九年级(下)第六章 二次函数:第5课时 二次函数的图象和性质(四)
27.2 二次函数的图象与性质(4)(第5课时)

27.2 二次函数的图象与性质(4)(第5课时)一、知识衔接由前面的知识,我们知道,函数22x y =的图象,向上平移2个单位,可以得到函数________________(222+=x y )的图象;函数22x y =的图象,向右平移3个单位,可以得到函数_________________(2)3(2-=x y )的图象,那么函数22x y =的图象,如何平移,才能得到函数2)3(22+-=x y 的图象呢? 二、实践与探索例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)1(21-=x y ,2)1(212--=x y ,并指出它们的开口方向、对称轴和顶点坐标.解 列表.描点、连线,画出这三个函数的图象.它们的开口方向都向 ,对称轴分别为 、 、 ,顶点坐标分别为 、 、.并观察三个图象之间的关系.,把函数y=221x y =的图象沿x 轴向 平移 个单位长度,可得2)1(21-=x y 的图象;再把函数2)1(21-=x y 的图象沿y 轴方向向 平移 个单位长度就可以得到函数2)1(212--=x y 的图象. 即.把抛物线y =-12x 2向_______平移______个单位,再向_______平移_______个单位,就得x… -3-2 -10 12 3... 221x y = (2)9 221 021 229 … 2)1(21-=x y … 8 29 2 21 0 21 2 … 2)1(212--=x y …625 023- -223- 0…到抛物线y =-12(x +1)2-1.三、归纳1. 二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中______________________的值;左右平移,只影响__________________________的值,抛物线的____ _________________不变,所以平移时,可根据 ______________的改变,确定平移前、后的函数关系式及平移的路径.2、理一理知识点y =ax 2y =ax 2+ky =a (x-h)2y =a (x -h)2+k开口方向顶点 对称轴 最值增减性(对称轴右侧)3.抛物线y =a (x -h)2+k 与y =ax 2形状___________,位置________________.例2.把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.四、课堂练习 1.y =3x 2 y =-x 2+1y =12(x +2)2 y =-4 (x -5)2-3开口方向顶点对称轴最值增减性(对称轴左侧)2.y =6x 2+3与y =6 (x -1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y =12 x 2相同的解析式为( )A .y =12(x -2)2+3B .y =12(x +2)2-3C .y =12 (x +2)2+3D .y =-12(x +2)2+34.二次函数y =(x -1)2+2的最小值为__________________.5.将抛物线y =5(x -1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y =ax 2+k 的顶点在直线y =-2上,且x =1时,y =-3,求a 、k 的值. 7.若抛物线y =a (x -1)2+k 上有一点A (3,5),则点A 关于对称轴对称点A’的坐标为 __________________. 五、作业:1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y =2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 .4.已知函数()9232+--=x y 。
2 二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质第5课时PPT课件(华师大版)

例 3 [教材补充例题]
2
(1)已知 0≤x≤1,那么函数 y=-2x +8x-6 的
最大值是 ( B )
B.0
A.-6
C.2
D.4
2
(2)函数 y=x +2x-3(-2≤x≤2)的最大值和最小值分别是 ( C )
A.4 和-3
B.-3 和-4
C.5 和-4
D.-1 和-4
第5课时
二次函数最值的应用
第26章
26.2
二次函数
二次函数的图象与性质
2.二次函数y=ax2+bx+c的图象与性质
第26章
第5课时
二次函数
二次函数最值的应用
目标突破
总结反思
第5课时
二次函数最值的应用
目标突破
目标一 能用二次函数模型解决几何图形中的最值
例 1 [教材补充例题] 如图 26-2-4,在△ABC 中,∠B=90°,AB=12
第5课时
二次函数最值的应用
2
2
则 y=(x-40)[90-3(x-50)]=-3x +360x-9600=-3(x-60) +1200.
∵a=-3<0,∴抛物线开口向下,y 有最大值,最大值为 1200,∴销售该
苹果每天能获得的最大利润是 1200 元.
上面的解答过程正确吗?如果不正确,错在哪里?并写出正确的
cm,BC=24 cm,动点 P 从点 A 开始沿边 AB 向点 B 以 2 cm/s 的速度移动(不
与点 B 重合),动点 Q 从点 B 开始沿边 BC 向点 C 以 4 cm/s 的速度移动(不
与点 C 重合),点 P,Q 分别从点 A,B 同时出发.
北师大版九年级数学下册《二次函数——二次函数的图象与性质》教学PPT课件(4篇)

在对称轴的右侧,
y随着x的增大而增大.
在对称轴的左侧,
y随着x的增大而增大.
在对称轴的右侧,
y随着x的增大而减小.
最值
x=0时,y最小=0
x=0时,y最大=0
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说
来,|a|越大,抛物线的开口就越小.
新知讲解
做一做:在同一直角坐标系中,画出二函数 y=2x2+1与y=2x2-1的图象.
y
y=− +2
1
y x 2 -2
2
y=−
-2 O
-2
-4
-6
2
4 x
归纳总结
二次函数y = ax2 +c的图象和性质:
a的符号
图
象
a>0
a<0
c>0
c<0
开口方向
对称轴
顶点坐标
向上
向下
y轴(直线x=0)
y轴(直线x=0)
(0,c)
(0,c)
当x<0时,y随x增大而 当x<0时,y随x增大
(1)当c>0 时,向上平移c个单位;
(2)当c<0 时,向下平移︱c︱个单位.
上下平移规律:
平方项不变,常数项上加下减.
练一练
二次函数y=-3x2+1的图象是将( D )
A.抛物线y=-3x2向左平移3个单位得到
B.抛物线y=-3x2向左平移1个单位得到
C.抛物线y=3x2向上平移1个单位得到
5
这两种呢?有没有其他形式的二次
3
函数?
4
第5课时:二次函数的图象与性质(4)

第六章 二次函数 第5课时:二次函数的图象与性质(4)班级 姓名 学号学习目标:1、会用配方法把二次函数c bx ax y ++=2化成k m x a y ++=2)(的形式;2、会用公式法求二次函数c bx ax y ++=2的顶点坐标;3、理解函数c bx ax y ++=2的性质。
问题探索: 知识回顾: 1、填表:2①++x x 42=(x + )2; ②+-x x 272=(x - )2; ③++=++22)3(126x x x ; ④+-=+-22)27(137x x x .探索与思考1:函数322++=x x y 的图象是抛物线吗?问题1:用配方法将二次函数4212++-=x x y 化成k m x a y ++=2)(的形式,并指出它的开口方向、对称轴、 顶点坐标.练一练:用配方法把下列二次函数化成k m x a y ++=2)(的形式,并指出它们的开口方向、对称轴、 顶点坐标.(1)4822+-=x x y ; (2)xx y 232--=;(3)142+--=x x y ; (4)92312+-=x x y .探索与思考2:二次函数的顶点坐标公式.用配方法把二次函数c bx ax y ++=2化成k m x a y ++=2)(的形式. 问题2:用公式法求下列二次函数的顶点坐标. (1)2122--=x x y ; (2)22134x x y -+=. (3)13432-+=x x y ; (4)x x y 6232--=.探索与思考3:二次函数c bx ax y ++=2的性质.二次函数c bx ax y ++=2的图象是 ,它的顶点坐标是( , ), 对称轴是 的直线(当0=b 时, 对称轴是 ). (1)若0>a ,开口向 ,当=x 时,函数c bx ax y ++=2有最 值 . 当<x 时,y 随x 的增大而 ; 当>x 时,y 随x 的增大而 . (2)若0<a ,开口向 ,当=x 时,函数c bx ax y ++=2有最 值 . 当<x 时,y 随x 的增大而 ; 当>x 时,y 随x 的增大而 . 练一练:填表:问题3:已知二次函数21222-++-=m x x y 。
九年级数学下册27.2二次函数的图象与性质2.5二次函数y=ax2bxc的图象与性质第5课时课件华东师大版

2.某广场有一喷水池,水从地面喷出,
如图,以水平地面为x轴,出水点为原
点,建立平面直角坐标系,水在空中
划出的曲线是抛物线y=-x2+4x(单位:
米)的一部分,则水喷出的最大高米 (D)1米
【解析】选A.直接根据二次函数的顶点坐标公式计算即可,最
大高度为 4ac b2 4 (1) 0 42 4.
2.实际问题中确定最值 【问题】某网店以每件60元的价格购进一批商品,若以单价80 元销售,每月可售出300件.调查表明:单价每上涨1元,该商品 每月的销售量就减少10件. (1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函 数关系式; (2)单价定为多少元时,每月销售商品的利润最大?最大利润为 多少?
图象过点(10,300),(12,240),
即可得
10k 12k
b b
解30得0,
240,
……kb …60…300,,……………2分
∴y=-30x+600.………………………………………………3分
当x=14时,y=180;当x=16时,y=120,
即点(14,180),(16,120)均在函数y=-30x+600的图象上,
第5课时
1.求二次函数最值的方法 (1)配方法:y=ax2+bx+c化为y=a_(_x_-_h_)_2_+_k_的形式,当自变量x=_h_ 时,函数y最大(小)=_k_.如二次函数y=3x2+6x+4可化为 y=3_(_x_+_1_)_2+_1_,因为a=3_>_0,所以函数y有最_小__值,所以当 x=_-_1_时,y的最_小__值为_1_.
4.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A 开始沿AB向B以2 cm/s的速度移动,点Q从点B开始沿BC向C点以 1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的 面积最大时,运动时间t为_____ s.
北师大版九年级数学下册课件:二次函数的图像与性质

例15.若二次函数y=ax2+bx+c 的x与y的部分对应值如下表,则当x=1时,y的值为
例16.已知二次函数 ,函数y与自变量x的部分对应值如下表所示,下列说法错误的是( )
例17.已知抛物线 经过点 和(-a, y1 ),则y1的值是_________.
C
分析:用数形结合的思想解决问题.视察图象,在 y 轴的左侧 y 随 x 的增大而减小,所以 y3<y2<y1.
也可以用特殊值法计算得到答案.
3.1. y=x2 +1与y=-x2 -1的图像与性质
1.向上向下平移2. 顶点坐标(0,1),(0.-1)
3.2. y=ax2 +c与y=-x2 +c的图像与性质
A.
例12.如图,四个二次函数的图象中,分别对应的是:① ;② ;③ ;④ , 则的大小关系为
13.如图,抛物线 的对称轴是直线x=1,且经过点P(3,0),a-b+c的值为————
例14.如图,坐标系中抛物线是函数y=ax2+bx+c的图象,则下列式子能成立的是( )
例18.将抛物线 的解析式向上平移3个单位长度,在向右平移1个单位长度后,得到的抛物线的解析式是 .
例19.如果二次函数y=(-2k+4)x2-3x+1的图象开口向上,那么常数k的取值范围是________
k<2
例20.已知函数y=(k﹣2)xk²﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?
K=1或k=3
例21.已知抛物线y= +mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
二次函数的图象与性质(第5课时)PPT课件

A. (5,0)
B. (0,5) C. (0,3) D. (3,0)
4、对于抛物线y=-2x2+4x+1,下列说法正确的是( C )
A. y最大值=1 B. y最小值=1 C. y最大值=3 D. y最小值=3
5. 画二次函数y=x2-2x-1的图象.
配方:y=(x-1)2-2 对称轴:x=1, 顶点坐标:(1,-2)
动脑筋 画二次函数y=-2x2+6x-1 的图象?
配方:y
= =
-
2 2
x2 +
x-
6
3 2
x-1 =
2
+2×
- 2( x2 - 3 x)-1=
94-1
=
-2
x- 32
-
2
x2
2
+72
.
-
3
x
+
-
3 2
2
-
-
3 2
2
-1
对称轴是直线 x =
3 2
,顶点坐标是
3 2
,
7
A. y=-(x-1)2-3
B. y=-(x+1)2-3
C. y=-(x-1)2+3
D. y=-(x+1)2+3
2、抛物线y=x2-3x+2与y轴交点的坐标是( A )
A. (0,2) B. (1,0) C. (0,-3) D. (0,0)
3、把抛物线y=2x2向上平移5个单位,所得抛物线的顶点
坐标为( B )
这个最大值等于顶点的纵坐标
7 2
.
从二次函数
y
=
1( 2
x
人教版九年级数学上册《二次函数的图象和性质(第5课时)》示范教学设计

二次函数的图象和性质(第5课时)教学目标1.针对具体的系数取值,能画出二次函数y =a (x -h )2+k 的图象,并能指出如何由y =ax 2的图象平移得到.2.能根据表达式说出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标. 3.通过自主画图探索活动,增进学生对抛物线自身特点的认知与对二次函数图象和性质的理解,体会数形结合思想的应用.教学重点抛物线y =a (x -h )2+k (a ≠0)与抛物线y =ax 2(a ≠0)的位置关系.教学难点理解a ,h ,k 三个字母系数对二次函数图象的影响.教学过程知识回顾二次函数y =a (x -h )²(a ≠0)的性质:【设计意图】通过复习已经学过的二次函数y =a (x -h )²(a ≠0)的性质的知识,为引出新课“二次函数y =a (x -h )2+k (a ≠0)的图象和性质”作铺垫.新知探究一、探究新知【问题】在同一直角坐标系中,画出二次函数212y x =-,()2122y x =--,()21212y x =--+的图象,并分别指出它们的开口方向、对称轴和顶点坐标. 【师生活动】教师提出问题,学生独立思考并作图回答问题. 学生作图:先列表(略),然后描点,再分别画出它们的图象.根据所画图象,学生回答:教师提问:结合所画图象,观察三个二次函数的顶点坐标和对称轴有什么关系? 学生观察图象,思考并回答,教师总结.教师追问:三个二次函数图象之间的位置有什么关系?教师提示:可以类比前面研究“抛物线y =ax 2+k (a ≠0)与抛物线y =ax 2(a ≠0)的位置关系”的方法来思考问题.学生根据提示,分小组讨论,并作答.抛物线212y x =-向右平移2个单位长度,就得到抛物线()2122y x =--.抛物线()2122y x =--向上平移1个单位长度,就得到抛物线()21212y x =--+.教师总结:它们的图象只有位置不同.【设计意图】巩固学生对描点法画函数图象的认识,为进一步探究抛物线y =a (x -h )2+k (a ≠0)与抛物线y =ax 2(a ≠0)的位置关系作铺垫.二、典例精讲【例1】画出函数()21112y x =-+-的图象,并指出它的开口方向、对称轴和顶点坐标.怎样移动抛物线212y x =-可以得到抛物线()21112y x =-+-?【师生活动】教师提出问题,学生独立思考并作图回答问题. 学生作图:先列表(略),然后描点,画出它的图象.根据所画图象,学生回答:抛物线()21112y x =-+-的开口向下,对称轴是x =-1,顶点坐标是(-1,-1).教师提问:抛物线212y x =-和抛物线()21112y x =-+-有什么关系?学生分小组讨论,尝试利用函数平移知识作答,教师总结.【归纳】一般地,抛物线y =a (x -h )2+k 与y =ax 2形状相同,位置不同.把抛物线y =ax 2向上(下)、向左(右)平移,可以得到抛物线y =a (x -h )2+k .平移的方向、距离要根据h ,k 的值来决定.【新知】抛物线y =a (x -h )2+k 的特点:(1)当a >0时,开口向上;当a <0时,开口向下. (2)对称轴是x =h . (3)顶点坐标是(h ,k ).(4)如果a >0,当x <h 时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大;如果a <0,当x <h 时,y 随x 的增大而增大;当x >h 时,y 随x 的增大而减小. 【例2】要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,高度为3 m ,水柱落地处离池中心3 m ,水管应多长?【师生活动】教师提出问题,学生分小组讨论,并派学生代表回答.【答案】解:如图,以水管与地面交点为原点,原点与水柱落地处所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数解析式是 y =a (x -1)2+3(0≤x ≤3).由这段抛物线经过点(3,0),可得0=a (3-1)2+3,解得34a =-.因此()23134y x =--+(0≤x ≤3). 当x =0时,y =2.25,也就是说,水管长2.25 m .【设计意图】通过例1和例2的讲解与练习,巩固学生对所学知识的理解及应用.课堂小结板书设计一、二次函数y =a (x -h )2+k (a ≠0)的图象与性质二、抛物线y =a (x -h )2+k (a ≠0)与抛物线y =ax ²(a ≠0)的位置关系课后任务完成教材第37页练习.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5课时二次函数的图象和性质(四)(附答案)
1.(1)抛物线y=2(x+2)2、y=2x2-3与y=2(x+1)2的___________________________相同,____________________________不同;
(2)将抛物线y=2x2沿x轴向_______平移_______个单位长度,再沿y轴向_______平移
_______个单位长度,就可以得到抛物线y=2(x+2)2-3.
2.已知抛物线y=3(x+1)2+7,当x=_______时,y有最小值,为_______.
3.已知抛物线y=-(x-5)2+2,当x_______时,y随x的增大而减小.
4.如图是二次函数y=a(x+1)2+2的图象的一部分,则该图象在y轴右侧的部分与x轴交点的坐标是 ( )
A.(1
2
,0)
B.(1,0)
C.(2,0)
D.(3,0)
5.在同一平面直角坐标系中,画出下面函数的图象,并标出它们的顶点坐标和对称轴. (1)y=(x+3)2-1; (2)y=-(x-4)2+3.
6.将二次函数y=2(x-1)2+3的图象先沿y轴向上平移3个单位长度,再向左平移4个单位长度,那么平移后的二次函数图象的顶点坐标是_______.
7.已知二次函数y=a(x-h)2+3,当x>2时,y随x的增大而减小;当x<2时,y随x,的增大而增大,则a_______0,h=_______.
8.已知抛物线y=x2+bx+c的顶点坐标为(1,4),则此抛物线对应的函数关系式为_____.9.(2011.无锡)下列二次函数中,以直线x=2为对称轴,且经过点(0,1)的是 ( ) A.y=(x-2)2+1 B.y=(x+2)2+1
C.y=(x-2)2-3 D.y=(x+2)2-3
10.(2010.荆州)若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x +1)记,则要得到E(x,x2-2x+1),可以由E(x,x2) ( )
A.向上平移1个单位长度 B.向下平移1个单位长度
C.向左平移1个单位长度 D.向右平移1个单位长度
11.(2011.广安)若二次函数y=(x-m)2-1,当x≤1时,y随x的增大而减小,则m的取值范围是 ( )
A.m=1 B.m>1 C.m≥1 D.m≤1
12.已知抛物线y1=a(x-h)2+k与y2=(x+3)2-4的开口方向和形状都相同,且y1的最低点的坐标是(-2,-1).
(1)求y1对应的函数关系式.
(2)试说明抛物线y1是由抛物线y2经过怎样的平移得到的.
(3)求抛物线y1与x轴的两个交点的坐标.
13.(2011.南通)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点.
(1)试说明C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上.
(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?
(3)求a和k的值.
参考答案
1.(1)开口方向和形状顶点和对称轴 (2)左 2 下 3 2.-1 7 3.>5 4.B 5.图略(1)顶点坐标为(-3,-1),对称轴为直线x=-3 (2)顶点坐标为(4,3),对称轴为直线x=4
6.(-3,6)7.< 2 8.y=x2-2x+5 9. C 10.D 11. C 12. (1) y1=(x+2)2-1 (2)将抛物线y2先向右平移1个单位长度,再向上平移3个单位长度得到抛物线y1(3)抛物线y1与x轴的两个交点分别为(-1,0)、(-3,0) 13.(1)略(2)不可
能(3)
3
8
11
8 a
k
⎧
=
⎪⎪
⎨
⎪=-⎪⎩。