51单片机时序及延时分析

合集下载

51 单片机 定时器 延时1s函数

51 单片机 定时器 延时1s函数

51 单片机定时器延时1s函数1.引言1.1 概述本文介绍了51单片机中的定时器功能以及如何通过定时器实现延时1秒的函数。

在单片机应用中,定时器是一种非常重要且常用的功能模块之一。

它能够精确计时,并可用于实现周期性的任务触发、计时、脉冲输出等功能。

本文首先将对51单片机进行简要介绍,包括其基本概念、结构和特点。

随后,重点讲解了定时器的基本原理和功能。

定时器通常由一个计数器和一组控制寄存器组成,通过预设计数器的初值和控制寄存器的配置来实现不同的计时功能。

接着,本文详细介绍了如何通过编程实现一个延时1秒的函数。

延时函数是单片机开发中常用的功能,通过定时器的计时功能可以实现精确的延时控制。

本文将以C语言为例,介绍延时函数的编写步骤和原理,并给出示例代码和详细的说明。

最后,本文对所述内容进行了总结,并展望了定时器在单片机应用中的广泛应用前景。

通过学习定时器的相关知识和掌握延时函数的编写方法,我们可以更好地应用定时器功能,提高单片机应用的效率和精确性。

综上所述,通过本文的学习,读者可全面了解51单片机中定时器的功能和应用,并能够掌握延时函数的编写方法,为单片机应用开发提供一定的参考和指导。

1.2 文章结构本文以51单片机定时器功能为主题,旨在介绍如何使用定时器进行延时操作。

文章分为引言、正文和结论三个主要部分。

在引言部分,首先会对文章的背景进行概述,介绍单片机的基本概念和应用领域。

然后,给出本文的整体结构,并阐述文章的目的和意义。

正文部分将分为两个小节。

在2.1节中,将对单片机进行详细介绍,包括其构造与工作原理。

这部分的内容将帮助读者全面了解单片机的基本知识,为后续的定时器功能介绍打下基础。

2.2节将重点介绍定时器的功能和特点。

这部分将涵盖定时器的基本原理、工作模式以及在实际应用中的使用方法。

同时,还将详细讲解如何使用定时器进行1秒钟的延时操作,包括具体的代码实现和注意事项。

结论部分将对全文进行总结,并强调定时器的重要性和应用前景。

C51单片机的几种常用延时程序设计2024

C51单片机的几种常用延时程序设计2024

引言概述:C51单片机是一种广泛应用于嵌入式系统中的微控制器,它具有高度集成化、易于编程和灵活性强等特点。

在C51单片机的软件开发过程中,延时程序设计是非常重要的一部分。

本文将介绍C51单片机中几种常用的延时程序设计方法,包括循环延时、定时器延时、外部中断延时等。

这些方法不仅可以满足在实际应用中对延时的需求,而且可以提高程序的稳定性和可靠性。

正文内容:一、循环延时1. 使用循环控制语句实现延时功能,例如使用for循环、while循环等。

2. 根据需要设置延时的时间,通过循环次数来控制延时的时长。

3. 循环延时的精度受到指令执行时间的影响,可能存在一定的误差。

4. 循环延时的优点是简单易用,适用于较短的延时时间。

5. 注意在循环延时时要考虑其他任务的处理,避免长时间的等待造成程序卡死或响应延迟。

二、定时器延时1. 使用C51单片机内置的定时器模块来实现延时。

2. 配置定时器的工作模式,如工作方式、定时器精度等。

3. 设置定时器的初值和重装值,控制定时器中断的触发时间。

4. 在定时器中断服务函数中进行延时计数和延时结束标志的设置。

5. 定时器延时的优点是精确可控,适用于需要较高精度的延时要求。

三、外部中断延时1. 在C51单片机上配置一个外部中断引脚。

2. 设置外部中断中断触发条件,如上升沿触发、下降沿触发等。

3. 在外部中断中断服务函数中进行延时计数和延时结束标志的设置。

4. 外部中断延时的优点是能够快速响应外部信号,适用于实时性要求较高的场景。

5. 注意在外部中断延时时要处理好外部中断的抖动问题,确保延时的准确性。

四、内部计时器延时1. 使用C51单片机内部的计时器模块来实现延时。

2. 配置计时器的工作模式,如工作方式、计时器精度等。

3. 设置计时器的初值和重装值,使计时器按照一定的频率进行计数。

4. 根据计时器的计数值进行延时的判断和计数。

5. 内部计时器延时的优点是能够利用单片机内部的硬件资源,提高延时的准确性和稳定性。

51单片机汇编延时程序算法详解

51单片机汇编延时程序算法详解

51 单片机汇编延时程序算法详解
51 单片机汇编延时程序算法详解
将以12MHZ 晶振为例,详细讲解MCS-51 单片机中汇编程序延时的精确
算法。

指令周期、机器周期与时钟周期
指令周期:CPU 执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。

时钟周期:也称为振荡周期,一个时钟周期=晶振的倒数。

MCS-51 单片机的一个机器周期=6 个状态周期=12 个时钟周期。

MCS-51 单片机的指令有单字节、双字节和三字节的,它们的指令周期不
尽相同,一个单周期指令包含一个机器周期,即12 个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1μs。

扩展阅读:单片机有
哪些延时方法详细介绍
程序分析
例1 50ms 延时子程序:。

80C51单片机上电复位和复位延时的时序分析

80C51单片机上电复位和复位延时的时序分析

80C51单片机上电复位和复位延时的时序分析1.上电复位时序分析:当单片机通电时,其内部电路经过一系列的过程,最终实现上电复位。

具体的时序如下:a.当电源供电稳定后,单片机内部开始运行,在此之前,通过电源上的电感元件(电源滤波电感)将电源的浪涌电流限制在一定范围内,避免对器件造成损害。

b.在电源稳定后,单片机内部的复位电路开始工作,将复位引脚(RST)拉低。

复位引脚通常由一个上拉电阻连接到电源电压,当复位引脚被拉低时,单片机内部复位逻辑电路开始工作。

c.单片机内部的复位逻辑电路通过一系列的电路操作,包括对寄存器、内存等的清零操作,实现对整个系统的复位。

同时,系统时钟和各个外设模块(如定时器、串口等)被禁止,确保整个系统进入复位状态。

d.完成复位操作后,复位引脚会逐渐恢复高电平,此时单片机开始退出复位状态,系统可以开始正常运行。

2.复位延时时序分析:在单片机复位后,必须等待一段时间,直到内部电路完全稳定,才能恢复正常运行。

此时间段被称为复位延时。

具体的时序如下:a.当复位引脚恢复高电平时,复位逻辑电路停止工作,但系统内部的各个模块以及外设模块的电路需要一定时间来稳定,此时单片机处于复位延时状态。

b.在复位延时期间,系统时钟和各个外设模块仍然被禁止,保证系统内部不会发生意外的操作。

c.复位延时的具体时间取决于单片机的工作频率,通常在给定的单片机规格书中可以找到相关的参数或公式。

复位延时可以使用一个定时器或延时循环实现,保证系统稳定后再进行正常的操作。

总结:80C51单片机的上电复位和复位延时时序分析是单片机运行的基础,关系到系统的稳定性和可靠性。

通过了解上电复位和复位延时的时序分析,可以更好地理解单片机的工作原理,并合理地设计系统硬件电路和软件逻辑,保证系统的正常运行。

51单片机的延时及时序分析

51单片机的延时及时序分析

51单片机的延时及时序分析第一个问题:延时程序分析在上节课中,我们已经知道,程序中的符号R7、R6是代表了一个个的RAM单元,是用来放一些数据的,下面我们再来看一下其它符号的含义。

DELAY:MOV R7,#250;(6)D1:MOV R6,#250 ;(7)D2:DJNZ R6,D2 ;(8)DJNZ R7,D1;(9)RET ;(10)MOV:这是一条指令,意思是传递数据。

说到传递,我们都很清楚,传东西要从一个人的手上传到另一个人的手上,也就是说要有一个接受者,一个传递者和一样东西。

从指令MOV R7,#250中来分析,R7是一个接受者,250是被传递的数,传递者在这条指令中被省略了(注意:并不是每一条传递指令都会省的,事实上大部份数据传递指令都会有传递者)。

它的意义也很明显:将数据250送到R7中去,因此执行完这条指令后,R7单元中的值就应当是250。

在250前面有个#号,这又是什么意思呢?这个#就是用来说明250就是一个被传递的东西本身,而不是传递者。

那么M OV R6,#250是什么意思,应当不用分析了吧。

DJNZ:这是另一条指令,我们来看一下这条指令后面跟着的两个东西,一个是R6,一个是D2,R6我们当然已知是什么了,查一下D2是什么。

D2在本行的前面,我们已学过,这称之为标号。

标号的用途是什么呢?就是给本行起一个名字。

DJNZ指令的执行过程是这样的,它将其后面的第一个参数中的值减1,然后看一下,这个值是否等于0,如果等于0,就往下执行,如果不等于0,就转移,转到什么地方去呢?可能大家已猜到了,转到第二个参数所指定的地方去(请大家用自已的话讲一下这条语句是怎样执行的)。

本条指令的最终执行结果就是,在原地转圈250次。

执行完了DJNZ R6,D2之后(也就是R6的值等于0之后),就会去执行下面一行,也就是DJNZ R7,D1,请大家自行分析一下这句话执行的结果。

(转去执行MOV R6,#250,同时R7中的值减1),最终DJNZ R6,D2这句话将被执行250*250=62500次,执行这么多次同一条指令干吗?就是为了延时。

51单片机延时时间计算和延时程序设计

51单片机延时时间计算和延时程序设计

一、关于单片机周期的几个概念●时钟周期时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12MHz的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。

在一个时钟周期内,CPU仅完成一个最基本的动作。

●机器周期完成一个基本操作所需要的时间称为机器周期。

以51为例,晶振12M,时钟周期(晶振周期)就是(1/12)μs,一个机器周期包执行一条指令所需要的时间,一般由若干个机器周期组成。

指令不同,所需的机器周期也不同。

对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。

对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。

1.指令含义DJNZ:减1条件转移指令这是一组把减1与条件转移两种功能结合在一起的指令,共2条。

DJNZ Rn,rel ;Rn←(Rn)-1;若(Rn)=0,则PC←(PC)+2 ;顺序执行;若(Rn)≠0,则PC←(PC)+2+rel,转移到rel所在位置DJNZ direct,rel ;direct←(direct)-1;若(direct)= 0,则PC←(PC)+3;顺序执行;若(direct)≠0,则PC←(PC)+3+rel,转移到rel 所在位置2.DJNZ Rn,rel指令详解例:MOV R7,#5DEL:DJNZ R7,DEL; rel在本例中指标号DEL1.单层循环由上例可知,当Rn赋值为几,循环就执行几次,上例执行5次,因此本例执行的机器周期个数=1(MOV R7,#5)+2(DJNZ R7,DEL)×5=11,以12MHz的晶振为例,执行时间(延时时间)=机器周期个数×1μs=11μs,当设定立即数为0时,循环程序最多执行256次,即延时时间最多256μs。

2.双层循环1)格式:DELL:MOV R7,#bbDELL1:MOV R6,#aaDELL2:DJNZ R6,DELL2; rel在本句中指标号DELL2DJNZ R7,DELL1; rel在本句中指标号DELL1注意:循环的格式,写错很容易变成死循环,格式中的Rn和标号可随意指定。

单片机:51单片机的延时及时序分析

单片机:51单片机的延时及时序分析

计算机工作时,是在统一的时钟脉冲控制下一拍一拍地进行的。

这个脉冲是由单片机控制器中的时序电路发出的。

单片机的时序就是CPU在执行指令时所需控制信号的时间顺序,为了保证各部件间的同步工作,单片机内部电路应在唯一的时钟信号下严格地控时序进行工作,在学习51单片机的时序之前,我们先来了解下时序相关的一些概念。

既然计算机是在统一的时钟脉冲控制下工作的,那么,它的时钟脉冲是怎么来的呢?要给我们的计算机CPU提供时序,就需要相关的硬件电路,即振荡器和时钟电路。

我们学习的8051单片机内部有一个高增益反相放大器,这个反相放大器的作用就是用于构成振荡器用的,但要形成时钟,外部还需要加一些附加电路。

8051单片机的时钟产生有以下两种方法:1. 内部时钟方式:利用单片机内部的振荡器,然后在引脚XTAL1(18脚)和XTAL2(19脚)两端接晶振,就构成了稳定的自激振荡器,其发出的脉冲直接送入内部时钟电路,外接晶振时,晶振两端的电容一般选择为30PF左右;这两个电容对频率有微调的作用,晶振的频率范围可在1.2MHz-12MHz之间选择。

为了减少寄生电容,更好地保证振荡器稳定、可靠地工作,振荡器和电容应尽可能安装得与单片机芯片靠近。

2. 外部时钟方式:此方式是利用外部振荡脉冲接入XTAL1或XTAL2。

HMOS和CHMOS单片机外时钟信号接入方式不同,HMOS型单片机(例如8051)外时钟信号由XTAL2端脚注入后直接送至内部时钟电路,输入端XTAL1应接地。

由于XTAL2端的逻辑电平不是TTL的,故建议外接一个上接电阻。

对于CHMOS型的单片机(例如80C51),因内部时钟发生器的信号取自反相器的输入端,故采用外部时钟源时,接线方式为外时钟信号接到XTAL1而XTAL2悬空。

如下图外接时钟信号通过一个二分频的触发器而成为内部时钟信号,要求高、低电平的持续时间都大于20ns,一般为频率低于12MHz的方波。

片内时钟发生器就是上述的二分频触发器,它向芯片提供了一个2节拍的时钟信号。

51单片机的延时及时序分析

51单片机的延时及时序分析
既然计算机是在统一的时钟脉冲控制下工作的,那么,它的时钟脉冲是怎么来的呢?
要给我们的计算机CPU提供时序,就需要相关的硬件电路,即振荡器和时钟电路。我们学习的8051单片机内部有一个高增益反相放大器,这个反相放大器的作用就是用于构成振荡器用的,但要形成时钟,外部还需要加一些附加电路。8051单片机的时钟产生有以下两种方法:
51单片机的延时及时序分析
计算机工作时,是在统一的时钟脉冲控制下一拍一拍地进行的。这个脉冲是由单片机控制器中的时序电路发出的。单片机的时序就是CPU在执行指令时所需控制信号的时间顺序,为了保证各部件间的同步工作,单片机内部电路应在唯一的时钟信号下严格地控时序进行工作,在学习51单片机的时序之前,我们先来了解下时序相关的一些概念。
在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。请大家参考后面的时序图。
机器周期
在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。8051系列单片机的一个机器周期同6个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。参见后面的时序图。
二、外部时钟方式:
此方式是利用外部振荡脉冲接入XTAL1或XTAL2。HMOS和CHMOS单片机外时钟信号接入方式不同,HMOS型单片机(例如8051)外时钟信号由XTAL2端脚注入后直接送至内部时钟电路,输入端XTAL1应接地。由于XTAL2端的逻辑电平不是TTL的,故建议外接一个上接电阻。对于CHMOS型的单片机(例如80C51),因内部时钟发生器的信号取自反相器的输入端,故采用外部时钟源时,接线方式为外时钟信号接到XTAL1而XTAL2悬空。如下图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51 单片机时序及延时分析
51 单片机时序及延时分析
计算机工作时,是在统一的时钟脉冲控制下一拍一拍地进行的。

这个脉冲是由单片机控制器中的时序电路发出的。

单片机的时序就是CPU 在执行指令时所需控制信号的时间顺序,为了保证各部件间的同步工作,单片机内部电路应在唯一的时钟信号下严格地控时序进行工作,在学习51 单片机的时序之前,我们先来了解下时序相关的一些概念。

扩展阅读:单片机时序分析
既然计算机是在统一的时钟脉冲控制下工作的,那幺,它的时钟脉冲是怎幺来的呢?
要给我们的计算机CPU 提供时序,就需要相关的硬件电路,即振荡器和时钟电路。

我们学习的8051 单片机内部有一个高增益反相放大器,这个反相放大器的作用就是用于构成振荡器用的,但要形成时钟,外部还需要加一些附加电路。

8051 单片机的时钟产生有以下两种方法:
一、内部时钟方式:
利用单片机内部的振荡器,然后在引脚XTAL1(18 脚)和XTAL2(19 脚)两端接晶振,就构成了稳定的自激振荡器,其发出的脉冲直接送入内部时钟电。

相关文档
最新文档