PID调试过程

合集下载

PID参数如何设定调节讲解

PID参数如何设定调节讲解

PID参数如何设定调节讲解PID(Proportional Integral Derivative)是一种常用的控制算法,广泛应用于自动化系统和过程控制中。

PID控制器根据被控对象的误差信号进行调整,通过调节比例、积分和微分这三个参数,可以有效地控制系统的稳定性和响应速度。

下面将详细讲解如何设置PID参数进行调节。

1. 比例参数(Proportional Gain,P):比例参数决定了输出调节量与误差信号之间的关系。

增大比例参数的值可以加快系统的响应速度,但过大的值会导致系统不稳定和超调。

通常的经验法则是,开始时可以设置一个较小的比例增益,然后逐渐增大直到系统开始出现振荡或超调为止。

根据实际情况,逐步调整比例参数,使系统具有准确的控制。

2. 积分参数(Integral Gain,I):积分参数用于处理系统的静态误差。

当系统的零偏较大或变化较慢时,可以适度增大积分参数,以减小系统的稳态误差。

但过大的积分参数会导致系统不稳定。

可以采用试验法来确定合适的积分参数:首先将比例和微分参数设置为零,然后逐渐增大积分参数直到系统开始超调。

然后逐渐减小积分参数直到系统达到最佳控制性能。

3. 微分参数(Derivative Gain,D):微分参数用于补偿系统的动态误差,主要用于抑制系统响应过程中出现的振荡。

过大或过小的微分参数都会导致系统不稳定。

微分参数的选择需要结合系统响应的快慢来进行调整。

通常情况下,较慢的系统需要较大的微分参数,而较快的系统需要较小的微分参数。

可以通过试验法或经验法来调整微分参数,以便使系统的响应与期望的响应曲线相适应。

4.调节顺序和迭代调节:在调节PID参数时,一般的建议是先从比例参数开始调节,然后再逐步加入积分和微分参数。

调节过程中应根据系统的实际情况进行迭代调节,通过反馈信息和实时数据不断调整参数,使系统的控制性能达到最佳状态。

在迭代调节过程中,可以采用逐步调整法,或者借助自动调节器进行优化。

pid参数的整定过程

pid参数的整定过程

pid参数的整定过程
PID(比例-积分-微分)控制器是一种常用的反馈控制器,用于调节和稳定系统。

PID控制器的参数整定过程通常包括以下几个步骤:
1.初始参数设定:根据系统的性质和需求,设置PID控制器的初
始参数。

通常情况下,可以将三个参数(比例增益Kp、积分时
间Ti、微分时间Td)都设为一个较小的初始值。

2.比例增益调整:从零开始逐步增加比例增益Kp的数值,观察
系统响应的变化。

如果Kp过小,系统响应可能过慢;如果Kp
过大,系统可能会出现超调或不稳定的情况。

通过不断调整Kp
的数值,直到找到一个合适的值,使得系统响应快速且稳定。

3.积分时间调整:在找到合适的Kp之后,开始调整积分时间Ti
的数值。

增大Ti会增加积分作用的影响,降低控制器对于持续
偏差的敏感度。

然而,过大的Ti可能导致系统响应的延迟和振
荡。

通过逐步调整Ti的数值,找到一个使系统响应稳定且快速
的值。

4.微分时间调整:在完成比例增益和积分时间的调整后,可以开
始调整微分时间Td的数值。

微分作用可以抑制系统响应中的
过冲和振荡,并提高系统的稳定性。

然而,过大的Td可能会引
入噪声的放大。

通过逐步调整Td的数值,找到一个能够平衡系
统响应速度和稳定性的值。

5.反复迭代:整定PID参数是一个迭代的过程。

一旦完成了上述
步骤,需要对整个系统进行测试和观察,以确定参数的最佳组合。

如果发现系统仍然存在问题,可以根据实际情况再次进行参数调整,直到达到满意的控制效果。

PID调试方法

PID调试方法

PID参数确定方法在实际应用中,我们尽量避免使用高深复杂的数学公式,希望能使经验法更多的发挥能力,这样既可以节省很多时间,也可以通过经验的传授使更多的工程师或工人可以掌握一种简单有效的方法来进行PID控制器的调节。

传统的PID经验调节大体分为以下几步:1.关闭控制器的I和D元件,加大P元件,使产生振荡。

2.减小P,使系统找到临界振荡点。

3.加大I,使系统达到设定值。

4.重新上电,观察超调、振荡和稳定时间是否符合系统要求。

5.针对超调和振荡的情况适当增加微分项。

以上5个步骤可能是大家在调节PID控制器时的普遍步骤,但是在寻找合时的I和D参数时,并非易事。

如果能够根据经典的Ziegler-Nichols(ZN 法)公式来初步确定I和D元件的参数,会对我们的调试起到很大帮助。

John Ziegler和Nathaniel Nichols发明了著名的回路整定技术使得PID算法在所有应用在工业领域内的反馈控制策略中是最常用的。

Ziegler-Nichols 整定技术是1942年第一次发表出来,直到现在还被广泛地应用着。

所谓的对PID回路的“整定”就是指调整控制器对实际值与设定值之间的误差产生的反作用的积极程度。

如果正巧控制过程是相对缓慢的话,那么PID算法可以设置成只要有一个随机的干扰改变了过程变量或者一个操作改变了设定值时,就能采取快速和显著的动作。

相反地,如果控制过程对执行器是特别地灵敏而控制器是用来操作过程变量的话,那么PID算法必须在比较长的一段时间内应用更为保守的校正力。

回路整定的本质就是确定对控制器作用产生的过程反作用的积极程度和PID算法对消除误差可以提供多大的帮助。

经过多年的发展,Ziegler-Nichols方法已经发展成为一种在参数设定中,处于经验和计算法之间的中间方法。

这种方法可以为控制器确定非常精确的参数,在此之后也可进行微调。

Ziegler-Nichols方法分为两步:1.构建闭环控制回路,确定稳定极限。

PID调试步骤

PID调试步骤

一、PID调试步骤没有一种控制算法比PID调节规律更有效、更方便的了。

现在一些时髦点的调节器基本源自PID。

甚至可以这样说:PID调节器是其它控制调节算法的吗。

为什么PID应用如此广泛、又长久不衰?因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。

调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。

由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。

这就给使用者带来相当的麻烦,特别是对初学者。

下面简单介绍一下调试PID参数的一般步骤:1.负反馈自动控制理论也被称为负反馈控制理论。

首先检查系统接线,确定系统的反馈为负反馈。

例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。

其余系统同此方法。

2.PID调试一般原则a、在输出不振荡时,增大比例增益P。

b、在输出不振荡时,减小积分时间常数Ti。

c、在输出不振荡时,增大微分时间常数Td。

3.一般步骤a、确定比例增益P确定比例增益P时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。

输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。

比例增益P调试完成。

b、确定积分时间常数Ti比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。

记录此时的Ti,设定PI D的积分时间常数Ti为当前值的150%~180%。

PID调节方法

PID调节方法

1、先调节P值(I、D均为0),使其调节速度达到要求。

P值增减先按倍数处理(乘2或除2),直到超越了要求,再将前后两个值取平均值。

2、再根据调节偏差处理I的取值,该值从大往小试验,温度调节初始值可以从10min开始,而流量、压力可以从1min开始。

直到偏差小到符合要求。

3、D值只在超调量过大时采用,取值从小往大试验,以超差幅度小于允许值,又不发生震荡为度。

1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T:P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L:P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

PID控制原理与PID参数的整定方法PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。

参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。

阅读本文不需要高深的数学知识。

1.比例控制有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。

下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。

假设用热电偶检测炉温,用数字仪表显示温度值。

在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。

然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。

操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。

PID参数如何设定调节

PID参数如何设定调节

PID参数如何设定调节PID(比例-积分-微分)控制器是一种常用的自动控制器,可以根据系统的反馈信号对控制对象进行调节。

PID参数是控制器的核心参数,其调节的准确性和合理性直接影响到控制系统的性能。

一般来说,PID参数的调节可以通过以下几个步骤进行:1.确定控制对象的准确数学模型。

首先,需要通过实际测试或系统分析得到控制对象的传递函数或状态空间模型。

这是确定PID参数调节的基础。

2. 根据控制器的需求和性能指标进行参数初步设定。

在确定控制对象的数学模型后,根据控制器的要求和性能指标,可以初步设定PID参数的取值范围。

通常,可以使用经验公式或者根据控制对象的动态特性进行设定。

比如,可以使用经验法则Ziegler-Nichols法则,它提供了一种经验性的套路,可以根据控制对象的阶数(惯性系数T和时延系数L)设定PID参数的经验公式。

3.利用实验或仿真进行参数调试。

在初步设定PID参数后,需要进行实验或者仿真以观察系统的响应。

可以通过改变PID参数的取值来观察系统的响应,进而评估系统的性能。

在实验或仿真中,可以通过以下几种方法来调节PID参数:-比例项(P项):增大P项的取值可以增强系统的灵敏度,但可能引起系统的震荡或过冲。

减小P项的取值可以减小系统的震荡,但可能导致系统的超调减小。

-积分项(I项):增大I项的取值可以增强系统的静差消除能力,但可能导致系统的震荡或者系统响应时间延长。

减小I项的取值可以减小系统的震荡,但可能导致系统的静差增大。

-微分项(D项):增大D项的取值可以使系统的响应速度更快,但可能导致系统的超调增大或震荡。

减小D项的取值可以减小系统的超调,但可能导致系统的响应速度减慢。

4. 进行反复调试和优化。

在进行实验或仿真后,需要根据观察结果对PID参数进行修正和优化。

如果系统的响应不理想,可以根据经验或者优化算法进行调整。

最常用的算法有Ziegler-Nichols算法、曲线拟合法或者用专业控制软件进行自动优化。

应用实例分享掌握PID调试的成功案例

应用实例分享掌握PID调试的成功案例

应用实例分享掌握PID调试的成功案例在自动控制系统中,PID控制器是一种常用的控制算法,用于实现对系统输出的精确调节。

PID调试是通过对PID参数的调整,使得系统能够更加稳定地工作,达到更好的控制效果。

本文将分享一个成功的PID调试案例,以帮助读者更好地掌握PID调试技巧。

案例背景:某工业生产线上的温度控制系统存在温度稳定性差、波动大的问题,导致产品质量不稳定。

为了解决这个问题,我们采用PID控制算法对温度控制系统进行调试优化。

步骤一:系统建模与参数识别首先,我们需要对温度控制系统进行建模,并识别系统的参数。

通过实验数据采集和分析,得到系统的传递函数模型,并且确定初始的PID参数。

步骤二:系统初始调试与性能评估根据建立的传递函数模型和初始参数,将PID控制器应用于温度控制系统中,并进行初始调试。

在此过程中,需要观察系统的响应曲线,评估系统的动态性能指标(如超调量、调节时间等)。

步骤三:参数优化与调整根据步骤二中观察到的系统响应曲线和性能指标,我们可以对PID参数进行优化和调整。

一般来说,可以采用以下几种方法:1. 手动调整法:根据经验和直觉,逐步调整PID参数,观察系统响应变化并进行评估。

2. Ziegler-Nichols方法:通过一系列实验得到系统的临界增益和临界周期,进而确定PID参数。

3. 自整定法:使用自整定算法进行PID参数的在线优化,例如递推最小二乘法(RLS)。

步骤四:闭环实验与调整在完成参数优化后,我们需要进行闭环实验来验证调试效果。

将优化后的PID参数应用到实际控制系统中,并通过实验和观察,进一步调整PID参数,确保系统的稳定性和控制精度。

步骤五:参数整定与自整定算法选择根据步骤四中的闭环实验结果,进一步整定PID参数。

对于复杂的工业控制系统,可以选择使用自整定算法进行在线PID参数的优化和调整,以满足不同的控制要求和性能指标。

结论:通过对温度控制系统的PID调试与优化,我们成功地解决了温度稳定性差、波动大的问题,实现了更好的控制效果和产品质量的一致性。

串级PID调试技巧

串级PID调试技巧

2、内环的参数最为关键!理想的内环参数能够很好地跟随打舵(角速度控制模式下的打舵)控制量。
在平衡位置附近(正负30度左右),舵量突加,飞机快速响应;舵量回中,飞机立刻停止运动(几乎没有回弹和震荡)。
2.1首先改变程序,将角度外环去掉,将打舵量作为内环的期望(角速度模式,在APM中叫ACRO模式,在大疆中叫手动模式)。
【调节串环PID大概过程(注意修正反向)】
1、估计大概的起飞油门。
2、调整角速度内环参数。
3、将角度外环加上,调整外环参数。
4、横滚俯仰参数一般可取一致,将飞机解绑,抓在手中测试两个轴混合控制的效果(注意安全),有问题回到“烤四轴”继续调整,直至飞机在手中不会抽搐。
会有重力分量使得四轴会继续偏离平衡位置。I的作用就可以使得在一定角度范围内(30度
5、大概设置偏航参数(不追求动态响应,起飞后头不偏即可),起飞后再观察横滚和俯仰轴向打舵的反应,如有问题回到“烤四轴”。
6、横滚和俯仰ok以后,再调整偏航轴参数以达到好的动态效果。
进行PID参数的调整,否则“烤四轴”的时候调试稳定了,飞起来很可能又会晃荡。
2.2加上P,P太小,不能修正角速度误差表现为很“软”倾斜后难以修正,打舵响应也差。P太大,在平衡位置容易震荡,
打舵回中或给干扰(用手突加干扰)时会震荡。合适的P能较好的对打舵进行响应,又不太会震荡,但是舵量回中后会回弹好几下才能停止(没有D)。
2.3加上D,D的效果十分明显,加快打舵响应,最大的作用是能很好地抑制舵量回中后的震荡,可谓立竿见影。
太大的D会在横滚俯仰混控时表现出来(尽管在“烤四轴”时的表现可能很好),具体表现是四轴抓在手里推油门会抽搐。
如果这样,只能回到“烤四轴”降低D,同时P也只能跟着降低。D调整完后可以再次加大P值,以能够跟随打舵为判断标准。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、PID算法简介
在智能车竞赛中,要想让智能车根据赛道的不断变化灵活的行进,PID算法的采用很有意义。

首先必须明确PID算法是基于反馈的。

一般情况下,这个反馈就是速度传
感器返回给单片机当前电机的转速。

简单的说,就是用这个反馈跟预设值进行比较,如果
转速偏大,就减小电机两端的电压;相反,则增加电机两端的电压。

顾名思义,P指是比例(Proportion),I指是积分(Integral),D指微
分(Differential)。

在电机调速系统中,输入信号为正,要求电机正转时,反馈信号也为
正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。

要想搞懂PID
算法的原理,首先必须先明白P,I,D各自的含义及控制规律:
比例P:比例项部分其实就是对预设值和反馈值差值的发大倍数。

举个例子,假如
原来电机两端的电压为U0,比例P为0.2,输入值是800,而反馈值是1000,那么输出到
电机两端的电压应变为U0+0.2*(800-1000)。

从而达到了调节速度的目的。

显然比例P
越大时,电机转速回归到输入值的速度将更快,及调节灵敏度就越高。

从而,加大P值,
可以减少从非稳态到稳态的时间。

但是同时也可能造成电机转速在预设值附近振荡的情形,所以又引入积分I解决此问题。

积分I:顾名思义,积分项部分其实就是对预设值和反馈值之间的差值在时间上进
行累加。

当差值不是很大时,为了不引起振荡。

可以先让电机按原转速继续运行。

当时要
将这个差值用积分项累加。

当这个和累加到一定值时,再一次性进行处理。

从而避免了振
荡现象的发生。

可见,积分项的调节存在明显的滞后。

而且I值越大,滞后效果越明显。

微分D:微分项部分其实就是求电机转速的变化率。

也就是前后两次差值的差而已。

也就是说,微分项是根据差值变化的速率,提前给出一个相应的调节动作。

可见微分项的
调节是超前的。

并且D值越大,超前作用越明显。

可以在一定程度上缓冲振荡。

比例项的
作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,
这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

二、参数调整一般规则
由各个参数的控制规律可知,比例P使反应变快,微分D使反应提前,积分I使反应滞后。

在一定范围内,P,D值越大,调节的效果越好。

各个参数的调节原则如下:
PID调试一般原则
a. 在输出不振荡时,增大比例增益P。

b. 在输出不振荡时,减小积分时间常数Ti。

c. 输出不振荡时,增大微分时间常数Td。

三、参数调整一般步骤
a.确定比例增益P
确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0,PID为纯比例调节。

输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。

比例增益P调试完成。

b.确定积分时间常数Ti
比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。

记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。

积分时间常数Ti调试完成。

c.确定积分时间常数Td
积分时间常数Td一般不用设定,为0即可。

若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。

d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。

相关文档
最新文档