等差数列性质,a 4+a 6=a 3+a 7=-4与a 3·a 7=-12联立,即a 3,a 7是方程x 2+4x -12=0的两根,又公差d >0,∴a 7>a 3⇒a 7=2,a 3=-6,从而得a 1=-10,d =2,S 20=180.3.C 提示:在等差数列{a n }中,a 2+a 8=8,∴ 198a a +=,则该数列前9项和S 9=199()2a a +=36 CAD B B二、填空题:1.答案:2提示:411==S a ,102322221=⨯+==+S a a ,62=∴a ,2=d . 2. 512提示:b n =1a n =1(n +1)(n +2) =1n +1 -1n +2∴S 10=b 1+b 2+…b n =12 -112 =512 .3.答案:69nn + 提示:)321121(21)32)(12(1,12+-+=++=+=n n n n b n a n n ,用裂项求和法求得96+=n nT n .4.2, 3·2n -2.5.251+.三、解答题:1.解:设数列{a n }的公差为d ,则S n =na 1+12n (n -1)d .∵S 7=7,S 15=75,∴⎩⎨⎧7a 1+21d =7 15a 1+105d =75, ∴⎩⎨⎧a 1=-2d =1∴S n n =a 1+12 ·(n -1)d =-2+12·(n -1) ∴S n +1n +1 -S n n =12 ∴数列{S n n }是等差数列,其首项为-2,公差为12, ∴T n =n ·(-2)+n (n -1)2·12 =14 n 2-94n .2.解:(1)设数列{}n a 的公差为d,由题意得方程组⎪⎩⎪⎨⎧=⨯+=+1222336211d a d a ,解得 ⎩⎨⎧==221d a ,∴数列{}n a 的通项公式为n d n a a n 2)1(1=-+=,即n a n 2=.(2)∵n a n 2=,∴)1(2)(1+=+=n n a a n S n n . ∴n S S S 11121+++ )1(1321211+++⨯+⨯=n n .3.(1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n -1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n-14.解析:∵a 1a n =a 2a n -1=128,又a 1+a n =66,∴a 1、a n 是方程x 2-66x +128=0的两根,解方程得x 1=2,x 2=64, ∴a 1=2,a n =64或a 1=64,a n =2,显然q ≠1. 若a 1=2,a n =64,由qqa a n --11=126得2-64q =126-126q ,∴q =2,由a n =a 1q n-1得2n -1=32, ∴n =6.若a 1=64,a n =2,同理可求得q =21,n =6. 综上所述,n 的值为6,公比q =2或21.。

(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。

解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。

题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。

解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。

题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。

解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。

题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。

解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。

以上是关于等差数列求和与差的练题的完整版文档。

(完整版)高考等差等比数列知识点总结

(完整版)高考等差等比数列知识点总结

1高考数列知识点等差数列1.等差数列的定义:d aa n n=--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项首项首项::1a ,公差,公差:d :d :d,末项,末项,末项::n a推广: d m n a a m n )(-+=. 从而mn a a d m n --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22dn a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为的二次式且常数项为00) 特别地()()()12121121212n n n n a a S n a +++++==+5.等差数列的判定方法(1) 定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列.是等差数列. (2) 等差中项:数列{}na 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

是常数)。

(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中(其中A A 、B 是常数)6.等差数列的证明方法定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函的一次函 数,数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(完整版)等差数列典型例题及分析

(完整版)等差数列典型例题及分析

第四章 数列[例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.正解:(1)a n =3n -2;(2) 1+4+…+(3n -5)是该数列的前n -1项的和.[例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。

正解: ①当1=n 时,111==S a 当2≥n 时,34)1()1(2222-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,311==S a 当2≥n 时,nn n n n a n 21)1()1(122=-----++= ∴ ⎩⎨⎧=n a n 23)2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。

正解:由题意:⎪⎪⎩⎪⎪⎨⎧=⨯+=⨯+7022930301029101011d a d a 得152,521==d a 代入得S 40 =1204023940401=⨯⨯+d a 。

[例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和;正解: ⎪⎪⎩⎪⎪⎨⎧≥+--≤-6,502)5)(520(5,2)545(n n n n n n[例6]已知一个等差数列的前10项的和是310,前20项的和是1220,由此可以确定求其前n 项和的公式吗?[例7]已知:nn a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为最 大?(2)前多少项之和的绝对值最小? 解:(1) ⎩⎨⎧<-=≥-+=+02lg 102402lg )1(10241n a n a n n 3403340112lg 10242lg 1024<<⇒+≤<⇒n n∴3402=n (2) 0)2lg (2)1(1024=--+=n n n S n 当n n S S 或0=近于0时其和绝对值最小 令:0=n S 即 1024+0)2lg (2)1(=--n n 得:99.680412lg 2048≈+=n ∵ +∈N n ∴6805=n [例8]项数是n 2的等差数列,中间两项为1+n n a a 和是方程02=+-q px x 的两根,求证此数列的和n S 2是方程 0)lg (lg lg )lg (lg lg 2222=+++-p n x p n x 的根。

(完整版)数列复习

(完整版)数列复习
期中考试复习
第二章 数列
一.等差数列
1.定义:an an1 d (n 1, d为常数)
an1 an 3
an1 an 3
an是等差数列,且公差 d 3
这也是证明an为等差数列的最重要的 方法。
2.通项公式: an a1 (n 1)d
3.等差数列前 n项求和公式:
Sn
na1
n(n 1)d 2
去迎接每一天。用自己的双眼,去欣赏属于自己的快乐风景。也可以认为,人的心灵应该永远充满喷涌的激情,人生需要不停的行走,不断地接受新的挑战,追求新的事物,在不断的追求中方能享受人生的快乐,没有欲望,没有追求,就永远难享快乐!还可以将“欲望”分为物质和精神两个层 面,分别论述这两个层面与快乐的关系,或论其中一个层面与快乐的关系。 写作时,可就以上三个方面任选一个角度写一篇议,也可以用一个人物的经历演绎故事,表达自己对这个话题的看法,鼓励文体创新,写出富有个性的佳作。 ? 10.阅读下面的材料,然后按要求作文。 中国自主设计的 地铁二号线投入运营后,人们发现德国人设计的一号线中的许多细节被我们忽视了。譬如,德国设计师在靠近站台约50厘米内铺上了金属装饰,又用黑色大理石嵌了一条边。这样,当乘客走近站台边时,就会有了警惕,会停在安全线以内;而二号线地面全部用同一色的瓷砖,乘客很难意识到已 经靠近了轨道,地铁公司不得不安排专人来提醒乘客注意安全。恰恰是诸如此类的细节,决定了二号线运营成本远远高于一号线,至今尚未实现收支平衡。一号线近乎完美的设计,正是基于德国设计人员的细心观察,科学计算,周密推理,尤其是对于细节与全局关系准确把握的一种理性和自觉, 最终才能从大处着眼,从细节着手。 请以“细节与全局”为话题,写一篇800字的文章。 [写作提示]“细节与全局”是一个双概念关系型的话题,它体现了哲学上讨论的“整体与局部”的关系,着眼考查学生的思辨能力。考生写作时,应该用联系的眼光看待“细节与全局”的关系,细节虽小, 却不可忽视,生活中每一个小的细节都和整体有着密不可分的联系。如果每个细节我们都做得好,那么就会有一个令人满意的全局;如果关键的细节我们没有注意到,就可能带来全局性的失误,如前苏联的联盟一号飞船的悲剧就是由于一个小数点的错误造成的。“千里之堤,溃于蚁穴”,讲的 就是这个道理。 11.阅读下面的材料,然后按要求作文。 科学家不是依赖于个人的思想,而是综合了几千人的智慧。许多人想一个问题,并且每个人做其中的部分工作,添加到正建立起来的伟大的知识大厦之中。——卢瑟福 独立性是天才的基本特征。——歌德 即使通过自己的努力知道一半的 真理,也比人云亦云地知道全部真理要好。——罗曼·罗兰 一粒沙子是松散的,可是它和水泥、石子、水混合后,比花岗岩还坚韧。——王 杰 读了上面的几则材料,你有什么感想?请以“自主与合作”为话题写一篇作文。 [写作提示]对“自主与合作”之间的关系要进行辩地分析。一味地强 调自主而忽视合作,便会导致刚愎自用,不能借用集体的智慧;一味地强调合作而忽视自主,便会丧失自我。只有在自主中寻求合作,在合作中保持自主,这才是明智的做法。该话题可用的材料非常多,中国历史上战国七雄之间的关系可以从本话题的角度来写;当今的企业之间、国与国之间既 合作又团结的关系也可以成为作文的论材料。 ? 12.阅读下面的材料,然后按要求作文。 有一位木匠,晚年他很少手把手地教徒弟做工,只是习惯于提醒,有一句口头禅是:“注意了,留一道缝隙。”木工讲究疏密有致,黏合贴切,该疏则疏,不然易散落。时下,许多人家装修房子,常常出现 木地板开裂,或挤压拱起的现象,这就是当初做得太“美满”的缘故。高明的装修师傅懂得恰到好处地留一道缝隙,给组合材料留下吻合的空间,便可避免出现这样的问题。 其实,做人处事,和木匠的工艺一样,也得讲究“留一道缝隙”。你是如何看待这个问题的?请以“留一道缝隙”为话题, 联系社会生活实际,写一篇文章。立意自定,文体自选,题目自拟,不少于800字。 ? [写作提示]做人和处事,如果事事工于算计,利害当头,互不相让,凡事追求“团满”,人与人之间的关系就会紧张,就会裂变。同样,一个人把所有行为都目的化,就会把自己的理想挤压得变形。留一道缝 隙,给自己,给他人,给社会留一个可供吻合的人际空间。 ? 13. 阅读下面的材料,然后按要求作文。 铅笔即将被装箱运走,制造者很不放心,把它带到一旁对它说:“你将来能做很多大事,会成为最好的铅笔。但是有一个前提,你要记住我的话:你不能盲目自由,你要允许自己被一只手握 住;你可能经常会感受到刀削般的疼痛,但是这些痛苦都是必要的,它会使你成为一支有用的铅笔;不要过于固执,要承认你所犯的任何错误,并且勇于改正它;不管穿上什么样的外衣,你都要清楚一点,你最重要的部分总是在里面;在你走过的任何地方,都必须留下不可磨灭的痕迹,不管是 什么状态,你必须写下去。要记住,只有这样,生活才会有意义。” 请以“铅笔的原则”为话题,写一篇800字的文章。 ? [写作提示]这是一个比喻性的话题,好在话题材料中已经把“铅笔的原则”的比喻义讲得十分清楚,也就是制造者的嘱咐。考生须明白的是,这则材料看似在告诫铅笔,实 则是在告诫人,这个话题是让我们思考做人的原则问题:生活中没有绝对的自由,正视痛苦磨炼人生,要勇于改正错误,守住心灵不迷失自我,奋斗中展示自己的美。文章立意的自由度很大,所写内容只要与以上几个方面有联系都算是符合题意。 注意写议时应有丰富的材料,选材要新颖、典型, 更要有对材料的合理分析,注意论辩色彩,使文章有较强的说服力。写记叙文要构思精巧,要有饱满的情感,以深刻的细节描写打动读者,追求行文的艺术性。 14.阅读下面的材料,然后按要求作文。 一只兔子被猎人开枪打伤。它惊恐地逃跑了。猎人让猎犬追赶那只逃跑的兔子。猎犬的速度飞 快,兔子没命地飞奔,根本看不出它已经受伤,最后竟把猎犬甩开了。猎人见猎犬一无所获,愤怒地骂道:“没用的东西,连一只受伤的兔子都抓不到!”猎犬感到很委屈,辩解道:“我虽然没能抓到兔子,可我已经尽力而为了呀!”那只受伤的兔子逃回窝中,伙伴们为它死里逃生而感到惊 奇。 ? 它们好奇地问:“猎犬速度这么快,你居然还能逃脱,真是太不可思议了!”惊魂未定的兔子说:“猎犬如果抓不住我,顶多被主人骂一顿,所以,它追我只是尽力而为;可我如果被它抓住,命就没有了,所以我逃跑是全力以赴呀!” 在生活中,我们常常发现一些本应该能够做好的事情 竟没有做好,而有些看来没有希望做好的事情却做成功了。这原因往往就如猎犬和兔子,取决于是尽力还是全力。请以“尽力与全力”为话题写一篇作文。题目自拟,立意自定,文体自选,800字以上。 [写作提示]“尽力”与“全力”的区别在于是否还留有余地,是否还有退路,其所处境遇不 同,付出也会异样,那么结果也就不一样。这不是一个关系型话题,而是同中求异的范围型话题。 我们可以从几个角度选择立意。从猎犬与兔子比较的角度立意,可以联想到生存状况影响对待工作的态度,猎犬没有生存危机,所以只需“尽力”做就行;兔子有生存危机,所以做事必须“全力以 赴”。从猎人的角度联想,可以想到形成猎犬与兔子行动结果的不同,是猎人的造成的,对兔子是把它逼向死地,对猎犬却没有很有用的利害机制促其全力以赴,人不求“全力”,只求“尽力”是机制造成的。进而可以这样联想,假如打破“铁饭碗”,摔烂“铁交椅”,砸碎“关系网”,人还 敢只“尽力”而不“全力”去做吗?看来,制度决定人的工作态度。 至于是议论还是编故事,只要能表明自己的观点或者中心意图,都是可以的。 15. 阅读下面的材料,然后按要求作文。 理查·布林斯莱·谢立丹是18世纪后期英国最有成就的喜剧家。当他的第一部喜剧《情敌》初次上演时, 谢立丹应观众的要求谢幕。就在这个时候,有一个人在剧场顶层的楼座上喊道:“这个喜剧糟透了!”声音很大,全场观众都听见了,他们都想看看谢立丹有什么反应。谢�

等差数列专题(有答案)百度文库

等差数列专题(有答案)百度文库

一、等差数列选择题1.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +2.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .453.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤B .6斤C .9斤D .12斤4.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n5.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米6.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32B .33C .34D .357.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .248.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大212,则该数列的项数是( ) A .8B .4C .12D .1610.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7B .10C .13D .1611.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( )A .10B C .64D .412.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n13.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .5514.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .815.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .10016.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103B .107C .109D .10517.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .518.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020D .202119.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6B .7C .8D .1020.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S二、多选题21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列22.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =23.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a =C .当9n =或10时,n S 取得最大值D .613S S =24.题目文件丢失!25.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 26.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1227.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项28.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 29.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+30.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 2.B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 3.C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 4.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=, 故选:B. 5.B【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 6.D 【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【详解】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m ++++++++=++=则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 7.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 8.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 9.A 【分析】设项数为2n ,由题意可得()21212n d -⋅=,及6S S nd -==奇偶可求解. 【详解】设等差数列{}n a 的项数为2n , 末项比首项大212, ()212121;2n a a n d ∴-=-⋅=① 24S =奇,30S =偶,30246S S nd ∴-=-==奇偶②.由①②,可得32d =,4n =, 即项数是8, 故选:A. 10.C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C 11.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 12.A 【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A 13.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 14.A由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A 15.B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m+=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B. 16.B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B. 17.A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-, 对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A 18.B 【分析】根据递推关系式求出数列的通项公式即可求解. 【详解】 由121()2n n a a n N *++=∈,则11()2n n a a n N *+=+∈, 即112n n a a +-=, 所以数列{}n a 是以1为首项,12为公差的等差数列, 所以()()11111122n n a a n d n +=+-=+-⨯=, 所以2021a =2021110112+=. 故选:B 19.D 【分析】由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭+++=⎧⎪⎨⎪⎩,即{1132024a d a d +-+=, 解得:{123a d =-=,51424310a a d ∴=+=-+⨯=.故选:D. 20.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S .二、多选题21.ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4, ∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC.【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题 22.BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确.选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题. 23.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误;由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.24.无25.ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题. 26.ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d dS d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 27.ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确. 故选:ABD 【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型. 28.BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题. 29.AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力. 30.ABD 【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果. 【详解】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确, 故选:ABD. 【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.。

小学等差数列专题

小学等差数列专题

等差数列专题
总和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1
第几项=首项+(项数-1)×公差平均数公式:平均数=(首项+末项)÷2
1、1+2+3+4+5+6+7+ (20)
2、7+11+15+19+23+27+31+35=
3、7+11+15+19+ (87)
4、有一个数列,4、10、16、22 …… 52,这个数列有多少项?
5、2+6+10+14+……+122+126=()
6、求等差数列1、4、
7、10 ……,这个等差数列的第30项是多少?
7、有一个数列:6、10、14、18、22 ……,这个数列前100项的和是多少?
8、一个等差数列,首项是3,公差是2,项数是10。

它的末项是多少?
9、3个连续整数的和是120,求这3个数。

10、4个连续整数的和是94,求这4个数。

11、有10把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
12、有10个同学聚会,见面时如果每人都和其余的每个人握一次手,那么共握手____次。

13、有一批铁管,最低下一层是10根,倒数第二层是9根,以后每往上一层,铁管少一根,那么十层铁管一共有______根。

14、一个剧场设置了16排座位,后每一排都比前一排多2个座位,最后一排有68个座位,这个剧场共有多少个座位?。

(完整版)等差数列经典题型

(完整版)等差数列经典题型

等差数列 第三课时 前N 项和1、在等差数列{a n }中,已知d =2,a n =11, S n =35,求a 1和n .2、设{a n }为等差数列, S n 为数列{a n }的前n 项和,已知S 7=7, S 15=75, T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .(1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ;(2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.3、已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A.2B.3C.4D.54、现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A.9 B.10 C.19 D.295、等差数列{a n }中, S 10=4S 5,则a 1d 等于( ) A.12 B.2 C.14 D.46、已知等差数列{a n}中,a23+a28+2a3a8=9,且a n<0,则S10为()A.-9B.-11C.-13D.-157、设等差数列{a n}的前n项和为S n,若S3=9, S6=36.则a7+a8+a9等于()A.63B.45C.36D.278、在小于100的自然数中,所有被7除余2的数之和为()A.765B.665C.763D.6639、一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数列的公差是()A.3B.-3C.-2D.-110、设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+…+a99=______.11、在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n的值为______.12、已知两个等差数列{a n }、{b n },它们的前n 项和分别是S n 、S ′n ,若S n S ′n =2n +33n -1,则a 9b 9=______.13、已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .14、已知等差数列{a n }的前三项为a -1,4,2a ,记前n 项和为S n . (1)设S k =2 550,求a 和k 的值;(2)设b n =S nn ,求b 3+b 7+b 11+…+b 4n -1的值.14、已知数列{a n}的前n项和为S n,且S n=2n2-3n,求通项公式a n.15、已知数列{a n}的前n项和S n=3n+b,求a n..16、在等差数列{a n}中,a1=25, S17=S9,求S n的最大值.17、等差数列{a n}中,a1<0, S9=S12,该数列前多少项的和最小?18、已知{a n}为等差数列,求{|a n|}的前n项和19、已知等差数列{a n}中,记S n是它的前n项和,若S2=16, S4=24,求数列{|a n|}的前n项和T n.20、数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).21、(1)求数列{a n}的通项公式;(2)设S n=|a1|+|a2|+…+|a n|,求S n.22、设数列{a n}是等差数列,且a2=-8,a15=5, S n是数列{a n}的前n项和,则()A.S9<S10B.S9=S10C.S11<S10D.S11=S1023、已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<8,则k为()A.9B.8C.7D.624、设S n是等差数列{a n}的前n项和,若S3S6=13,则S6S12等于()A.310 B.13 C.18 D.1925、.数列{a n}的前n项和S n=3n-2n2(n∈N*),则当n≥2时,下列不等式成立的是()A.S n>na1>na nB.S n>na n>na1C.na1>S n>na nD.na n>S n>na126、设{a n}是等差数列, S n是其前n项和,且S5<S6, S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值27、数列{a n}的前n项和为S n,且S n=n2-n(n∈N*),则通项a n=______.28、等差数列{a n}中,|a3|=|a9|,公差d<0,则使前n项和S n取得最大值的自然数n 是______.29、在等差数列{a n}中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n=______.30、已知f(x)=x2-2(n+1)x+n2+5n-7(1)设f(x)的图象的顶点的纵坐标构成数列{a n},求证:{a n}为等差数列;(2)设f(x)的图象的顶点到x轴的距离构成{b n},求{b n}的前n项和.31、设等差数列{a n}的前n项和为S n,已知a3=12,且S12>0, S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.32.设S n是等差数列{a n}的前n项和,若S7=35,则a4等于( ).A.8 B.7 C.6 D.533.设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5等于( ).A.1 B.-1 C.2 D.1 234.已知某等差数列共20项,其所有项和为75,偶数项和为25,则公差为( ).A.5 B.-5 C.-2.5 D.2.535.设等差数列{a n}的前n项和为S n,若S9=72,则a2+a4+a9=________.36.在等差数列{a n}中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n=________.37.设等差数列{a n}的前n项和为S n,已知a3=12,且S12>0,S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.38.设S n是等差数列{a n}的前n项和,若S3S6=13,则S6S12等于( ).A.310B.13C.18D.1939.已知数列{a n}满足a n=26-2n,则使其前n项和S n取最大值的n的值为( ).A.11或12 B.12C.13 D.12或1340.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m 的值是________.41.在等差数列{a n }中,a 1>0,公差d <0,a 5=3a 7,前n 项和为S n ,若S n 取得最大值,则n =________.42.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n n 的前n 项和,求T n .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列专题一、等差数列知识点回顾与技巧点拨1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.2.等差数列的通项公式若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d =(n -m )d=p .3.等差中项如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,如果A 是x 和y 的等差中项,则A =x +y2.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项). 5.等差数列的前n 项和公式若已知首项a 1和末项a n ,则S n =n a 1+a n2,或等差数列{a n }的首项是a 1,公差是d ,则其前n 项和公式为S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数).7.最值问题在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值,若a 1<0,d >0,则S n 存在最小值.一个推导利用倒序相加法推导等差数列的前n 项和公式: S n =a 1+a 2+a 3+…+a n ,① S n =a n +a n -1+…+a 1,②①+②得:S n =n a 1+a n2.两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元. (1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元. 四种方法等差数列的判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数;(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立; (3)通项公式法:验证a n =pn +q ;(4)前n 项和公式法:验证S n =An 2+Bn .注: 后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.回顾:1.已知等差数列{a n }中,a 3=9,a 9=3,则公差d 的值为( ) A .B . 1C .D . ﹣12.已知数列{a n }的通项公式是a n =2n+5,则此数列是( ) A . 以7为首项,公差为2的等差数列 B . 以7为首项,公差为5的等差数列 C . 以5为首项,公差为2的等差数列 D . 不是等差数列 3.在等差数列{a n }中,a 1=13,a 3=12,若a n =2,则n 等于( ) A . 23 B . 24 C . 25 D . 26 4.两个数1与5的等差中项是( ) A . 1 B . 3 C . 2 D . 5.(2005•黑龙江)如果数列{a n }是等差数列,则( ) A . a 1+a 8>a 4+a 5 B . a 1+a 8=a 4+a 5 C . a 1+a 8<a 4+a 5 D . a 1a 8=a 4a 5考点1:等差数列的通项与前n 项和题型1:已知等差数列的某些项,求某项【解题思路】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法 【例1】已知{}n a 为等差数列,,则解:方法1: 方法2:,方法3:令,则方法4:{}n a 为等差数列,也成等差数列,设其公差为,则为首项,20,86015==a a =75a Θ154,156420598141160115==⇒⎩⎨⎧=+==+=d a d a a d a a ∴2415474156474175=⨯+=+=d a a Θ1544582015601560=-=--=a a d ∴241541520)6075(6075=⨯+=-+=d a a b an a n +=38,45162060815==⇒⎩⎨⎧=+=+b a b a b a ∴24384516757575=+⨯=+=b a a Θ∴7560453015,,,,a a a a a 1d 15a 60a为第4项.方法5:{}n a 为等差数列,三点共线对应练习:1、已知{}n a 为等差数列,(互不相等),求.2、已知个数成等差数列,它们的和为,平方和为,求这个数.题型2:已知前项和及其某项,求项数.【解题思路】⑴利用等差数列的通项公式求出及,代入可求项数;⑵利用等差数列的前4项和及后4项和求出,代入可求项数.【例2】已知为等差数列{}n a 的前项和,,求解:设等差数列的首项为,公差为,则对应练习:3、若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数.4.已知为等差数列{}n a 的前项和,,则.题型3:求等差数列的前n 项和【解题思路】(1)利用求出,把绝对值符号去掉转化为等差数列的求和问题.∴438203111560=⇒+=⇒+=d d d a a ∴2442016075=+=+=d a a Θ∴),75(),,60(),,15(756015a a a 2415204582060751560757560751560=⇒-=-⇒--=--a a a a a a q a p a n m ==,k n m ,,k a 551655n n S dn a a n )1(1-+=1a dn S n n a a +1n S n n S n 63,6,994=-==n S a a n 1a d3,186893111-==⇒⎩⎨⎧-=+=+d a d a d a ∴7,663)1(231821==⇒=--=n n n n n S n n n S n100,7,141===n S a a =n n S n a(2)含绝对值符号的数列求和问题,要注意分类讨论.【例3】已知为等差数列{}n a 的前项和,.(1);⑵求; ⑶求.解:,当时,,当时,,当时,, .由,得,当时,;当时,.(1);⑵;(3)时,,当时,对应练习:5、已知为等差数列{}n a 的前项和,,求.n S n 212n n S n -=321a a a ++10321a a a a ++++Λna a a a ++++Λ321Θ212n n S n -=∴1=n 1111211=-==S a 2≥n n n n n n S S a n n n 213)1()1(12)12(221-=-+---=-=-1=n 1111213a ==⨯-∴n a n 213-=0213≥-=n a n 213≤n ∴61≤≤n 0>n a 7≥n 0<n a 27331223321321=-⨯==++=++S a a a a a a )(10987632110321a a a a a a a a a a a a +++-++++=++++ΛΛ52)101012()6612(2222106=-⨯--⨯=-=S S 61≤≤n 232132112n n a a a a a a a a n n -=++++=++++ΛΛ7≥n )(876321321n n a a a a a a a a a a a +++-++++=++++ΛΛΛ.7212)12()6612(222226+-=---⨯=-=n n n n S S n n S n 10,10010010==S S 110S考点2 :证明数列是等差数列【名师指引】判断或证明数列是等差数列的方法有:1、定义法:(,是常数){}n a 是等差数列;2、中项法:(){}n a 是等差数列;3、通项公式法:(是常数){}n a 是等差数列; 4、项和公式法:(是常数,){}n a 是等差数列.【例4】已知为等差数列{}n a 的前项和,. 求证:数列是等差数列.解:方法1:设等差数列{}n a 的公差为,,(常数)数列是等差数列.方法2:, ,, 数列是等差数列.对应练习:6、设为数列{}n a 的前项和,,(1) 常数的值;(2) 证:数列是等差数列.d a a n n =-+1+∈N n d ⇔212+++=n n n a a a +∈N n ⇔b kn a n +=b k ,⇔Bn An S n +=2B A ,0≠A ⇔n S n )(+∈=N n nS b nn {}n b d d n n na S n )1(211-+=∴d n a n S b n n )1(211-+==∴2)1(2121111dd n a nd a b b n n =---+=-+∴{}n b Θd n a n S b n n )1(211-+==∴nd a b n 2111+=+d n a b n )1(2112++=+∴1111222)1(21)1(21++=+=-++++=+n n n b nd a d n a d n a b b ∴{}n b n S n )(+∈=N n pna S n n .21a a =p {}n a考点3 :等差数列的性质【解题思路】利用等差数列的有关性质求解.【例5】1、已知为等差数列{}n a 的前项和,,则 ;2、知为等差数列{}n a 的前项和,,则.解:1、;2、方法1:令,则. ,,;方法2:不妨设., ;方法3:{}n a 是等差数列,为等差数列三点共线.n S n 1006=a =11S nS n)(,m n n S m S m n ≠===+n m S 11001122112)(116611111==⨯=+=a a a a S Bn An S n +=2n m m n B m n A nBm Am mBn An -=-+-⇒⎩⎨⎧=+=+)()(2222Θm n ≠∴1)(-=++B m n A ∴)()()(2n m n m B n m A S n m +-=+++=+n m >mn a a n m a a a a a S S m n m m n n n n m -=+-=+++++=-+-+++2))((11321Λ∴211-=+=+++m n n m a a a a ∴)(2))((1n m a a n m S n m n m +-=++=++Θ∴⎭⎬⎫⎩⎨⎧n S n ∴⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+n m S n m m S m nSn n m m n,,,,,.对应练习:7、含个项的等差数列其奇数项的和与偶数项的和之比为( )8.设、分别是等差数列{}n a 、{}n a 的前项和,,则. 考点4: 等差数列与其它知识的综合【解题思路】1、利用与的关系式及等差数列的通项公式可求; 2、求出后,判断的单调性.【例6】已知为数列{}n a 的前项和,;数列满足:,,其前项和为⑴ 数列{}n a 、的通项公式;⑵设为数列的前项和,,求使不等式对都成立的最大正整数的值. 解:⑴,当时,;当时,当时,,;,是等差数列,设其公差为.则,∴)(n m S nm nn m S n m n m m n n m n m +-=⇒-+=--++12+n .A n n 12+.B n n 1+.C n n 1-.D nn 21+n S nT n 327++=n n T S nn=55b a n a n S n T n T n S n n n S n 211212+={}n b 113=b nn n b b b -=++1229.153{}n b nT {}n c n)12)(112(6--=n n n b a c 57kT n >+∈∀N n k Θn n S n 211212+=∴1=n 611==S a 2≥n 5)1(211)1(2121121221+=----+=-=-n n n n n S S a n n n 1=n 1651a ==+∴5+=n a n Θ222112+++++=⇒-=n n n n n n b b b b b b ∴{}n b d3,5153369112111==⇒⎩⎨⎧=+=+d b d b d b.⑵,是单调递增数列. 当时, 对都成立 所求最大正整数的值为.对应练习:9.已知为数列{}n a 的前项和,,.⑴ 数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数,使得不等式对任意不小于的正整数都成立?若存在,求最小的正整数,若不存在,说明理由.课后练习:1.(2010广雅中学)设数列是等差数列,且,,是数列的前项和,则A .B .C .D .2.在等差数列{}n a 中,,则 .3.数列{}n a 中,,当数列{}n a 的前项和取得最小值时,.4.已知等差数列{}n a 共有项,其奇数项之和为,偶数项之和为,则其公差是 .5.设数列中,,则通项 .6.从正整数数列中删去所有的平方数,得到一个新数列,则这个新数列的第∴23)1(35+=-+=n n b n Θ[][]1)23(211)5(26)12)(112(6-+-+=--=n n b a c n n n 121121)12)(12(2+--=+-=n n n n ∴1211)121121()7151()5131()311(+-=+--++-+-+-=n n n T n ΛΘ+∈N n ∴n T ∴1=n ()323111min =-==T T n ∴57k T n >+∈∀N n ()38573257min <⇔>⇔>⇔k k k T n ∴k 37n S n 31=a )2(21≥=-n a S S n n n k 1+>k ka a k k {}n a 28a =-155a =n S {}n a n 1011S S =1011S S >910S S =910S S <1205=a =+++8642a a a a 492-=n a n nnS =n 101030{}n a 112,1n n a a a n +==++n a =Λ,5,4,3,2,1项是 .答案与解析: 对应练习:1、【解析】2、【解析】设这个数分别为则解得当时,这个数分别为:; 当时,这个数分别为:3、【解析】4、【解析】设等差数列的公差为,则.5、【解析】方法1:设等差数列的公差为,则 ;方法2:6、【解析】⑴,,⑵由⑴知:,当时,,,数列是等差数列.7、【解析】(本两小题有多种解法)1964n m k m q n k p a n k q a n m q p n k a a n m a a k k n k n m --+-=⇒--=--⇒--=--)()(5.2,,,,2d a d a a d a d a ++--⎩⎨⎧=+=⇒⎩⎨⎧=+++++-+-=+++++-+-1651051165)2()()()2(5)2()()()2(2222222d a a d a d a a d a d a d a d a a d a d a 4,1±==d a 4,1==d a 59,5,1,3,7--4,1-==d a 5.7,3,1,5,9--Θ124,363214321=+++=+++---n n n n a a a a a a a a 3423121---+=+=+=+n n n n a a a a a a a a ∴40160)(411=+⇒=+n n a a a a ∴39780207802)(1=⇒=⇒=+=n n a a n S n n d 23171414=-=--=a a d 101002)1(21=⇒=⨯-+=n n n n S n d ⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧=+=+100109950111049501001004510111d a d a d a ∴110109110211101110-=⨯⨯+=d a S Θ2902)(90100111001110100-=+⇒-=+=-a a a a S S 1102)(1102)(110100*********-=+=+=a a a a S Θn n pna S =21a a =∴111=⇒=p pa a n n na S =2≥n 0))(1()1(111=--⇒--=-=---n n n n n n n a a n a n na S S a ∴)2(01≥=--n a a n n ∴{}n a Θ,.选B. 8、【解析】填. 9、【解析】⑴当时,,且,{}n a 是以为公差的等差数列,其首项为.当时,当时,,; ⑵,得或,当时,恒成立,所求最小的正整数课后练习:1、【解析】C . 另法:由,,得,,计算知2、【解析】3、【解析】 由知{}n a 是等差数列, 2))(1(12112531++++=++++=n n a a n a a a a S Λ奇2)(222642n n a a n a a a a S +=++++=Λ偶nn a a a a 22121+=++∴nn S S 1+=偶奇∴12652525514225143)12(2)12(7551212=+⨯-⨯=⇒+-=+-+-==--b a n n n n T S b a n n n n ∴12652≥n )(22111----=⇒=n n n n n n n S S S S a S S ∴21111-=--n n S S 3111=S ∴21-31∴nS n n S S n n 356635)1(21111-=⇒-=--=∴2≥n )53)(83(18211--==-n n S S a n n n 1=n 11018)53)(83(18a ≠=--∴⎪⎩⎪⎨⎧≥--=)2()53)(83(18)1(3n n n n 0)23)(53)(83(181>---=-+k k k a a k k 3532<<k 38>k ∴3≥k 1+>k k a a .3=k 1091521015216292)(,22S S a d a S d a a a a S =⇒++=++=+=28a =-155a =713815)8(5=---=d 76921=-=d a a 910S S =480.480458642==+++a a a a a 24492-=n a n .250>⇒>n a n ∴4、【解析】 已知两式相减,得5、【解析】利用迭加法(或迭代法),也可以用归纳—猜想—证明的方法.6、【解析】.24=n 4.4205=⇒=d d 1)1(21++n n 2008。

相关文档
最新文档