2016年新课标名师导学一轮复习理科数学课件 同步测试卷 圆锥曲线的综合问题

合集下载

2016年新课标名师导学一轮复习理科数学课件 同步测试卷 圆锥曲线的综合问题

2016年新课标名师导学一轮复习理科数学课件 同步测试卷 圆锥曲线的综合问题

13.(18 分)已知椭圆 C:xa22+by22=1(a>b>0)的离心 率与等轴双曲线的离心率互为倒数关系,直线 l:x-y + 2=0 与以原点 O 为圆心,以椭圆 C 的短半轴长为 半径的圆相切.
(1)求椭圆 C 的方程; (2)设 M 是椭圆的上顶点,过点 M 分别作直线 MA, MB 交椭圆于 A,B 两点,设两直线的斜率分别为 k1, k2,且 k1+k2=4,求证:直线 AB 过定点; (3)过点 P(0,2)的直线 l 与椭圆交于不同的两点 D, E,当△ODE 面积最大时,求DE.
分。
此时直线 AB 的方程为 x=-12,
-12,-1也在直线 x=-12上.
综上,直线 AB 过定点-12,-1. (3)依题意知直线 l 的斜率存在,
故设直线 l 的方程为 y=tx+2, 设 D(x3,y3),E(x4,y4),联立 y=tx+2 和x22+y2
=1 得,
(1+2t2)x2+8tx+6=0,由 Δ>0,得 t2>32,
第十六页,编辑于星期五:二十一点 五十七分。所以B= (1+k2)1+82k2

8(1+k2) 1+2k2 .
点 M( 2,0)到直线 l 的距离 d= 1+2kk 2.
则GH=2
r2-1+2k2k2.
所以要使AG=BH,只要AB=GH,
所以8(1+1+2kk22)=4r2-12+k2k2.
r2=12+k2k2+2(11++2kk22)=2(23kk44++33kk22++11)
第十二页,编辑于星期五:二十一点 五十七分。
【解析】(1)证明:如图,设 A(x1, 2x21),
B(x2,2x22),把 y=kx+2 代入 y= 2x2,得 2x2-kx-2=0.

2016年新课标名师导学一轮复习理科数学课件 同步测试卷 函数的应用

2016年新课标名师导学一轮复习理科数学课件 同步测试卷 函数的应用
第十四页,编辑于星期五:二十一点 五十七分。
④y=x-1x,直线 AB 的方程为:y=32x-32,设 D
点的横坐标为 t(1≤t≤2),则|DC|=32t-32-t+1t =32-
12t+1t ≤32-2
12t·1t =32-
1 2<4.
第十五页,编辑于星期五:二十一点 五十七分。
10.已知函数 f(x)对任意的实数 x 满足:f(x+3)=
第十七页,编辑于星期五:二十一点 五十七分。
三、解答题(本大题共 3 小题,共 50 分.解答应写 出文字说明、证明过程或演算步骤.)
11.(16 分)已知 f(x)是 R 上的单调函数,且对任意 的 a∈R,有 f(a)+f(-a)=0 恒成立,若 f(-3)=2.
(1)试判断 f(x)在 R 上的单调性,并说明理由; (2)解关于 x 的不等式 fm-x x+f(m)<0,其中 m∈R 且 m>0.
即xf(>0x)<0或xf(<0x)>0,∴0<x<1 或 x>4 或-
4<x<-1.
第五页,编辑于星期五:二十一点 五十七分。
5.已知定义在 R 上的奇函数 f(x),满足 f(x-4)=
-f(x),且在区间[0,2]上是增函数,若方程 f(x)=
m(m>0),在区间[-8,8]上有四个不同的根 x1,x2,x3,
第七页,编辑于星期五:二十一点 五十七分。
【解析】对于①,由|f(x)-g(x)|=|x2-(2x-2)|=|(x -1)2+1|≤1,得 x=1,即为唯一的“友好点”;
对于②,|f(x)-g(x)|=|
x-(x+2)|=
x-122+74

2016年新课标名师导学一轮复习理科数学课件 同步测试卷 空间图形的有关计算

2016年新课标名师导学一轮复习理科数学课件 同步测试卷 空间图形的有关计算

则 cos
θ=|nn|·|DD→→CC|=
10 5.
即二面角 C-AS-D 的余弦值为
10 5.
第八页,编辑于星期五:二十一点 五十七分。
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,将各小题的结果填在题中横线上.)
7.已知空间三点 A(1,1,1),B(-1,0,4),C(2, -2,3),则A→B与C→A的夹角 θ 的大小是_1_2_0_°___.
∴D→P=(0,0,a),A→E=-1,1,a2,
由 cos〈D→P,A→E〉= 33,∴a22=a 2+a42· 33,
∴a=2.
∴E 的坐标为(1,1,1).
第五页,编辑于星期五:二十一点 五十七分。
5.在空间四边形 ABCD 中,A→B·C→D+A→C·D→B+ A→D·B→C=( B )
A.-1 B.0 C.1 D.不确定
【解析】解法一:如图,在空间四边形
ABCD 中,连接对角线 AC,BD,得三棱锥
A-BCD,不妨令其各棱长都相等,即为正
四面体,
∵正四面体的对棱互相垂直,
∴A→B·C→D=0,A→C·D→B=0,A→D·B→C=0.
∴A→B·C→D+A→C·D→B+A→D·B→C=0.
解法二:在解法一的图中,选取不共面的向量A→B,
=12(A→1B1-A→1D1)-13A→1A=12a-12b-13c.
第三页,编辑于星期五:二十一点 五十七分。
3.如图,E、F 分别是三棱锥 P-ABC 的棱 AP、BC 的中点,PC=10,AB=6, EF=7,则异面直线 AB 与 PC 所成的角为
(C )
A.30° B.45° C.60° D.90°
2016’新课标·名师导学·新高考第一轮总复习 同步测试卷

新课标名师导学一轮复习文科数学课件同步测试卷圆锥曲线

新课标名师导学一轮复习文科数学课件同步测试卷圆锥曲线
A.1+2 2 B.3+2 2
C.4-2 2 D.5-2 2
【解析】设|AF1|=|AB|=m,则|BF1|= 2m,|AF2| =m-2a,
|BF2|= 2m-2a, ∵|AB|=|AF2|+|BF2|=m, ∴m-2a+ 2m-2a=m,
∴4a=

2m,∴|AF2|=1-
22m,
∵△AF1F2 为 直 角 三 角 形 , ∴|F1F2|2 = |AF1|2 +
【解析】由题意,Rt△PF1F2 中,PF2=12F1F2=c, PF1= 23·F1F2= 3c,而 PF1+PF2=2a=(1+ 3)c, 故 e=ac= 3-1.
9.已知双曲线xa22-by22=1(a>0,b>0)的两条渐近线 均与圆 C:x2+y2-6x+5=0 相切,则该双曲线的离
35 心率等于___5___.
此椭圆的一焦点与抛物线 y2=4 5x 的焦点重合,则椭
圆的方程为( B ) A.x82+y32=1 C.x92+y82=1
B.x92+y42=1 D.1x62 +y92=1
【解析】由题中的定义知,关于x的不等式|x-(a +b-2)|<a+b的解集为(-2,8),解这个不等式得 -(a+b)<x-(a+b-2)<a+b,解得-2<x<2(a+b)- 2,∴2(a+b)-2=8,得a+b=5.又由于椭圆xa22+by22=
物线的焦点为F
0,1



,依抛物线的定义知P到该抛物
线准线的距离为|PP′|=|PF|,则点P到点A(2,0)的
距离与P到该抛物线准线的距离之和d=|PF|+
|PA|≥|AF|= -22+12= 5.
6.定义:关于 x 的不等式|x-A|<B 的解集叫 A 的 B 邻域.已知 a+b-2 的 a+b 邻域为区间(-2,8), 其中 a,b 分别为椭圆xa22+by22=1 的长半轴和短半轴.若

2016年新课标名师导学一轮复习文科数学课件 同步测试卷 圆锥曲线的综合问题

2016年新课标名师导学一轮复习文科数学课件 同步测试卷 圆锥曲线的综合问题
2016’新课标·名师导学·新高考第一轮总复习同步测试卷 文科数学(十七)
(圆锥曲线的综合问题) 时间:60分钟 总分:100分
第一页,编辑于星期五:二十一点 五十五分。
一、选择题(本大题共 6 小题,每小题 6 分,共 36 分.每小题所给的四个选项中只有一项是符合题目要 求的.)
1.已知点 A(-2,3)在抛物线 C:y2=2px 的准线 上,记 C 的焦点为 F,则直线 AF 的斜率为( C )

(k2+1)(4b2-12) 4k2+3

b2

7b2-12(k2+1) 4k2+3

2(k2+1) 4k2+3 .
第二十一页,编辑于星期五:二十一点 五十五 分。
令2(4kk22++31)=1,则 4k2+3=2k2+2,即 2k2+1
=0,无解.
②当直线 l 的斜率不存在时,其方程为 x=± 2,
= 322-22= 25=ba,
∴离心率 e=
1+ba22=
1+45=3
5 5.
第五页,编辑于星期五:二十一点 五十五分。
4.椭圆1x62+y72=1 的左、右焦点分别为 F1,F2,
一直线过 F1 交椭圆于 A,B 两点,则△ABF2 的周长 为( B )
A.32 B.16 C.8 D.4 5.以双曲线xa22-by22=1(a>0,b>0)的左焦点 F 为圆
第十三页,编辑于星期五:二十一点 五十五分。
【解析】(1)证明:设 P(x1,y1)是双曲线上任意一 点,
该双曲线的两条渐近线方程分别是 x-2y=0、x
+2y=0.
点 P(x1,y1)到两条渐近线的距离分别是
|x1-2y1|和|x1+2y1|,

2016年新课标名师导学一轮复习理科数学课件 同步测试卷 圆锥曲线

2016年新课标名师导学一轮复习理科数学课件 同步测试卷 圆锥曲线
第六页,编辑于星期五:二十一点 五十七分。
9.设 F 为抛物线 y2=4x 的焦点,A,B,C 为该抛 物线上三点,若F→A+F→B+F→C=0,则|F→A|+|F→B|+|F→C| =__6__.
【解析】设 A(x1,y1),B(x2,y2),C(x3,y3),又 2p=4,p=2,
F(1,0),则F→A=(x1-1,y1),F→B=(x2-1,y2), F→C=(x3-1,y3),∵F→A+F→B+F→C=0, ∴x1-1+x2-1+x3-1=0.∴x1+x2+x3=3, 故|F→A|+|F→B|+|F→C|=x1+x2+x3+32p=3+3=6.
A.2 B.4 C.6 D.8
6.若椭圆xa22+by22=1(a>b>0)的离心率 e=12,右焦
点为 F(c,0),方程 ax2+2bx+c=0 的两个实数根分别
是 x1 和 x2,则点 P(x1,x2)到原点的距离为( A )
A. 2
B.
7 2
C.2
D.74
【解析】因为 e=ac=12,所以 c=12a.由 a2=b2+c2,
【解析】(1)因为圆 C1,C2 关于直线 l 对称, 圆 C1 的圆心 C1 的坐标为(4,0),圆 C2 的圆心 C2 的坐 标为(0,2), 显然直线 l 是线段 C1C2 的中垂线, 线段 C1C2 中点坐标是(2,1), C1C2 的斜率是 k=xy11- -xy22=04- -20=-12, 所以直线 l 的方程是 y-1=-1k(x-2),即 y=2x-3.
(1)求动圆的圆心轨迹 C 的方程; (2)是否存在直线 l,使 l 过点0,1,并与轨迹 C 交于 P,Q 两点,且满足O→P·O→Q=0?若存在,求出 直线 l 的方程;若不存在,说明理由. 【解析】(1)设 M 为动圆圆心,F(1,0),过点 M 作直线 x=-1 的垂线,垂足为 N, 由题意知:|MF|=|MN|, 即动点 M 到定点 F 与到定直线 x=-1 的距离相 等, 由抛物线的定义知,点 M 的轨迹为抛物线,其中 F(1,0)为焦点,x=-1 为准线, ∴动圆圆心的轨迹方程为 y2=4x.

2016届高考数学一轮复习教学案(基础知识+高频考点+解题训练)圆锥曲线的综合问题

2016届高考数学一轮复习教学案(基础知识+高频考点+解题训练)圆锥曲线的综合问题

2016届高考数学一轮复习教学案圆锥曲线的综合问题[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或1+1k2|y 1-y 2|.[小题能否全取]1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.答案:635.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.典题导入[例1] (2012·北京高考)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值.[自主解答](1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k x -,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=+k 2x 1+x 22-4x1x 2]=2+k 2+6k 21+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2,所以△AMN 的面积为 S =12|MN |· d =|k |4+6k 21+2k 2.由|k |4+6k 21+2k 2=103,解得k =±1.由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0,可解得-1≤k ≤1.典题导入[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得⎩⎪⎨⎪⎧+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2,设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则 S =12|AB |·d =36·m -2-m 2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,23 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值.综上,所求直线l 的方程为3x +2y +27-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.典题导入[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值. [自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p ,得y 1=by 0-2pa y 0-b,同理由点B ,M ,M 2共线得y 2=2pay 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b,y 2=2pay 0,则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0.当x =a ,y =2pab时上式恒成立,即定点为⎝⎛⎭⎪⎫a ,2pa b . 答案:⎝ ⎛⎭⎪⎫a ,2pa b1.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ,·2PF ,的最小值为( )A .-2B .-8116C .1D .0解析:选A 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).1PA ,·2PF ,=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+y 2-x -2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,1PA ,·2PF ,取得最小值-2.2.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且仅有两条.3.(2012·南昌联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N (均在第一象限内),若FM ,=4MN ,,则双曲线的离心率为( )A.54B.53C.35D.45解析:选B 由题意知F (c,0),则易得M ,N 的纵坐标分别为b 2a,bc a,由FM ,=4MN ,得b 2a =4·⎝ ⎛⎭⎪⎫bc a -b 2a ,即b c =45.又c 2=a 2+b 2,则e =c a =53.4.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:选D 设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点.5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值范围为________.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值范围为[2,22 ].答案:[2,22 ]6.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.解析:由⎩⎪⎨⎪⎧x -y =0,x22+y 2=1,得3x 2=2,∴x =±63,∴A ⎝ ⎛⎭⎪⎪⎫63,63,B ⎝ ⎛⎭⎪⎪⎫-63,-63,∴|AB |=433.设点C (2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·⎪⎪sin(θ-φ)⎪⎪≤32,∴S △ABC =12|AB |·d ≤12×433×32=2.答案:27.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值. 解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y2b2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1, 所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=-b 2+b 22--2b 21+b 2=8b 4+b 22,解得b =22.8.(2012·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C (m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC |=|BC |?并说明理由.解:(1)∵⎩⎪⎨⎪⎧e =c a =22a +c =2+1,∴⎩⎪⎨⎪⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1.(2)由(1)得F (1,0),∴0≤m ≤1. 假设存在满足题意的直线l ,设l 的方程为y =k (x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k (x 1+x 2-2)=-2k2k 2+1.设AB 的中点为M ,则M ⎝ ⎛⎭⎪⎫2k 22k 2+1,-k 2k 2+1. ∵|AC |=|BC |,∴CM ⊥AB ,即k CM ·k AB =-1,∴k2k 2+1m -2k 22k 2+1·k =-1,即(1-2m )k 2=m .∴当0≤m <12时,k =±m1-2m,即存在满足题意的直线l ;当12≤m ≤1时,k 不存在,即不存在满足题意的直线l . 9.(2012·江西模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝ ⎛⎭⎪⎫16,0,求实数k 的取值范围.解:(1)设P (x 0,y 0),x 0≠±a ,则G ⎝ ⎛⎭⎪⎫x 03,y 03.又设I (x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·| y 03| ,∴2c ·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2,∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km )2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km3+4k 2,则y 1+y 2=6m3+4k 2,∴线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 又线段AB 的垂直平分线l ′的方程为y =-1k ⎝ ⎛⎭⎪⎫x -16,点P 在直线l ′上,∴3m3+4k 2=-1k ⎝ ⎛⎭⎪⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k(4k 2+3),∴k 2+236k 2<4k 2+3,∴k 2>332,解得k>68或k <-68,∴k 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,-68∪⎝ ⎛⎭⎪⎪⎫68,+∞.1.(2012·长春模拟)已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM |,·|BM |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM |,+|BM |,的值,并写出曲线C 的方程; (2)求△APQ 的面积的最大值.解:(1)设M (x ,y ),在△MAB 中,|AB |,=2,∠AMB =2θ,根据余弦定理得|AM |,2+|BM |,2-2|AM |,·|BM |,cos 2θ=|AB |,2=4,即(|AM |,+|BM |,)2-2|AM |,·|BM |,·(1+cos 2θ)=4,所以(|AM|,+|BM|,)2-4|AM|,| BM|,·cos2θ=4.因为|AM|,·|BM|,cos2θ=3,所以(|AM|,+|BM|,)2-4×3=4,所以|AM|,+|BM|,=4.又|AM|,+|BM|,=4>2=|AB|,因此点M的轨迹是以A,B为焦点的椭圆(点M在x轴上也符合题意),设椭圆的方程为x2a2+y2b2=1(a>b>0),则a=2,c=1,所以b2=a2-c2=3.所以曲线C的方程为x24+y23=1.(2)设直线PQ的方程为x=my+1.由⎩⎪⎨⎪⎧x=my+1x24+y23=1,消去x,整理得(3m2+4)y2+6my-9=0.①显然方程①的判别式Δ=36m2+36(3m2+4)>0,设P(x1,y1),Q(x2,y2),则△APQ的面积S△APQ=12×2×|y1-y2|=|y1-y2|.由根与系数的关系得y1+y2=-6m3m2+4,y1y2=-93m2+4,所以(y1-y2)2=(y1+y2)2-4y1y2=48×3m2+33m 2+42.令t=3m2+3,则t≥3,(y1-y2)2=48t+1t+2,由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3, 所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1. 2.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e>12的椭圆E :x 2a 2+y 2b 2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.解:(1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m )2+1=5, 即(3-m )2=4,解得m =1,或m =5. ∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k (x -4)+4,即kx -y -4k +4=0,若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1=5.∴4k 2-24k +11=0,解得k =112或k =12.当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=+2+12+-2+12=52+2=6 2.∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.设B (x 1,y 1),D (x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=4y 1+y 22-4y 1y 2=241013.1.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过焦点F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:选C 依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1消去y 得(x -1)2=4x ,即x 2-6x +1=0,因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2,所以线段AB 的中点坐标是(3,2).2.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A .至多1个 B .2个 C .1个D .0个解析:选B 由题意得4m 2+n 2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.3.(2012·深圳模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM ,·TN ,的最小值,并求此时圆T 的方程; (3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.解:(1)依题意,得a =2,e =ca=32, ∴c =3,b =a 2-c 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)易知点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0. 由于点M 在椭圆C 上,∴y 21=1-x 214.(*)由已知T (-2,0),则TM ,=(x 1+2,y 1),TN ,=(x 1+2,-y 1),∴TM ,·TN ,=(x 1+2,y 1)·(x 1+2,-y 1)=(x 1+2)2-y 21=(x 1+2)2-⎝ ⎛⎭⎪⎫1-x 214=54x 21+4x 1+3 =54⎝ ⎛⎭⎪⎫x 1+852-15.由于-2<x 1<2,故当x 1=-85时,TM ,·TN ,取得最小值-15.把x 1=-85代入(*)式,得y 1=35,故M ⎝ ⎛⎭⎪⎫-85,35,又点M 在圆T 上,代入圆的方程得r 2=1325. 故圆T的方程为(x +2)2+y 2=1325. (3)设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0),令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R ·x S =x 21y 20-x 20y 21y 20-y 21.(**)又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式, 得x R ·x S =-y 21y 20--y 20y 21y 20-y 21=4⎝ ⎛⎭⎪⎫y 20-y 21y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·佛山模拟)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:选D 由题意得a +2=a +2a,解得a =-2或a =1.2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23解析:选B 设P (x P ,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.3.(2012·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2C .x 2+y 2=1D .x 2+y 2=4解析:选A AB 的中点坐标为(0,0), |AB |=[1--2+-1-2=22,∴圆的方程为x 2+y 2=2.4.(2012·福建高考)已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2C .3D .5解析:选A ∵抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪⎪⎪52×31+54= 5.5.(2012·郑州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成7∶3的两段,则此双曲线的离心率为( )A.98B.53C.324D.54解析:选B 依题意得,c +b 2=77+3×2c ,即b =45c (其中c 是双曲线的半焦距),a =c 2-b 2=35c ,则c a =53,因此该双曲线的离心率等于53. 6.设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能解析:选C 若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|PA |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|.所以N 为切点,同理P 在左支上时,M 为切点. 7.圆x 2+y 2-4x =0在点P (1, 3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析:选D 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33.所以切线方程为y -3=33(x -1),即x -3y +2=0.8.(2012·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( ) A.2B .2 2C .4D .8解析:选C 抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.9.(2012·潍坊适应性训练)已知双曲线C :x 24-y 25=1的左,右焦点分别为F 1,F 2,P为C 的右支上一点,且|PF 2|=|F 1F 2|,则|PF 2|=|F 1F 2|,则1PF ,·2PF ,等于( )A .24B .48C .50D .56解析:选C 由已知得|PF 2|=|F 1F 2|=6,根据双曲线的定义可得|PF 1|=10,在△F 1PF 2中,根据余弦定理可得cos ∠F 1PF 2=56,所以1PF ,·2PF ,=10×6×56=50.10.(2012·南昌模拟)已知△ABC 外接圆半径R =1433,且∠ABC =120°,BC =10,边BC 在x 轴上且y 轴垂直平分BC 边,则过点A 且以B ,C 为焦点的双曲线方程为( )A.x 275-y 2100=1B.x 2100-y 275=1 C.x 29-y 216=1D.x 216-y 29=1 解析:选D ∵sin ∠BAC =BC 2R =5314,∴cos ∠BAC =1114,|AC |=2R sin ∠ABC =2×1433×32=14,sin ∠ACB =sin(60°-∠BAC )=sin 60°cos∠BAC -cos 60°sin∠BAC =32×1114-12×5314=3314, ∴|AB |=2R sin ∠ACB =2×1433×3314=6,∴2a =||AC |-|AB ||=14-6=8,∴a =4,又c =5,∴b 2=c 2-a 2=25-16=9, ∴所求双曲线方程为x 216-y 29=1.11.(2012·乌鲁木齐模拟)已知抛物线y 2=2px (p >0)的焦点为F ,P ,Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( )A .2± 3B .2+ 3C.3±1D.3-1解析:选A 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p2,所以y 21=y 22,所以y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2± 3.12.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32或4 2B .26或27C .25或27D.5或7解析:选C 设椭圆方程为mx 2+ny 2=1(m ≠n 且m ,n >0),与直线方程x +3y +4=0联立,消去x 得(3m +n )y 2+83my +16m -1=0,由Δ=0得3m +n =16mn ,即3n +1m=16,①又c =2,即1m -1n=±4,②由①②联立得⎩⎪⎨⎪⎧m =17n =13或⎩⎪⎨⎪⎧m =1n =15,故椭圆的长轴长为27或2 5.二、填空题(本题有4小题,每小题5分,共20分)13.(2012·青岛模拟)已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,当l 1⊥l 2时,θ=________.解析:l 1⊥l 2的充要条件是2sin θ+sin θ=0,即sin θ=0,所以θ=k π(k ∈Z ).所以当θ=k π(k ∈Z )时,l 1⊥l 2.答案:k π(k ∈Z )14.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,O 是坐标原点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是______________________.解析:由于直线AB 的斜率为-b a,故直线OP 的斜率为-b a,直线OP 的方程为y =-b a x .与椭圆方程联立得x 2a 2+x 2a 2=1,解得x =±22a .根据PF 1⊥x 轴,取x =-22a ,从而-22a =-c ,即a =2c .又|F 1A |=a +c =10+5,故2c +c =10+5,解得c =5,从而a =10.所以所求的椭圆方程为x 210+y 25=1.答案:x 210+y 25=115.(2012·陕西高考)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p =1,所以x 2=-2y .当y =-3时,x 2=6,即x =±6,所以水面宽为26.答案:2616.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝ ⎛⎭⎪⎫1m ,0,B ⎝ ⎛⎭⎪⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:3三、解答题(本题共6小题,共70分)17.(10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程.解:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),设所求直线y -2=k (x -1)(由题可知k 存在),即kx -y +2-k =0,∵P (0,4)到直线距离为2,∴2=|-2-k |1+k 2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0.18.(12分)(2012·南昌模拟)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)由题意知,直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k x -,x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A=-k x B --k x A -x B -x A=2k -k x B +x Ax B -x A=1=k OP ,所以,直线AB 和OP 一定平行.19.(12分)(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝ ⎛⎭⎪⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 2a 2+y20b2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b 2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =±5.20.(12分)(2012·河南模拟)已知椭圆x 2a2+y 2b2=1(a >b >0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B .(1)若|AB |=4269,求k 的值; (2)求证:不论k 取何值,以AB 为直径的圆恒过点M . 解:(1)由题意知ca =22,b =1.由a 2=b 2+c 2可得c =b =1,a =2,∴椭圆的方程为x 22+y 2=1.由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1得(2k 2+1)x 2-43kx -169=0.Δ=169k 2-4(2k 2+1)×⎝ ⎛⎭⎪⎫-169=16k 2+649>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k k 2+,x 1x 2=-16k 2+.∴|AB |=1+k 2·|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=4+k 2k 2+k 2+=4269, 化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0,解得k =±1.(2)∵MA ,=(x 1,y 1-1),MB ,=(x 2,y 2-1),∴MA ,·MB ,=x 1x 2+(y 1-1)(y 2-1),=(1+k 2)x 1x 2-43k (x 1+x 2)+169=-+k 2k 2+-16k 2k 2++169 =0.∴不论k 取何值,以AB 为直径的圆恒过点M .21. (2012·广州模拟)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若1OF ,+21AF ,=0(其中O 为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE ,·PF ,的最大值.解:(1)由题设知,A ⎝ ⎛⎭⎪⎪⎫a 2a 2-2,0,F 1(a 2-2,0),由1OF ,+21AF ,=0,得a 2-2=2⎝ ⎛⎭⎪⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为x 26+y 22=1. (2)设圆N :x 2+(y -2)2=1的圆心为N ,则PE ,·PF ,=(NE ,-NP ,)·(NF ,-NP ,) =(-NF ,-NP ,)·(NF ,-NP ,)=NP ,2-NF ,2=NP ,2-1.从而将求PE ,·PF ,的最大值转化为求NP ―→,2的最大值.因为P 是椭圆M 上的任意一点,设P (x 0,y 0),所以x 206+y 202=1,即x 20=6-3y 20. 因为点N (0,2),所以NP ,2=x 20+(y 0-2)2=-2(y 0+1)2+12. 因为y 0∈[-2, 2],所以当y 0=-1时,NP ,2取得最大值12. 所以PE ,·PF ,的最大值为11.22. (2012·湖北模拟)如图,曲线C 1是以原点O 为中心,F 1,F 2为焦点的椭圆的一部分.曲线C 2是以O 为顶点,F 2为焦点的抛物线的一部分,A 是曲线C 1和C 2的交点且∠AF 2F 1为钝角,若|AF 1|=72,|AF 2|=52. (1)求曲线C 1和C 2的方程;(2)设点C 是C 2上一点,若|CF 1|=2|CF 2|,求△CF 1F 2的面积. 解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则2a =|AF 1|+|AF 2|=72+52=6,得a =3.设A (x ,y ),F 1(-c,0),F 2(c,0),则(x +c )2+y 2=⎝ ⎛⎭⎪⎫722,(x -c )2+y 2=⎝ ⎛⎭⎪⎫522,两式相减得xc =32. 由抛物线的定义可知|AF 2|=x +c =52, 则c =1,x =32或x =1,c =32.又∠AF 2F 1为钝角,则x =1,c =32不合题意,舍去.当c =1时,b =22,所以曲线C 1的方程为x 29+y 28=1⎝ ⎛⎭⎪⎫-3≤x ≤32,曲线C 2的方程为y 2=4x ⎝⎛⎭⎪⎫0≤x ≤32. (2)过点F 1作直线l 垂直于x 轴,过点C 作CC 1⊥l 于点C 1,依题意知|CC 1|=|CF 2|. 在Rt △CC 1F 1中,|CF 1|=2|CF 2|=2|CC 1|,所以∠C 1CF 1=45°,所以∠CF 1F 2=∠C 1CF 1=45°.在△CF 1F 2中,设|CF 2|=r ,则|CF 1|=2r ,|F 1F 2|=2. 由余弦定理得22+(2r )2-2×2×2r cos 45°=r 2, 解得r =2,所以△CF 1F 2的面积S △CF 1F 2=12|F 1F 2|·|CF 1|sin 45°=12×2×22sin 45°=2.。

高三数学一轮复习圆锥曲线的综合问题(1)

高三数学一轮复习圆锥曲线的综合问题(1)
(1)若三角形 F0F1F2 是边长为 1 的等边三角形,求“果圆” 的方程;
(2)若|A1A|>|B1B|,求ba的取值范围; (3)一条直线与果圆交于两点,两点间的线段称为“果圆” 的弦.是否存在平行于 x 轴的直线交“果圆”于两点,得到的 弦的中点轨迹方程为椭圆?
第二十五页,共52页。
[分析] (1)根据△F0F1F2中的|F0F1|、|F1F2|的值,解出 a、b、c的值,得出“果圆〞的方程.
第十八页,共52页。
[规律总结] 求范围的方法同求最值及函数值域的方法 类似.常见的解法有两种:几何法和代数法.假设题目的条 件和结论能明显表达几何特征及意义,那么考虑利用图形性 质来解决,这就是几何法.假设题目的条件和结论能表达一 种明确的函数关系,那么可首先建立起目标函数,再求这个 函数的最值,这就是代数法.求函数最值常用的代数法有配 方法、判别式法、均值不等式法及函数的单调性、有界性法.
∴A(
22a,12a),故
kAB=
22,AB
方程为
y=
2 2 x.
第三十四页,共52页。
(2)连结 AF1,BF1,AF2,BF2,由椭圆的 对称性可知 S△ABF2=S△ABF1=S△AF1F2.
∴12×2c×12a=4 2. 又由 c= 22a,解得 a2=16,b2=16-8=8, 故椭圆方程为1x62 +y82=1.
在入手,找出一个正确结论即可.
第二十四页,共52页。
例 3 已知半椭圆xa22+by22=1(x≥0)与半椭圆by22+xc22=1(x≤0) 组成的曲线称为“果圆”,其中 a2=b2+c2,a>0,b>c>0, F0、F1、F2 是对应的焦点,点 A1、A 和 B1、B 分别是“果圆” 与 x 轴和 y 轴的交点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.如图,点 F(a,0)(a>0),点 P 在 y 轴上运动,点 M 在 x 轴上运动, → ·PF → =0,PM → +PN → N 为动点,且PM 2=4ax =0, 则点 N 的轨迹方程为y ________ .
2 2 x y 10.已知抛物线 y2=2px 的焦点与双曲线 - =1 7 9 的右焦点重合,抛物线的准线与 x 轴的交点为 K,点 A 32 . 在抛物线上且|AK|= 2|AF|,则△AFK 的面积为____
三、解答题(本大题共 3 小题,共 50 分.解答应写 出文字说明、证明过程或演算步骤.) 11.(16 分)已知抛物线 C:y=2x2,直线 y=kx+2 交 C 于 A,B 两点,M 是线段 AB 的中点,过 M 作 x 轴的垂线交 C 于点 N. (1)证明:抛物线 C 在点 N 处的切线与 AB 平行; → ·NB → =0?若存在,求 k (2)是否存在实数 k 使NA 的值;若不存在,说明理由.
【解析】不妨设 F(-c,0)为椭圆左焦点,F2 为椭 圆的右焦点, P 在椭圆上, 线段 PF 的中点为 M, 则|PM| =|FM|, 圆 x2+y2=b2 与线段 PF 相切于点 M, 则|OM| =b(O 为坐标原点).显然有 OM 为△FPF2 的中位线, 则 |PF2| = 2|OM| = 2b. 由勾股定理可得 |PF| = 2|FM| = 2 c2-b2.再由椭圆定义可知,|PF|+|PF2|=2a,得出 e 5 = . 3
x2 y2 4 . F1 , F2 是椭圆 2 + 2 = 1(a>b>0) 的两焦点, P a b 是椭圆上任一点, 过一焦点引∠F1PF2 的外角平分线的 垂线,则垂足 Q 的轨迹为( A ) A.圆 B.椭圆 C.双曲线 D.抛物线
【解析】如图,∵PQ 平分∠F1PA,且 PQ⊥AF1, ∴Q 为 AF1 的中点, 且|PF1|=|PA|, 1 ∴|OQ|= |AF2| 2 1 = (|PF1|+|PF2|)=a, 2 ∴点 Q 的轨迹是以 O 为圆心,a 为半径的圆.
【解析】∵x2=8y, ∴焦点 F 的坐标为(0,2),准线方程为 y=-2. 由抛物线的定义知|MF|=y0+2. 以 F 为圆心、|FM|为半径的圆的标准方程为 x2+ (y-2)2=(y0+2)2. 由于以 F 为圆心、|FM|为半径的圆与准线相交, 又圆心 F 到准线的距离为 4,故 4<y0+2,∴y0>2.
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,将各小题的结果填在题中横线上.) x2 y2 7. 设 F1、 F2 分别是椭圆 + =1 的左、 右焦点, 25 16 P 为椭圆上任一点, 点 M 的坐标为(6, 4), 则|PM|+|PF1| 15 . 的最大值为____
【解析】∵|PF1|+|PF2|=10,∴|PF1|=10-|PF2|. ∴|PM|+|PF1|=10+|PM|-|PF2|.易知点 M 在椭圆 外,连接 MF2 并延长交椭圆于点 P,此时|PM|-|PF2| 取最大值|MF2|,故|PM|+|PF1|的最大值为 10+|MF2| =10+ (6-3)2+42=15.
2.设抛物线 y2=8x 的准线与 x 轴交于点 Q,若过 点 Q 的直线 l 与抛物线有公共点, 则直线 l 的斜率的取 值范围是( C ) 1 1 A.-2,2 B.[-2,2] C.[-1,1] D.[-4,4]
3.设 M(x0,y0)为抛物线 C:x2=8y 上一点,F 为 抛物线 C 的焦点,以 F 为圆心、|FM|为半径的圆和抛 物线 C 的准线相交,则 y0 的取值范围是( C ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)
x2 y2 5. 已知 F1, F2 是双曲线 2- 2=1(a>0, b>0)的左, a b 右焦点,若双曲线左支上存在一点 P 与点 F2 关于直线 b y=ax 对称,则该双曲线的离心率为( B ) 5 A. B. 5 C. 2 D.2 2
x2 y2 6.已知椭圆 2+ 2=1(a>b>0)的一个焦点为 F,若 a b 椭圆上存在一个 P 点,满足以椭圆短轴为直径的圆与 线段 PF 相切于该线段的中点,则该椭圆的离心率为 ( A) 5 2 2 5 A. B. C. D. 3 3 2 9
【解析】 双曲线的右焦点为(4, 0), p 抛物线的焦点为 2,0, p 所以 =4,即 p=8. 2 所以抛物线方程为 y2=16x,焦点 F(4,0),准线 方程为 x=-4,即 K(-4,0), y2 设 A 16,y,过 A 做垂线交准线于点 M, 由抛物线的定义可知|AM|=|AF|, 所以|AK|= 2|AF|= 2|AM|,即|AM|=|MK|, y2 所以 -(-4)=y,整理得 y2-16y+64=0, 16 即(y-8)4=0, 1 1 所以 y=8,所以 S△AFK= |KF|y= ×8×8=32. 2 2
x2 y2 8.已知双曲线 2- 2=1(a>0,b>0)的离心率为 e a 线的渐近线方程为________ (2)过双曲线上一点 M 作直线 MA,MB 交双曲线于 A, B 两点,且斜率分别为 k1,k2,若直线 AB 过原点 O, 3 . 则 k1·k2 的值为____
2016’新课标· 名师导学· 新高考第一轮总复习 同步测试卷 理科数学(十八) (圆锥曲线的综合问题) 时间:60分钟 总分:100分
一、选择题(本大题共 6 小题,每小题 5 分,共 30 分.每小题所给的四个选项中,只有一项是符合题目 要求的.) 1.当动点 A 在圆 x2+y2=1 上移动时,它与定点 B(3,0)连线的中点 M 的轨迹方程是( C ) A.(x+3)2+y2=4 B.(x-3)2+y2=1 C.(2x-3)2+4y2=1 32 2 1 D.x+2 +y = 2
相关文档
最新文档