01-02高等数学教学大纲

合集下载

高等数学的教学大纲(最新完整版)

高等数学的教学大纲(最新完整版)

高等数学的教学大纲(最新完整版)高等数学的教学大纲高等数学是大学本科公共基础课程,内容主要包括极限与连续、微积分、线性代数、概率论和数理统计等方面。

具体的教学大纲可能会因学校、地区或教师而有所不同,以下是一般高等数学的大致内容:1.极限与连续:包括极限的定义、性质和计算,以及连续的概念和应用。

2.导数与微分:包括导数的定义、性质和计算,以及微分的概念和应用。

3.积分学:包括不定积分、定积分的定义、性质和计算,以及积分的应用。

4.线性代数:包括行列式、矩阵、向量空间、线性方程组等概念和应用。

5.概率论:包括概率、条件概率、随机变量、期望和方差等概念和应用。

6.数理统计:包括基本概念、参数估计、假设检验、回归分析等应用。

除了以上内容,高等数学的教学大纲还包括数学建模、数学软件应用等方面的内容,以培养学生的数学思维和应用能力。

教育部大学数学教学大纲教育部大学数学教学大纲是指教育部制定的大学数学课程的教学大纲,包括高等数学、线性代数、概率论与数理统计等。

这些大纲规定了大学数学课程的教学内容、教学要求、教学时数等方面的内容,是大学数学教师进行教学的重要依据。

教育部大学数学教学大纲的内容包括:高等数学:一、函数与极限;二、导数与微分;三、导数的应用;四、不定积分;五、定积分;六、定积分的应用;七、微分方程;八、向量代数与空间解析几何;九、多元函数微分学;十、重积分;十一、曲线积分与曲面积分;十二、无穷级数。

线性代数:一、行列式;二、矩阵;三、向量;四、线性方程组;五、矩阵的特征值和特征向量;六、二次型。

概率论与数理统计:一、概率论的基本概念;二、随机变量及其分布;三、多维随机变量及其分布;四、随机变量的数字特征;五、大数定律和中心极限定理;六、样本及抽样分布;七、参数估计;八、假设检验。

高等数学实验教学大纲高等数学实验教学大纲是指为了更好地指导学生进行实验,所编写的指导性文件。

以下是部分高等数学实验的教学大纲:1.极限与连续__极限的定义与计算__极限存在性定理__无穷小与无穷大的性质__连续函数的定义与性质__极限与连续的应用2.导数与微分__导数的定义与计算__导数的应用__微分的定义与计算__微分的应用3.积分学__不定积分与定积分的定义与计算__积分的应用__微积分基本定理__积分学的学习方法4.微分方程__微分方程的定义与计算__微分方程的应用__常微分方程的解法__微分方程的学习方法5.向量代数与空间解析几何__向量代数的基础知识__向量代数在几何中的应用__空间解析几何的基础知识__空间解析几何在几何中的应用6.多重积分与曲线积分__多重积分的基础知识__多重积分的计算与应用__曲线积分的基础知识__曲线积分的计算与应用高等数学教学大纲撰写意见根据《大学数学教学基本要求》,结合《高等数学》课程特点,对教学大纲的撰写提出以下意见:1.课程概述:简要介绍高等数学的基本内容、课程目标、学习方法等,突出高等数学在自然科学、工程技术和经济生活中的重要地位,强调数学素质的培养对学生全面发展的重要性。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

最新01-02高等数学教学大纲

最新01-02高等数学教学大纲

01-02高等数学教学大纲《高等数学》课程教学大纲第一部分:大纲说明一、本课程基本情况1、课程编号: 07020101、070201022、课程类型:学科基础课3、修读方式:必修4、学时: 84+1085、学分: 5+66、考核方式:考试二、课程的目的和任务高等数学是理科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。

通过本课程的学习,要使学生获得:1.函数与极限;2.一元函数微积分学;3.向量代数和空间解析几何;4.多元函数微积分学;5.无穷级数(包括傅立叶级数);6.常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

本课程在工程力学、流体力学、天体力学、电路振荡分析、工业自动控制以及化学、生物、经济等领域有广泛的应用。

三、课程的结构和学时安排第一章:函数与极限(14学时)第二章:导数与微分(14学时)第三章:微分中值定理与导数的应用(16学时)第四章:不定积分(12学时)第五章:定积分(12学时)第六章:定积分的应用(16学时)第七章:空间解析几何与向量代数(14学时)第八章:多元函数微分法及其应用(16学时)第九章:重积分(16学时)第十章:曲线积分与曲面积分(20学时)第十一章:无穷级数(20学时)第十二章:微分方程(22学时)第二部分课程内容及要求第一章函数与极限【教学内容】1.映射与函数2.数列的极限3.函数的极限4.无穷小与无穷大5.极限运算法则6.极限存在准则两个重要极限7.无穷小的比较8.函数的连续性与间断点9.连续函数的运算与初等函数的连续性10.闭区间上连续函数的性质【教学要求】1.理解映射与函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲一、课程基本信息课程编码:课程名称:《高等数学》总学时:112学时适用专业:长春大学旅游学院商学院、旅游管理学院、工学院相关专业开课单位:基础部计算机与数学教研室课程类别:公共基础课课程性质:必修课二、课程性质、目的与任务高等数学课程的教学内容由3个数学分支的内容组成,即《微积分》(52学时)、《线性代数》(30学时)、《概率论及数理统计》(30学时)。

本课程是一门培养学生具有一定的抽象概括问题能力、逻辑推理能力、熟练的运算能力,综合运用所学知识去分析问题,解决问题能力的公共基础课,是商学院、旅游管理学院、工学院相关专业一门必修的课程。

通过本课程的学习,使学生掌握高等数学的基本知识、基本理论和基本方法,为学生解决实际问题提供有效的数学方法,以及将高等数学的知识在自然科学和工程技术中的广泛应用奠定良好的数学基础。

本课程的主要任务是为专业课提供必不可少的数学基础知识,在传授知识的同时,努力培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力,以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。

三、课程的内容及要求、教学重点与难点(一)函数、极限、连续1.主要教学内容函数的概念;数列的极限;函数的极限;无穷小量与无穷大量;极限运算法则;极限存在准则、两个重要极限;函数的连续性与间断点;连续函数的运算、初等函数的连续性;闭区间上的连续函数的性质。

2.知识点与能力点(1)知识点:加深对函数概念的理解,了解函数性质(奇偶性、单调性、周期性和有界性);理解复合函数的概念,了解反函数的概念;理解极限的概念,了解极限的,Nεεδ--定义、理解左、右极限的定义;掌握极限的四则运算法则;了解极限的性质(唯一性、有界性、保号性)和两个存在准则(夹逼准则与单调有界准则);掌握两个重要极限;了解无穷小、无穷大,理解高阶无穷小和等价无穷小的概念;理解函数在一点连续和在区间上连续的概念;了解函数间断点的概念;了解初等函数的连续性和闭区间上连续函数的介值定理,最大值、最小值定理。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲英文名称:Advanced Mathematics课程代码:课程类别:专业基础课课程性质:必修开课学期:第一、二学期总学时:90学时总学分:5考核方式:闭卷适用专业:经济学专业一、课程简介数学向社会科学渗透及社会的数字化是当今科技发展的一般趋势。

它是一门研究客观世界数量关系和空间形式的科学,也是一种思维模式和文化素养。

数学教育在培养高素质经济管理人才中具有独特的、不可替代的重要作用。

高等数学是高等学校经济学专业的一门专业基础课。

通过本课程的学习,使学生获得一元函数微积分、多元函数微积分、常微分方程及其经济应用方面的基本概念、基本理论、基本方法和运算技能,为学习各类后续课程和今后从事科研活动、阅读或撰写论文奠定必要的数学基础,提供常用的数学方法。

在能力培养上,在传授知识的同时通过各教学环节逐步培养学生用极限的方法解决问题的能力,培养学生具有一定的逻辑思维能力,初步的抽象概括问题的能力和综合运用所学知识分析问题、解决问题的能力。

学生在进入本课程学习之前,应具备初等数学的理论基础,为本课程提供了必须的数学基础知识。

本课程学习结束后,学生可具备进一步学习相关课程的理论基础。

本课程总90学时,其中第一学期36学时,第二学期54学时。

考核方式为闭卷考试,根据平时考勤成绩、习题作业成绩、阶段性单元检测成绩及闭卷期末考试成绩综合给予最终成绩评定。

二、课程目标及其对毕业要求的支撑目标1-人文素养目标:教育学生认真学习马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”、科学发展观和新时代中国特色社会主义的重要思想;忠诚党的教育事业和体育事业,培养学生互教互学、团结友爱、共同提高的集体主义精神;培养学生有严格组织纪律性,吃苦耐劳和勇敢顽强的意志品质。

目标2-理论知识培养目标:使学生掌握高等数学的基本理论和基础知识,初步掌握微分学和积分学的基本思想和方法,进一步学习用微积分学的思想理论分析解决各种应用问题。

《高等数学》 课程教学大纲

《高等数学》 课程教学大纲

二、课程基本内容和要求
1. 函数、极限、连续
教学内容
(1) 函数概念、性质、基本初等函数图象的性质,复合函数,初等函数,建立函数关系举例。
(2) 函数极限的概念,极限的四则运算,两个重要极限,无穷小量与无穷大量概念及性质,无穷小的比较
(3) 函数的连续性,初等函数的连续性,间断点,闭区间上连续函数的性质
制定人:朱铭扬
审核人:高 枫
(2)偏导数概念,多元复合函数与隐函数的微分法
(3)全微分及其应用
(4)多元函数的极值和最值
教学要求
(1) 理解多元函数的基本概念,其定义域及图象特点,知道二元函数的极限、连续性等概念,知道有界闭区域上连续函数的性质。
(2) 理解偏导数,熟练地计算函数的一阶偏导数,熟练掌握复合函数的求导法则,会求隐函数的偏导数。
《高等数学》 课程教学大纲
总学时:128 学分:8
一、课程性质、任务和目的
高等数学是大学专科工学和理学专业一门必修的重要公共基础课,通过本课程的学习着重使学生理解极限的思想方法,掌握微积分学、级数、微分方程等内容,并通过各教学内容的有机结合,培养学生的逻辑思维能力和比较熟练的运算能力,为学生学习后继课程和解决实际问题提供必不可少的数学基础知识及常用数学方法。
(2)直角坐标系与极坐标系下二重积分的计算
(3)二重积分在几何上的应用:曲顶柱体体积计算
教学要求
(1) 理解二重积分概念及几何意义,知道其性质
(2) 掌握直角坐标系下二重积分的计算,会利用极坐标系计算二重积分。
(3) 会利用二重积分计算一些简单曲顶柱体的体积。
重点与难点:二重积分(包括概念、计算与应用);化重积分为累次积分;元素法

高等数学教学大纲

高等数学教学大纲

《高等数学》课程教学大纲一、《高等数学》课程说明(一)课程代码:(二)课程英文名称:Advanced Mathematics(三)开课对象:非数学专业专科学生(理科)(四)课程的性质:高等数学是高等教育专科重要的基础理论课之一。

通过本课程的学习,使学生获得微积分、空间解析几何、级数及常微分方程的基础知识和常用的运算方法。

通过各教学环节逐步培养学生分析问题和解决问题的能力。

为学习后继课程及今后的专业工作奠定必要的数学基础。

(五)教学目的:通过本课程的教学,提高学生的逻辑推理的能力,空间想象的能力,使学生具有比较熟练的运算能力和综合运用所学知识去分析问题、解决问题的能力。

(六)教学内容:1 要正确了解和理解以下概念:函数、极限、连续性、导数、微分、偏导数、全微分、函数的极值。

不定积分、定积分、二重积分、三重积分、无穷级数的敛散性、有关空间解析几何及常微分方程的基本概念。

2 要了解和掌握下列基本理论、基本定理和公式:基本初等函数的性质及图形,基本初等函数的导数公式,微分中值定理(罗尔定理、拉格朗日定理),不定积分基本公式,变上限积分及其求导定理、牛顿-莱伯尼兹公式,偏导数的几何意义,极值存在的必要条件,几何级数和P级数的收敛性,级数敛散性的判定条件,直线与平面的方程,典型的二次曲面、二阶线性常微分方程解的结构。

3掌握下列运算法则和方法:求函数和数列极限的方法与运算法则,导数和微分的运算法则,复合函数求导法,初等函数一阶、二阶导数的求法,用导数判断函数的单调性及求极值方法,多元函数复合函数的偏导数求法,不定积分、定积分的换元与分部积分法,正项级数的比值审敛法,求幂级数的收敛半径和收敛区间,函数展开成幂级数的间接展开法,一阶变量可分离变量微分方程的求解,二阶常系数线性微分方程的解法。

4 应用方面:用定积分和常微分方程方法求解一些简单的几何和物理问题,用极值方法求解最大值最小值的应用问题。

(七)教学时数教学时数:136学时教学时数具体分配:(八)教学方式课堂讲授,课外习作及批改.(九)考核方式和成绩记载说明考核方式为考试。

高等数学教学大纲

高等数学教学大纲

高等数学教学大纲课程概述高等数学是大学数学教育的基础课程,旨在为学生提供数学知识和技能,培养其逻辑思维能力、分析问题和解决问题的能力。

本大纲详细说明了高等数学课程的教学目标、教学内容、教学方法和评估方式。

教学目标1.理解高等数学的基本概念和理论,如函数、极限、连续性、微积分等。

2.掌握高等数学的基本方法和技能,包括微分学、积分学及其应用,能够运用数学知识解决实际问题。

3.培养学生的数学素养和逻辑思维能力,提高其分析问题和解决问题的能力。

4.使学生具备初步的研究能力,为后续课程的学习和研究打下基础。

教学内容1.函数与极限:包括函数的定义与性质,数列的极限,函数的极限与连续性。

2.导数与微分:包括导数的定义与性质,求导法则,微分及其应用。

3.积分学:包括不定积分与定积分的定义、性质和计算方法,以及积分的应用。

4.多元函数微积分:包括多元函数的极限、连续性、偏导数与全微分,以及二重积分。

5.无穷级数与常微分方程:包括无穷级数的概念与性质,常微分方程的基本概念与求解方法。

教学方法1.课堂讲解:通过讲解基本概念、理论和例题,使学生了解和掌握高等数学的知识和方法。

2.习题练习:通过大量的习题练习,加深学生对知识的理解,提高其解题能力。

3.案例分析:通过分析实际问题中的数学应用,培养学生的数学应用能力和解决问题的能力。

4.课堂讨论:通过讨论式教学,引导学生主动参与学习,提高其自主学习和合作学习能力。

评估方式1.平时作业:通过定期布置和批改平时作业,了解学生的学习情况,以便及时调整教学策略。

2.期中考试:通过期中考试检查学生对知识的掌握情况,为后续教学提供参考。

3.期末考试:通过期末考试全面评估学生对高等数学知识的掌握情况和应用能力。

4.课堂表现:通过观察学生的课堂表现,了解其学习状态和参与度,及时给予指导和帮助。

教学资源1.教材:选用适合学生学习的高等数学教材,保证教学内容的准确性和系统性。

2.教学辅导材料:提供相应的教学辅导材料,如习题集、案例集等,以便学生巩固和提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》课程教学大纲第一部分:大纲说明一、本课程基本情况1、课程编号: 07020101、070201022、课程类型:学科基础课3、修读方式:必修4、学时: 84+1085、学分: 5+66、考核方式:考试二、课程的目的和任务高等数学是理科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。

通过本课程的学习,要使学生获得:1.函数与极限;2.一元函数微积分学;3.向量代数和空间解析几何;4.多元函数微积分学;5.无穷级数(包括傅立叶级数);6.常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节,逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

本课程在工程力学、流体力学、天体力学、电路振荡分析、工业自动控制以及化学、生物、经济等领域有广泛的应用。

三、课程的结构和学时安排第一章:函数与极限(14学时)第二章:导数与微分(14学时)第三章:微分中值定理与导数的应用(16学时)第四章:不定积分(12学时)第五章:定积分(12学时)第六章:定积分的应用(16学时)第七章:空间解析几何与向量代数(14学时)第八章:多元函数微分法及其应用(16学时)第九章:重积分(16学时)第十章:曲线积分与曲面积分(20学时)第十一章:无穷级数(20学时)第十二章:微分方程(22学时)第二部分课程内容及要求第一章函数与极限【教学内容】1.映射与函数2.数列的极限3.函数的极限4.无穷小与无穷大5.极限运算法则6.极限存在准则两个重要极限7.无穷小的比较8.函数的连续性与间断点9.连续函数的运算与初等函数的连续性10.闭区间上连续函数的性质【教学要求】1.理解映射与函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。

2.了解函数的奇偶性、单调性、周期性和有界性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形。

5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

【教学重点与难点】教学重点:函数与复合函数的概念,基本初等函数与初等函数,实际问题中的函数关系,极限概念与极限运算,无穷小,两个重要极限公式,函数连续的概念与初等函数的连续性。

教学难点:函数符号的运用,复合函数的复合过程,极限定义的理解,两个重要极限的灵活运用。

第二章导数与微分【教学内容】1.导数概念2..函数的求导法则3.高阶导数4.隐函数及由参数方程所确定的函数的导数相关变化率5.函数的微分【教学要求】1.理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。

2.熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3.了解高阶导数的概念,会求某些简单函数的n阶导数。

4.会求分段函数的导数。

5.会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。

【教学重点与难点】教学重点:1.导数和微分的概念与微分的关系;2.导数的四则运算法则和复合函数的求导法则;基本初等函数的导数公式;3.高阶导数;4.隐函数和由参数方程确定的函数的导数。

教学难点:1.复合函数的求导法则;2.分段函数的导数;3.反函数的导数4.隐函数和由参数方程确定的导数。

第三章微分中值定理与导数应用【教学内容】1.微分中值定理2.洛必达法则3.泰勒公式4.函数的单调性与曲线的凹凸性5.函数的极值与最大值最小值6.函数图形的描绘7. 曲率【教学要求】1.理解并会用罗尔定理,拉格朗日中值定理和泰勒定理;2.了解并会用柯西中值定理;3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用;4.会用导数判断函数的凹凸性,会求函数图形的拐点,会求水平、铅直和斜渐进线,会描绘函数的图形;5.掌握用罗必达法则未定式极限的方法;6.了解曲率和曲率半径的概念,会计算曲率和曲率半径.【教学重点与难点】教学重点:罗尔定理,拉格朗日中值定理和泰勒定理的理解与运用; 用导数判断函数的单调性,凹凸性和求函数极值以及最值的方法; 结合导数知识描绘函数图形;用罗必达法则求未定式极限方法的运用; 曲率和曲率半径的概念及计算。

教学难点:拉格朗日中值定理和泰勒定理的理解与运用; 用导数判断函数的单调性,凹凸性和求函数极值以及最值方法的灵活应用; 综合利用导数知识描绘函数图形;罗必达法则的适用条件及类型;曲率和曲率半径的概念。

第四章不定积分【教学内容】1.不定积分的概念与计算2.换元积分法3.分部积分法4.有理函数的积分5.积分表的使用【教学要求】1.理解原函数与不定积分的概念;2.理解不定积分的基本性质;3.熟记不定积分的基本积分公式;4.熟练掌握不定积分的换元积分法;5.熟练掌握常见三种类型的分部积分法;6.会求有理函数和可化为有理函数的简单无理式的积分。

【教学重点与难点】教学重点:原函数与不定积分的概念,不定积分的性质,基本积分公式,换元积分法,分部积分法。

教学重点:换元积分法。

第五章定积分【教学内容】1.定积分的概念与性质2.微积分基本公式3.定积分的换元法和分部积分法4. 反常积分【教学要求】1.理解定积分、反常积分和Γ函数的概念及相关性质;2.掌握微积分的基本公式,会利用定积分的换元法和分部积分法求解定积分;3.握反常积分的求解方法,能利用反常积分的审敛法判断反常积分的敛散性。

【教学重点与难点】教学重点:定积分、反常积分和Γ函数的概念;微积分的基本公式以及定积分的换元法和分部积分法。

教学难点:定积分、反常积分和Γ函数的相关性质;变动上限的函数的应用;利用微积分的基本公式以及定积分的换元法和分部积分法求解定积分与反常积分;利用反常积分的审敛法判断反常积分的敛散性。

第六章定积分的应用【教学内容】1.定积分的元素法2.积分在几何学上的应用3. 定积分在物理学上的应用【教学要求】1.掌握定积分的元素法,会求所求问题的微元。

2.能够利用定积分的元素法解决平面图形的面积,体积,弧长等相关几何问题。

3.能够利用定积分的元素法解决水压力,变力做功,引力等相关物理问题。

【教学重点与难点】教学重点:利用定积分的元素法解决相关几何,关物理问题。

教学难点:会求所求问题的微元。

第七章空间解析几何与向量代数【教学内容】1.向量及其线性运算2.数量积向量积3.曲面及其方程4.空间曲线及其方程5.平面及其方程6. 空间直线及其方程【教学要求】1.理解空间直角坐标系,理解向量的概念及其表示。

2.掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。

3.理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。

4.掌握平面方程和直线方程及其求法。

5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6.会求点到直线以及点到平面的距离。

7.理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

8.了解空间曲线的参数方程和一般方程。

9.了解空间曲线在坐标平面上的投影,并会求其方程。

【教学重点与难点】教学重点:两向量的数量积、向量积及它们的坐标表达式,两向量平行、垂直的条件,平面的点法式方程,直线的对称式方程,球面方程,母线平行于坐标轴的柱面方程。

教学难点:两向量的向量积,旋转曲面方程,空间曲线在坐标面上的投影曲线的概念和方程。

第八章多元函数微分法及其应用【教学内容】1.多元函数的基本概念2.偏导数3.全微分4.多元复合函数的求导法则5.隐函数的求导法则6.多元函数微分学的几何应用7.方向导数与梯度8. 多元函数的极值及其求法【教学要求】1.理解多元函数的基本概念;2.理解多元函数偏导数的概念,熟练掌握多元函数偏导数、全微分的求法;3.掌握多元复合函数、隐函数的求导法则;4.理解多元函数微分学的几何应用,了解方向导数与梯度;5.掌握多元函数极值的求法,并会应用其解决实际问题。

【教学重点与难点】教学重点:多元函数的偏导数的概念与求法,条件极值教学难点:多元复合函数的求导第九章重积分【教学内容】1.二重积分的概念与性质2.二重积分的计算3.三重积分4. 重积分的应用【教学要求】1.教学中应紧密结合定积分和不定积分的相关知识进行讲解,从熟悉的知识过渡到陌生的概念较容易让学生接受理解;既强调它们的联系,又强调它们的区别,强调重积分的计算方法和技巧,以强化知识结构.2.重积分的计算是教学的重难点,教学中要强化重积分的计算步骤和基本方法,还要密切关注学生的练习和作业,发现问题及时解决纠正.3.把重积分的计算和实际运用结合起来,激发学生学习的积极性,让学生在学习中掌握理解重积分的思想方法,能用所学知识解决一些实际问题.【教学重点与难点】教学重点:二重积分在直角坐标和极坐标下的计算,三重积分在直角坐标、柱面坐标和球坐标下的计算,三重积分的运用.教学难点:二重积分在直角坐标和极坐标下的计算三重积分的计算和运用.第十章曲线积分与曲面积分【教学内容】1.对弧长的曲线积分2.对坐标的曲线积分3.格林公式及其应用4.对面积的曲面积分5.对坐标的曲面积分6.高斯公式通量与散度7.斯托克斯公式环流量【教学要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

2.掌握计算两类曲线积分的方法。

3..熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。

4.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,了解高斯公式、斯托克斯公式,会用高斯公式计算曲面积分。

5.解散度与旋度的概念,并会计算。

6.会用曲线积分及曲面积分求一些几何量与物理量。

相关文档
最新文档