(人教A版)数学必修1课件:第二章 基本初等函数(I)2.1 第1课时
合集下载
高中数学第二章基本初等函数(ⅰ)2.2对数函数2.2.1第1课时对数aa高一数学

①log28=3;②log
12/12/2021
1 2
14=2;③logaa2=2(a>0,且
a≠1);④log3217=-3.
第八页,共二十七页。
[解析] (1)①3=log 1 18;②-2=log319;③3=log464;④x=log 1 3.
2
3
(2)①23=8;②122=14;③a2=a2(a>0,且 a≠1);④3-3=217.
12/12/2021
∴x=3.即 log327=3.………………12 分 [点评] 无理式的运算是易错点要多加练习.
第二十一页,共二十七页。
1.已知
log2x=3,则
x
1 2
等于(
1
1
A.3
B.2 3
1 C.3 3
D.
2 4
解析:由 log2x=3 得 x=23,
∴x =(2 ) 1
12/12/20221
12/12/2021
第十七页,共二十七页。
指数与对数互化的本质: 指数式 ab=N(a>0,且 a≠1)与对数式 b=logaN(a>0,a≠1,N>0)之间是一种等价 关系.已知对数式可以转化成指数式,指数式同样可以转化成对数式.
12/12/2021
第十八页,共二十七页。
3.求下列各式的值:
(1)log4(3x-1)=1; (2)logx4=2;
(3)log(
2-1)
1 3+2
=x. 2
12/12/2021
第十九页,共二十七页。
解析:(1)由 log4(3x-1)=1,得 3x-1=4, ∴x=53.
(2)由 logx4=2,得 x2=4,∴x=2(x=-2 舍去).
人教版高中数学必修1课件全册

因此,函数就是表达了两个变量之间变化关系的一个表达式。其准 确定义如下:
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集 合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么 就称f:A→B为集合A到集合B的一个函数(function),记作y=f(x), x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相 对应的y值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数 的值域。而对应的关系f则成为对应法则,则上面两个例子中,对应法则 分别是“乘以10再加20”和“平方后乘以4.9”
{ 例题、不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
A={x|1/2<x<2},CuA={x|x≤1/2,x≥2}
思考:
1、CUA在U中的补集是什么?
A
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=_B__, CUB=__A__。
解: A∪B={x|-1<x<2} ∪ {x|1<x<3} ={x|-1<x<3}
-1 1 2 3
并集的运算性质:
(1) A A A (2) A A (3) A B B A (4) A A B, B A B, A B A B (5) A B则A B B
注意:计算并集和交集的时候尽可能的转化为图像,减少 犯错的几率,常用的图像有Venn图,数轴表示法,坐标表 示法。尤其是涉及到不等式和坐标点的时候。
6、已知A {x | x 2 3x 2 0},B {x | x 2 ax a 1 0}若A B A,求实数a的值.
高一数学人教版必修1 第二章《基本初等函数》同步课件2.2.1.1

其中错误说法的个数为( )
A.1
B.2
C.3
D.4
数学 必修1
第二章 基本初等函数(Ⅰ)
学案·新知自解
教案·课堂探究
练案·学业达标
解析: 只有符合 a>0,且 a≠1,N>0,才有 ax=N⇔x=logaN,故(2)错误.由 定义可知(3)(4)均错误.只有(1)正确.
答案: C
数学 必修1
第二章 基本初等函数(Ⅰ)
教案·课堂探究
练案·学业达标
解析: 因为 lg 10=1,所以 lg(lg 10)=lg 1=0,①正确; 因为 ln e=1,所以 lg(ln e)=lg 1=0,②正确; 若 10=lg x,则 x=1010,③错误; 由 log25x=12,得 x=2512=5,④错误. 答案: ①②
数学 必修1
提示: 设ab=N,则b=logaN. ∴ab=alogaN=N.
数学 必修1
第二章 基本初等函数(Ⅰ)
学案·新知自解
教案·课堂探究
练案·学业达标
1.对于下列说法:
(1)零和负数没有对数;
(2)任何一个指数式都可以化成对数式;
(3)以 10 为底的对数叫做自然对数;
(4)以 e 为底的对数叫做常用对数.
数学 必修1
第二章 基本初等函数(Ⅰ)
学案·新知自解
教案·课堂探究
练案·学业达标
1.将下列指数式化为对数式,对数式化为指数式: (1)3-2=19;(2)43=64; (3)log1327=-3;(4)log x64=-6.
数学 必修1
第二章 基本初等函数(Ⅰ)
学案·新知自解
教案·课堂探究
练案·学业达标
高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1

由图象可知值域是(0,1],递增区间是(-∞,0],递减区间 是[0,+∞).
与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.
与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.
高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A版必修1

故函数的定义域为{x|1<x<2}.
[规律总结] 定义域是研究函数的基础,若已 知函数解析式求定义域,常规为分母不能为零, 0的零次幂与负指数次幂无意义,偶次方根被 开方式(数)非负,求与对数函数有关的函数定 义域时,除遵循前面求函数定义域的方法外, 还要对这种函数自身有如下要求:一是要特别 注意真数大于零;二是要注意底数;三是按底 数的取值应用单调性.
非奇非偶函数
[知识点拨] 对数函数的知识总结: 对数增减有思路,函数图象看底数; 底数只能大于0,等于1来可不行; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(1,0)点. 3.反函数 对数函数y=logax(a>0,且a≠1)和指数函数y=ax(a>0,且 a≠1)互为反函数,它们的图象关于直线______对称.
(2)要使函数有意义,需使 2-ln(3-x)≥0,
即33- -xx≤ >0e,2, 解得 3-e2≤x<3,
故函数的定义域为{x|3-e2≤x<3}.
(3)要使函数有意义,需使 log0.5(x-1)>0,
即log1
2
(x-1)>0,所以
log2x-1 1>0,
x-1>0 ∴x-1 1>1 ,即 1<x<2.
2
有意义应有 x>0.
[正解] 要使函数有意义,须log1 x-1≥0,
2
∴log1
2
x≥1,∴0<x≤12.
∴定义域为0,12.
跟踪练习
已知函数 y=f(x),x,y 满足关系式 lg(lgy)=lg(3-x),求函 数 y=f(x)的表达式及定义域、值域.
数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质

数由小变大.(2)指数函数的底数与图象间的关系可 概括记忆为:在第一象限内,底数自下而上依次增 大.
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)
高中数学 第二章基本初等函数(Ⅰ)对数函数及其性质 第1课时对数函数的图象及其性质课件新人教版必修(1)

1 3 域是x2≤x<4.
归纳升华 定义域是使解析式有意义的自变量的取值集合, 求 与对数函数有关的定义域问题时,要注意对数函数的概 念,若自变量在真数上,则必须保证真数大于 0;若自变 量在底数上,应保证底数大于 0 且不等于 1.
[变式训练] 求下列函数的定义域: 1 (1)f(x)= ; 1-log4(x-1) (2)f(x)= log0.6x-1. x-1>0, 解: (1)由 得 x∈(1, 5)∪(5, +∞). log4(x-1)≠1, 1 所以函数 f(x)= 的定义域为 1-log4(x-1)
2.对数函数的图象与性质
定义 底数 图象 定义域 值域 (0,+∞) R y=logax(a>0,且 a≠1) a>1 0<a<1
单调性 性 质 函数
增函数
减函数
共点性 图象过定点(1,0),即 loga1=0 x∈(0,1)时, x∈(0,1)时, y∈(-∞,0); y∈(0,+∞);
值特征 x∈(1, +∞)时,x∈(1, +∞)时, y∈(0,+∞).
(2)y=f(x)的图象与 y=f(-x)的图象关于 y 轴对称,y =f(x)的图象与 y=-f(x)的图象关于 x 轴对称.
[ 变式训练 ] ( )
函数 f(x) = ln(x2 + 1) 的图象大致是
解析:因为 f(-x)=ln[(-x)2+1]=ln(x2+1)=f(x), 排除选项 C,又 f(0)=0,排除选项 B、D,所以选项 A 正确. 答案:A
1 的取值范围是0,2.
1 答案:0,2
类型 1 求对数类函数的定义域(自主研析) [典例 1] 求下列函数的定义域: (1)y=log5(3x+2); (2)y=log(1-x)6; (3)y= log0.5(3-4x).
归纳升华 定义域是使解析式有意义的自变量的取值集合, 求 与对数函数有关的定义域问题时,要注意对数函数的概 念,若自变量在真数上,则必须保证真数大于 0;若自变 量在底数上,应保证底数大于 0 且不等于 1.
[变式训练] 求下列函数的定义域: 1 (1)f(x)= ; 1-log4(x-1) (2)f(x)= log0.6x-1. x-1>0, 解: (1)由 得 x∈(1, 5)∪(5, +∞). log4(x-1)≠1, 1 所以函数 f(x)= 的定义域为 1-log4(x-1)
2.对数函数的图象与性质
定义 底数 图象 定义域 值域 (0,+∞) R y=logax(a>0,且 a≠1) a>1 0<a<1
单调性 性 质 函数
增函数
减函数
共点性 图象过定点(1,0),即 loga1=0 x∈(0,1)时, x∈(0,1)时, y∈(-∞,0); y∈(0,+∞);
值特征 x∈(1, +∞)时,x∈(1, +∞)时, y∈(0,+∞).
(2)y=f(x)的图象与 y=f(-x)的图象关于 y 轴对称,y =f(x)的图象与 y=-f(x)的图象关于 x 轴对称.
[ 变式训练 ] ( )
函数 f(x) = ln(x2 + 1) 的图象大致是
解析:因为 f(-x)=ln[(-x)2+1]=ln(x2+1)=f(x), 排除选项 C,又 f(0)=0,排除选项 B、D,所以选项 A 正确. 答案:A
1 的取值范围是0,2.
1 答案:0,2
类型 1 求对数类函数的定义域(自主研析) [典例 1] 求下列函数的定义域: (1)y=log5(3x+2); (2)y=log(1-x)6; (3)y= log0.5(3-4x).
人教版《第二章 基本初等函数》PPT完美课件1

例2:求下面对数式中x 的取值范围.
lo2g x1x2
2x 1 0 解: 2 x 1 1
x 2 0
x 1 2
x1
x 2
x
x
1,且x 2
1
人教版《第二章 基本初等函数》PPT完美课件1
人教版《第二章 基本初等函数》PPT完美课件1
例3:解方程.
lo2lgo4xg 0
解 所l: 以 to 4 x 2 0g t ,则 1,设 即 llo 2 ot4 gx0 g 1注 验 大意 证 于0: 真,一 数底定 是数要 否是
思考:你发现了什么?
lo a a g 1 a 0 ,且 a 1
人教版《第二章 基本初等函数》PPT完美课件1
人教版《第二章 基本初等函数》PPT完美课件1
4.求下列各式的值:
12log28
2 3log327
3
1
log
18
2
2
猜想: a lo a N g ? a 0 ,且 a 1
赋予它的含义就是:1.2的多少次幂等于2.
人教版《第二章 基本初等函数》PPT完美课件1
人教版《第二章 基本初等函数》PPT完美课件1
对数的定义:
若ax N(a0,a1) ,则数 x叫做
以a为底 N的对数,x记 lo作 ga N,
其中 a为底数N为 ,真.数loga N
指数
对数
幂
真
ax N
数 loga Nx
ax N
xloga N
等函数》PPT完美课件1
人教版《第二章 基本初等函数》PPT完美课件1
对数的性质:
1零和负数没有对数
2 lo a 1 0 g a 0 ,且 a 1 3 lo a a 1 g a 0 ,且 a 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效课堂
●互动探究
对数的定义与指对互化
把下列各等式化为相应的对数式或者指数式: ①5 =125;
3
1 -2 ②(4) =16;
1 ③log1 8=-3; ④log327=-3. 2 探究1.指数式ax=b化为对数式是什么?
探究2.对数式logax=b化为对数式是什么?
[解析] ①∵53=125,∴log5125=3. 1 -2 ②∵(4) =16,∴log1 16=-2. 4 1 -3 ③∵log1 8=-3,∴(2) =8. 2 1 1 -3 ④∵log327=-3,∴3 =27.
x 2x
3 =22
3 ,∴x=4,
1 1 乘得,3x=1,∴x=3.即2
方程ax=N(a>0,且a≠1)的解;也可以看作一种运算,即已知 底为a(a>0,且a≠1),幂为N,求幂指数的运算,因此,对数 式logaN又可看作幂运算的逆运算.
2.常用对数和自然对数 10 为底的对数叫做常用对 (1) 常用对数:通常我们将以 _____ lgN 数,并把log N记为_____.
10
(2)自然对数:在科学技术中常使用以无理数e=2.71828… 为底数的对数,以e 为底的对数称为自然对数,并把logeN记为 lnN _____. 3.对数与指数的关系 logaN 当a>0,且a≠1时,ax=N⇔x=_____. [知识拓展 ] 且a≠1). 当ax=N时,x =logaN,则 alogaN= N(10
)
3.log54=a化为指数式是( A.54=a C.5a=4
B.45=a D.4a=5
[答案] C
4.对数式loga8=3改写成指数式为(
A.a8=3 C.83=a [答案] D 5.求下列各式的值: B.3a=8 D.a3=8
)
①log33=________;②log0.51=________; ③lg10=________;④ln e=________. 1 [答案] ①1 ②0 ③1 ④2
对数的性质与利用对数定义求值
求下列各式的值: ①log464; ②log31; ③log927; ④2log2π. 探究1.对数的逆运算是指数,应将真数化为什么形式?
探究2.对数恒等式如何应用?
[解析] ①设log464=x,则4x=64, ∵64=43,∴x=3,∴log464=3. ②设log31=x,则3x=1, ∵1=30,∴x=0,∴log31=0. ③设log927=x,则9x=27即32x=33, 3 3 ∴2x=3即x=2,∴log927=2. ④设2log2π=x,则log2π=log2x=u, ∴π=2u,x=2u,∴x=π,即2log2π=π.
将下列指数式化为对数式,对数式化为指数式: (1)42=16;
1 (3)42
(2)102=100; (4) log1 32=-5.
2
=2;
[分析] 按照指数式与对数式的关系转化,幂底数对应对 数底数,指数对应对数,幂对应真数. [解析] (1)log416=2.(2)lg100=2.
1 1 -5 (3)log42=2.(4)(2) =32.
实数 . 围由初中时的限定为整数扩充到了_____ 1 ;a1=_____ a ;对于任意x 2.若a>0且a≠1,则a0=_____
∈R,ax>0. 3.填空:
43 =64; (1)34=81;(2) _____
-4 1 1 _____ (3)5 =125;(4)2 =16.
-3
●自主预习 1.对数的概念 ax=N(a>0,且a≠1) 数x叫做以a为底N的对数,a叫做对数的底数 _____,N 结论 真数 叫做_____ x=log _____ 记法 aN 条件 [ 名师点拨 ] 对数式 logaN 可看作一种记号,表示关于 x 的
[ 规律总结 ]
对数式 logaN = b 是由指数式 ab = N 变化得来
的,两式底数相同,对数式中的真数 N 就是指数式中的幂的
值,而对数值 b 是指数式中的幂指数,对数式与指数式的关系
如图:
并非所有指数式都可以直接化为对数式.如(-3)2=9 就不 能直接写成 log(-3)9=2,只有 a>0 且 a≠1,N>0 时,才有 ax =N⇔x=logaN. 另外互化时,首先指数式与对数式的底数相同,其次将对 数式的对数换为指数式的指数 ( 或将指数式的指数换为对数式 的对数).
1 - [解析] (1)log39=log33 2=-2. (2)设log42 2=x,∴4 =2 2,即2 3 ∴log42 2=4. (3)由对数恒等式知2log25=5.
1 1 t log23 t (4)设 2 =x,且log23=t,则2 =3,且( 2 ) =x,两式相
成才之路 ·数学
人教A版 ·必修1
路漫漫其修远兮 吾将上下而求索
第二章
基本初等函数(Ⅰ)
第二章
2.2 对数函数 2.2.1 对数与对数运算
对数 第一课时
1
优 效 预 习
3
当 堂 检 测
2
高 效 课 堂
4
课 时 作 业
优效预习
●知识衔接 指数 ,N称为 1.在指数ab=N中,a称为_____ 底数 ,b称为_____ 幂值 ,在引入了分数指数幂与无理数指数幂之后,b的取值范 _____
[点评] 只要a>0且a≠1,N>0就有alogaN=N成立,故利 用对数恒等式有2log2π=π.
求下列各式的值. 1 (1)log39=________.
log25
(2)log42 2=________.
2
1 log 3 (3)2 =________. (4)(2) =________. 3 1 [答案] (1)-2 (2)4 (3)5 (4)3
4.对数的基本性质 零 和_____ 负数 没有对数. (1) _____ 0 a>0,且a≠1). (2)loga1=_____( (3)logaa=_____( 1 a>0,且a≠1).
●预习自测 1.log78的底数是________,真数是________.
[答案] 7 8
2.lg7与ln8的底数分别是( A.10,10 ) B.e,e