【课堂新坐标】(教师用书)高中数学 3.1.3 导数的几何意义教案 新人教A版选修1-1
2018年秋高中数学第三章导数及其应用3.1变化率与导数3.1.3导数的几何意义学案新人教A版选修1_1

3.1.3 导数的几何意义学习目标:1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念、会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点)[自 主 预 习·探 新 知]1.导数的几何意义(1)切线的定义设点P (x 0,f (x 0)),P n (x n ,f (x n ))是曲线y =f (x )上不同的点,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为过点P 的切线,且PT 的斜率k =limΔx →0=f ′(x 0).f xn -f x 0xn -x 0(2)导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率,在点P 处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示] 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念从求函数f (x )在x =x 0处导数的过程看到,当x =x 0时,f ′(x 0)是一个确定的数;当x 变化时,f ′(x )是x 的一个函数,称为f (x )的导函数(简称导数),y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=.limΔx →0f x +Δx -f x Δx [基础自测]1.思考辨析(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处无切线.( )(4)函数f (x )在点x 0处的导数f ′(x 0)与导函数f ′(x )之间是有区别的.( )[答案] (1)× (2)× (3)× (4)√2.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )A .不存在 B .与x 轴平行或重合C.与x轴垂直D.与x轴斜交B [由f′(x0)=0知,曲线y=f(x)在点(x0,f(x0))处的切线斜率为0,所以切线与x轴平行或重合.]3.如图315所示,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=( )【导学号:97792127】图315A.B.112C.2 D.0C [由题意知f′(5)=-1,f(5)=-5+8=3,则f(5)+f′(5)=2.][合作探究·攻重难]求曲线的切线方程 (1)y=-在点处的切线方程是( )1x(12,-2)A.y=x-2 B.y=x-12C.y=4x-4 D.y=4x-2(2)已知曲线y=x3-x+2,则曲线过点P(1,2)的切线方程为__________.[思路探究] (1)先求y′|x=,即切线的斜率,然后写出切线方程.12(2)设出切点坐标,求切线斜率,写出切线方程,利用点P(1,2)在切线上,求出切点坐标,从而求出切线方程.[解析] (1)先求y=-在x=处的导数:Δy=-+=.1x12112+Δx1124Δx1+2Δx y′|x====4.12limΔx→0ΔyΔxlimΔx→041+2Δx所以切线方程是y+2=4,即y=4x-4.(x-12)(2)设切点为(x0,x-x0+2),则得y′|x=x030=limΔx →0[ x 0+Δx 3- x 0+Δx +2]- x 30-x 0+2 Δx = ((Δx )2+3x 0Δx +3x -1)=3x -1.limΔx →02020所以切线方程为y -(x -x 0+2)=(3x -1)(x -x 0).3020将点P (1,2)代入得:2-(x -x 0+2)=(3x -1)(1-x 0),3020即(x 0-1)2(2x 0+1)=0,所以x 0=1或x 0=-,12所以切点坐标为(1,2)或,所以当切点为(1,2)时,切线方程为y -2=2(x -1),(-12,198)即2x -y =0,当切点为时,切线方程为y -=-x +,(-12,198)1981412即x +4y -9=0,所以切线方程为2x -y =0或x +4y -9=0.[答案] (1)C (2)2x -y =0或x +4y -9=0[规律方法] 1.求曲线在某点处的切线方程的步骤2.求过点(x 1,y 1)的曲线y =f (x )的切线方程的步骤(1)设切点(x 0,y 0)(2)求f ′(x 0),写出切线方程y -y 0=f ′(x 0)(x -x 0)(3)将点(x 1,y 1)代入切线方程,解出x 0,y 0及f ′(x 0)(4)写出切线方程.[跟踪训练]1.(1)曲线y =f (x )=在点(-2,-1)处的切线方程为__________.2x x +2y +4=0 [y ′= = lim Δx →0f x +Δx -f x Δx limΔx →02x +Δx -2x Δx = =-,limΔx →0-2·Δxx x +Δx Δx 2x 2因此曲线f (x )在点(-2,-1)处的切线的斜率k =-=-.2 -2 212由点斜式可得切线方程为y +1=-(x +2),即x +2y +4=0.]12(2)试求过点P (3,5)且与曲线y =x 2相切的直线方程.【导学号:97792128】[解] 设所求切线的切点为A (x 0,y 0).∵点A 在曲线y =x 2上,∴y 0=x ,又∵A 是切点,20y ′= = =2x .lim Δx →0Δy Δx limΔx →0 x +Δx 2-x 2Δx ∴过点A 的切线的斜率y ′|x =x 0=2x 0.∵所求切线过P (3,5)和A (x 0,y 0)两点,∴其斜率为=.y 0-5x 0-3x 20-5x 0-3∴2x 0=,x 20-5x 0-3解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25).当切点为(1,1)时,切线的斜率为k 1=2x 0=2;当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即y =2x -1和y =10x -25.求切点坐标 在曲线y =x 2上求一点,使得在该点处的切线:(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路探究] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )==limΔx →0f x +Δx -f x Δx limΔx →0= (2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.x +Δx 2-x 2Δx limΔx →0(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为,所以132x 0·=-1,解得x 0=-,所以y 0=,即P .133294(-32,94)(3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-,12所以y 0=,即P .14(-12,14)[规律方法] 解答此类题目时,所给直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.[跟踪训练]2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0?(2)抛物线上哪一点的切线垂直于直线x +8y -3=0?[解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x -1=4x 0·Δx +2(Δx )220∴=4x 0+2ΔxΔyΔx ∴y ′|x =x 0= = (4x 0+2Δx )=4x 0.lim Δx →0Δy Δx limΔx →0(1)∵抛物线的切线平行于直线4x -y -2=0,∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1,该点为(1,3).(2)∵抛物线的切线与直线x +8y -3=0垂直,∴斜率为8,即f ′(x 0)=4x 0=8,得x 0=2,该点为(2,9).导数几何意义的应用[探究问题]1.函数值增加的越来越快,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且下凸,函数图象上每一点的切线的斜率越来越大.2.函数值增加的越来越慢,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且上凸,函数图象上每一点的切线的斜率越来越小.如图316,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的( )图316[思路探究] 根据面积S增加的快慢情况判断S=f(x)的图象形状.[解析] 函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.故选D.[答案] D[规律方法] 函数在每一点处的切线斜率的变化情况反映函数在相应点处的变化情况,由切线的倾斜程度,可以判断出函数升降的快慢.因此,研究复杂的函数问题,可以考虑通过研究其切线来了解函数的性质.[跟踪训练]3.已知函数f(x)在区间[0,3]上的图象如图317所示,记k1=f′(1),k2=f′(2),k3=k AB,则k1,k2,k3之间的大小关系为__________.(请用“>”连接)图317k 1>k 3>k 2 [由导数的几何意义可得k 1>k 2,又k 3=表示割线AB 的斜率,f 2 -f 12-1所以k 1>k 3>k 2.][当 堂 达 标·固 双 基]1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0 B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-,12∴f ′(x 0)=-<0.]122.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( )A .2B .4C .6+6Δx +2(Δx )2D .6D [∵y =2x 3,∴y ′= = lim Δx →0Δy Δx limΔx →02 x +Δx 3-2x 3Δx =2limΔx →0 Δx 3+3x Δx 2+3x 2Δx Δx =2 [(Δx )2+3x Δx +3x 2]=6x 2.limΔx →0∴y ′Error!=6.∴点A (1,2)处切线的斜率为6.]3.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________.(3,30) [设点P (x 0,2x +4x 0),20则f ′(x 0)=limΔx →0f x 0+Δx -f x 0 Δx = =4x 0+4,limΔx →02 Δx 2+4x 0·Δx +4Δx Δx 令4x 0+4=16,得x 0=3,∴P (3,30).]4.曲线y =x 2-2x +2在点(2,2)处的切线方程为________.【导学号:97792129】2x -y -2=0 [Δy =(2+Δx )2-2(2+Δx )+2-(22-2×2+2)=2Δx +(Δx )2,∴=2+Δx .ΔyΔx ∴y ′|x =2= (2+Δx )=2.limΔx →0∴曲线在点(2,2)处的切线斜率为2.∴切线方程为y -2=2(x -2),即2x -y -2=0.]5.函数f (x )的图象如图318所示,试根据函数图象判断0,f ′(1),f ′(3),的大小关系.f 3 -f 12图318[解] 设x =1,x =3时对应曲线上的点分别为A ,B ,点A 处的切线为AT ,点B 处的切线为BQ ,如图所示.则=k AB ,f ′(3)=k BQ ,f ′(1)=k AT ,由图可知切线BQ 的倾斜角小于f 3 -f 13-1直线AB 的倾斜角,直线AB 的倾斜角小于切线AT 的倾斜角,即k BQ <k AB <k AT ,∴0<f ′(3)<<f ′(1).f 3 -f 12。
高中数学人教A版选修(1-1) 3.1 教学设计 《导数的几何意义》(人教)

《导数的几何意义》
本课教学导数的几何意义。
让学生学会用已知探究未知,用逼近的思想考虑问题。
【知识与能力目标】
1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义;
2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法
【过程与方法目标】
在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力
【情感态度价值观目标】
体会数学知识在现实生活中的广泛应用
【教学重点】
掌握用导数的定义求导数的一般方法
【教学难点】
掌握用导数的定义求导数的一般方法
多媒体课件
(一) 创设情境
1.平均变化率、割线的斜率
2.瞬时速度、导数
3.我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢?
(二)新课讲授
1.曲线的切线及切线的斜率(出示课件第5页)
2.导数的几何意义:
函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,
即 0000()()()lim x f x x f x f x k x
∆→+∆-'==∆ 说明:求曲线在某点处的切线方程的基本步骤:
①求出P 点的坐标;。
高中数学第三章导数及其应用3.1.3导数的几何意义学案新人教A版选修1_1

3.1.3 导数的几何意义内容 标 准学 科 素 养 1.了解导函数的概念,理解导数的几何意义. 2.会求简单函数的导函数.3.根据导数的几何意义,会求曲线上某一点处的切线方程.利用数学抽象 发展逻辑推理 提高数学运算授课提示:对应学生用书第53页[基础认识]知识点一 导数的几何意义导数f ′(x 0)表示函数f (x )在x =x 0处的瞬时变化率,反映了函数f (x )在x =x 0附近的变化情况.那么,导数f ′(x 0)的几何意义是什么呢?如图,当点P n (x n ,f (x n ))(n =1,2,3,4)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么?预习教材P 76-79,思考并完成以下问题提示:当点P n 趋近于点P 时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0.当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.因此,函数f (x )在x =x 0处的导数就是切线PT 的斜率k ,即k =limΔx →0f (x 0+Δx )-f (x 0)Δx=f ′(x 0).知识梳理(1)导数的几何意义函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)切线方程:曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).特别提醒:曲线的切线并不一定与曲线只有一个交点,可能有多个,甚至可以无穷多.与曲线只有一个公共点的直线也不一定是曲线的切线.知识点二导函数的概念知识梳理从求函数f(x)在x=x0处导数的过程可以看到,当x=x0时,f′(x0)是一个确定的数.这样,当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).y=f(x)的导函数有时也记作y′.即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.[自我检测]1.已知曲线y=2x2上一点A(2,8),则点A处的切线斜率为()A.4B.16C.8 D.2答案:C2.曲线y=2x2+1在点P(-1,3)处的切线方程为________.答案:4x+y+1=0授课提示:对应学生用书第54页探究一导数几何意义的应用[阅读教材P77例2]如图,它表示跳水运动中高度随时间变化的函数h(t)=-4.9t2+6.5t +10的图象.根据图象,请描述、比较曲线h(t)在t0,t1,t2附近的变化情况.题型:导数几何意义的应用.方法步骤:①分别观察得出h(t)在t0,t1,t2处的导数,即切线的斜率的大小.②导数是刻画函数的变化快慢情况的量.③得出t0处h(t)几乎没有升降.又∵h′(t1)<h′(t2)<0,∴h(t)在t1附近比在t2附近下降得缓慢.[例1]如图表示物体运动的位移随时间变化的函数f(t)=4t-2t2的图象,试根据图象,描述、比较曲线f(t)在t0,t1,t2附近的变化情况,并求出t=2时的切线方程.[解析]用曲线f(t)在t0,t1,t2处的切线,刻画曲线f(t)在t0,t1,t2附近的变化情况.(1)当t=t0时,曲线f(t)在t0处的切线l0平行于x轴,所以,在t=t0附近曲线比较平坦,几乎没有升降;(2)当t=t1时,曲线f(t)在t1处的切线l1的斜率f′(t1)<0,所以,在t=t1附近曲线下降,即函数f(t)在t=t1附近单调递减;(3)当t=t2时,曲线f(t)在t2处的切线l2的斜率f′(t2)<0,所以,在t=t2附近曲线下降,即函数f(t)在t=t2附近也单调递减.由图象可以看出,直线l1的倾斜程度小于直线l2的倾斜程度,说明曲线f(t)在t1附近比在t2附近下降得缓慢;(4)当t=2时,f(2)=0.在t=2时的切线的斜率k=f′(2)=limΔx→0f(2+Δt)-f(2)Δt=limΔx→04(2+Δt)-2(2+Δt)2-8+8Δt=limΔx→04Δt-2(Δt)2-8ΔtΔt=limΔx→0(-2Δt-4)=-4.所以切线的方程为y=-4(x-2),即4x+y-8=0.方法技巧函数y=f(x)在点P处的切线的斜率,即函数y=f(x)在点P处的导数,反映了曲线在点P处的变化率.一般地,切线的斜率的绝对值越大,变化率就越大,曲线的变化就越快,弯曲程度越大;切线斜率的绝对值越小,变化率就越小,曲线的变化就越慢,弯曲程度越小,即曲线比较平缓;反之,由曲线在点P附近的平缓、弯曲程度,可以判断函数在P 处的切线的斜率的大小.跟踪探究1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),此两点处的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的切线的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.答案:B探究二 求曲线在某点处的切线方程[教材P 110复习参考题A 组1题]已知点P 和点Q 是曲线y =x 2-2x -3上的两点,且点P 的横坐标是1,点Q 的横坐标是4,求:(1)割线PQ 的斜率; (2)点P 处的切线方程.解析:(1)由题可知P (1,-4),Q (4,5), ∴k PQ =93=3.∴割线PQ 的斜率为3.(2)点P 处切线的斜率k =y ′|x =1=limΔx →0 (1+Δx )2-2(1+Δx )-3-(12-2-3)Δx=limΔx →0Δx =0, 当x =1时y =-4, ∴P 处切线方程为y =-4.[例2] 求曲线y =1x在点⎝⎛⎭⎫2,12处的切线方程. [解析] 因为y ′|x =2=limΔx →012+Δx -12Δx =limΔx →0-12(2+Δx )=-14,所以这条曲线在点⎝⎛⎭⎫2,12处的切线斜率为-14,由直线的点斜式方程可得切线方程为y -12=-14(x -2),即x +4y -4=0.方法技巧 求曲线在某点处的切线方程的步骤 求斜率―→求出曲线在点(x 0,f (x 0))处切线的斜率f ′(x 0)→用点斜式y -f (x 0)=f ′(x 0)(x -x 0)写出切线方程变形式―→将点斜式变为一般式跟踪探究 2.曲线y =x 2+1在点P (2,5)处的切线与y 轴交点的纵坐标是________. 解析:k =limΔx →0 (2+Δx )2+1-22-1Δx=limΔx →0(Δx +4)=4, ∴曲线在P 处的切线方程为y -5=4(x -2), 即y =4x -3, 令x =0得y =-3,∴切线与y 轴交点的纵坐标是-3. 答案:-33.若曲线y =x 3+3ax 在某点处的切线方程为y =3x +1,求a 的值. 解析:∵y =x 3+3ax .∴y ′=limΔx →0 (x +Δx )3+3a (x +Δx )-x 3-3ax Δx=limΔx →0 3x 2Δx +3x (Δx )2+(Δx )3+3aΔx Δx=limΔx →0[3x 2+3x Δx +(Δx )2+3a ]=3x 2+3a . 设曲线与直线相切的切点为P (x 0,y 0),结合已知条件,得⎩⎪⎨⎪⎧3x 20+3a =3,x 30+3ax 0=y 0=3x 0+1,解得⎩⎨⎧a =1-322,x 0=-342,∴a =1-322. 探究三 求曲线过某点的切线[例3] 已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. [解析] y ′=limΔx →0ΔyΔx=limΔx →0 [2(x +Δx )2-7]-(2x 2-7)Δx =limΔx →0 (4x +2Δx )=4x . 由于点P (3,9)不在曲线上.设所求切线的切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求的切线方程为y -y 0=4x 0(x -x 0), 将P (3,9)及y 0=2x 20-7代入上式,得9-(2x 20-7)=4x 0(3-x 0). 解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0. 方法技巧 求曲线y =f (x )过点P (x 0,y 0)的切线方程的步骤(1)设切点为A (x A ,f (x A )),求切线的斜率k =f ′(x A ),写出切线方程.(2)把P (x 0,y 0)的坐标代入切线方程,建立关于x A 的方程,解得x A 的值,进而求出切线方程.跟踪探究 4.求过点A (2,0)且与曲线y =1x相切的直线方程.解析:易知点(2,0)不在曲线上,故设切点为P (x 0,y 0),由 y ′|x =x 0=lim Δx →0 1x 0+Δx -1x 0Δx =-1x 20, 得所求直线方程为y -y 0=-1x 20(x -x 0).由点(2,0)在直线上,得x 20y 0=2-x 0,再由P (x 0,y 0)在曲线上,得x 0y 0=1,联立可解得x 0=1,y 0=1,所求直线方程为x +y -2=0.授课提示:对应学生用书第55页[课后小结](1)导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =limΔx →0f (x 0+Δx )-f (x 0)Δx=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度.(2)“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值.(3)利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.[素养培优]切线问题中忽视切点的位置致误求过曲线f (x )=x 3-2x 上的点(1,-1)的切线方程.易错分析 求过一点P 的曲线的切线方程,该点P 不一定是切点,易把P 点当作切点求解致误.考查数学抽象及逻辑推理的数学素养.自我纠正 设P (x 0,y 0)为切点, f ′(x 0)=limΔx →0 f (x 0+Δx )-f (x 0)Δx=limΔx →0 (x 0+Δx )3-2(x 0+Δx )-x 30+2x 0Δx=3x 20-2,所以切线方程为y -y 0=(3x 20-2)(x -x 0),即y -(x 30-2x 0)=(3x 20-2)(x -x 0).又知切线过点(1,-1),所以-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12.故所求切线方程为y -(1-2)=(3-2)(x -1), 或y -⎝⎛⎭⎫-18+1=⎝⎛⎭⎫34-2⎝⎛⎭⎫x +12, 即x -y -2=0或5x +4y -1=0.。
高中数学 第三章3.1.3 导数的几何意义学案 新人教A版选修1-1

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题3.1.3 导数的几何意义学习目标:1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念、会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点)[自主预习·探新知]1.导数的几何意义(1)切线的定义设点P(x0,f(x0)),P n(x n,f(x n))是曲线y=f(x)上不同的点,当点P n(x n,f(x n))(n=1,2,3,4…)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为过点P的切线,且PT的斜率k=limΔx→0f x n-f x0x n-x0=f′(x0).(2)导数的几何意义函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率,在点P处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示] 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念从求函数f(x)在x=x0处导数的过程看到,当x=x0时,f′(x0)是一个确定的数;当x 变化时,f′(x)是x的一个函数,称为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f x+Δx-f xΔx.[基础自测]1.思考辨析(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线.( )(4)函数f(x)在点x0处的导数f′(x0)与导函数f′(x)之间是有区别的.( )[答案] (1)× (2)× (3)× (4)√2.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直D .与x 轴斜交B [由f ′(x 0)=0知,曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0,所以切线与x 轴平行或重合.]3.如图315所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( )【导学号:97792127】图315A .12B .1C .2D .0C [由题意知f ′(5)=-1,f (5)=-5+8=3,则f (5)+f ′(5)=2.][合 作 探 究·攻 重 难](1)y =-x 在点⎝ ⎛⎭⎪⎫2,-2处的切线方程是( ) A .y =x -2 B .y =x -12C .y =4x -4D .y =4x -2(2)已知曲线y =x 3-x +2,则曲线过点P (1,2)的切线方程为__________. [思路探究] (1)先求y ′|x =12,即切线的斜率,然后写出切线方程.(2)设出切点坐标,求切线斜率,写出切线方程,利用点P (1,2)在切线上,求出切点坐标,从而求出切线方程.[解析] (1)先求y =-1x 在x =12处的导数:Δy =-112+Δx +112=4Δx1+2Δx.y ′|x =12=lim Δx →0Δy Δx =lim Δx →0 41+2Δx=4.所以切线方程是y +2=4⎝ ⎛⎭⎪⎫x -12,即y =4x -4. (2)设切点为(x 0,x 30-x 0+2),则得y ′|x =x 0 =lim Δx →0x 0+Δx3-x 0+Δx +2]-x 30-x 0+Δx=lim Δx →0((Δx )2+3x 0Δx +3x 20-1)=3x 20-1.所以切线方程为y -(x 30-x 0+2)=(3x 20-1)(x -x 0). 将点P (1,2)代入得:2-(x 30-x 0+2)=(3x 20-1)(1-x 0),即(x 0-1)2(2x 0+1)=0,所以x 0=1或x 0=-12,所以切点坐标为(1,2)或⎝ ⎛⎭⎪⎫-12,198,所以当切点为(1,2)时,切线方程为y -2=2(x -1),即2x -y =0,当切点为⎝⎛⎭⎪⎫-12,198时,切线方程为y -198=-14x +12, 即x +4y -9=0,所以切线方程为2x -y =0或x +4y -9=0. [答案] (1)C (2)2x -y =0或x +4y -9=02.求过点(x 1,y 1)的曲线y =f (x )的切线方程的步骤(1)设切点(x 0,y 0)(2)求f ′(x 0),写出切线方程y -y 0=f ′(x 0)(x (3)将点(x 1,y 1)代入切线方程,解出x 0,y 0及f (4)写出切线方程. 1.(1)曲线y =f (x )=2x在点(-2,-1)处的切线方程为__________.x +2y +4=0 [y ′=lim Δx →0fx +Δx -f xΔx =lim Δx →02x +Δx -2x Δx=lim Δx →0-2·Δxx x +Δx Δx =-2x 2,因此曲线f (x )在点(-2,-1)处的切线的斜率k =-2-2=-12.由点斜式可得切线方程为y +1=-12(x +2),即x +2y +4=0.](2)试求过点P (3,5)且与曲线y =x 2相切的直线方程.【导学号:97792128】[解] 设所求切线的切点为A (x 0,y 0). ∵点A 在曲线y =x 2上, ∴y 0=x 20,又∵A 是切点,y ′=lim Δx →0 Δy Δx =lim Δx →0 x +Δx 2-x2Δx =2x .∴过点A 的切线的斜率y ′|x =x 0=2x 0. ∵所求切线过P (3,5)和A (x 0,y 0)两点,∴其斜率为y 0-5x 0-3=x 20-5x 0-3.∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25). 当切点为(1,1)时,切线的斜率为k 1=2x 0=2; 当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即y =2x -1和y =10x -25.(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路探究] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0 f x +Δx -f x Δx =lim Δx →0 x +Δx 2-x 2Δx =lim Δx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0? [解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2∴ΔyΔx=4x 0+2Δx ∴y ′|x =x 0=lim Δx →0ΔyΔx =lim Δx →0(4x 0+2Δx )=4x 0. (1)∵抛物线的切线平行于直线4x -y -2=0, ∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1, 该点为(1,3).(2)∵抛物线的切线与直线x +8y -3=0垂直, ∴斜率为8,即f ′(x 0)=4x 0=8,得x 0=2, 该点为(2,9).1.函数值增加的越来越快,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且下凸,函数图象上每一点的切线的斜率越来越大.2.函数值增加的越来越慢,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且上凸,函数图象上每一点的切线的斜率越来越小.如图316,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB 在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的( )图316[思路探究] 根据面积S增加的快慢情况判断S=f(x)的图象形状.[解析]函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.故选D.[答案] D3.已知函数f(x)在区间[0,3]上的图象如图317所示,记k1=f′(1),k2=f′(2),k3=k AB,则k1,k2,k3之间的大小关系为__________.(请用“>”连接)图317k 1>k 3>k 2 [由导数的几何意义可得k 1>k 2,又k 3=f-f 2-1表示割线AB 的斜率,所以k 1>k 3>k 2.][当 堂 达 标·固 双 基]1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ) A .2B .4C .6+6Δx +2(Δx )2D .6D [∵y =2x 3,∴y ′=lim Δx →0ΔyΔx =lim Δx →0x +Δx 3-2x 3Δx=2 lim Δx →0Δx3+3x Δx2+3x 2ΔxΔx=2 lim Δx →0[(Δx )2+3x Δx +3x 2]=6x 2.∴y ′|x =1=6.∴点A (1,2)处切线的斜率为6.]3.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________. (3,30) [设点P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0Δx2+4x 0·Δx +4ΔxΔx=4x 0+4,令4x 0+4=16,得x 0=3,∴P (3,30).]4.曲线y =x 2-2x +2在点(2,2)处的切线方程为________.【导学号:97792129】2x -y -2=0 [Δy =(2+Δx )2-2(2+Δx )+2-(22-2×2+2)=2Δx +(Δx )2,∴ΔyΔx=2+Δx . ∴y ′|x =2=lim Δx →0(2+Δx )=2. ∴曲线在点(2,2)处的切线斜率为2. ∴切线方程为y -2=2(x -2), 即2x -y -2=0.]5.函数f (x )的图象如图318所示,试根据函数图象判断0,f ′(1),f ′(3),f-f 2的大小关系.图318[解] 设x =1,x =3时对应曲线上的点分别为A ,B ,点A 处的切线为AT ,点B 处的切线为BQ ,如图所示.则f-f 3-1=k AB ,f ′(3)=k BQ ,f ′(1)=k AT ,由图可知切线BQ 的倾斜角小于直线AB 的倾斜角,直线AB 的倾斜角小于切线AT 的倾斜角,即k BQ <k AB <k AT ,∴0<f ′(3)<f-f 2<f ′(1).。
高中数学 3.1.3导数的几何意义导学案 新人教A版选修1-1 (2)

湖南省邵阳市隆回县第二中学高中数学 3.1.3导数的几何意义导学案 新人教A 版选修1-1【学习目标】1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题。
【自主学习】1.如图课本77页 1.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?曲线在点P 处的切线概念如何定义?割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?切线PT 的斜率k 为多少?归纳导数的几何意义是什么?2.求曲线在某点处和过某点的切线方程的基本步骤是什么?3.什么是导函数?函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系是什么?【自主检测】1.求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程______________.2.求函数y =3x 2在点(1,3)处的导数______________.3.求函数y =3x 2在点(1,3)处的导函数______________.【典型例题】例(1)求曲线1y x x=+在点(1,2)P 的切线方程; (2)求抛物线2y x =过点5(,6)2P 的切线方程. (3)若曲线32y x x =-+上一点P 处的切线恰好平行于直线y=11x -1,求P 点坐标.【课堂检测】1.已知曲线31133y x =-和点A(1,0) , 求过A 点的曲线的切线方程( ) .10A x y --=或410x y --= .10B x y -+= 或410x y -+=.10C x y ++=或410x y -+= .10D x y +-=或410x y --=2.设函数()b f x ax x=-,曲线()y f x =在点(2(2))f ,处的切线方程为74120x y --=. (Ⅰ)求()f x 的解析式;(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.【总结提升】1.在定义了曲线在某一点处的切线的基础上给出函数在某一点处的导数的几何意义,即函数的图像在该点的切线的斜率;2.会求曲线在某点处的切线方程;3.注意区分曲线“在”与 “过”某点处的切线方程.。
高中数学选修1-1教案-3.1.3 导数的几何意义(5)-人教A版

《导数的几何意义》教学设计【教材分析】本节课选自高中数学人教A版选修1-1第三章《导数及其应用》中的3.1.3《导数的几何意义》第一课时。
导数是微积分的核心概念之一,它为研究函数提供了有效的方法。
教材从形的角度即割线入手,用形象直观的“逼近”方法,通过观察发现、思考归纳的方式定义了切线,获得导数的几何意义。
通过本节的学习,可以帮助学生进一步理解导数的定义,渗透数形结合、以直代曲的思想方法,体会导数是研究函数的单调性、函数值变化快慢等性质的有效工具。
【教学目标】知识与技能:了解平均变化率与割线之间、瞬时变化率与切线之间的关系,通过函数的图象理解并掌握导数的几何意义。
利用导数的几何意义会求曲线上某点处的切线方程。
过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。
情感态度与价值观:通过分组讨论、合作探究、各组积分制等多种教学形式,培养学生的合作意识及竞争意识,提高学生的积极性。
体会类比、数形结合、以直代曲、从特殊到一般的思想方法。
【教学重点与难点】教学重点:导数的几何意义及利用导数的几何意义会求曲线上某点处的切线方程。
教学难点:发现、理解导数的几何意义,进一步理解导数的概念,渗透以直代曲的思想方法。
【指导思想】树立以学生发展为本的思想。
通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,为学生提供自主探索和动手操作的机会,鼓励他们创新思考,亲身参与知识的形成过程,从而解决问题。
【教学方法】本节课以一个物体做直线运动为主线,对具体的由浅入深的问题进行分析引导,依据建构主义教学原理,从数的角度即平均变化率与瞬时变化率的关系和形的角度即割线与切线的关系,用形象直观的“逼近”方法,通过类比、从特殊到一般,逐步渗透从有限到无限,量变到质变,把新的知识化归到学生原有的认知结构中去。
【学法指导】在本节课中,学生对具体的问题进行逐步解决,经过探索、观察几何画板的动态演示、对比分析、自己发现结论的学习方法,以培养学生逻辑思维能力、自学能力、动手实践能力和探索精神,并渗透了辩证唯物主义认识论和方法论的教育。
2020高中数学 第三章3.1.3 导数的几何意义学案 新人教A版选修1-1

3.1.3 导数的几何意义学习目标:1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念、会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点)[自主预习·探新知]1.导数的几何意义(1)切线的定义设点P(x0,f(x0)),P n(x n,f(x n))是曲线y=f(x)上不同的点,当点P n(x n,f(x n))(n=1,2,3,4…)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为过点P的切线,且PT的斜率k=limΔx→0f x n-f x0x n-x0=f′(x0).(2)导数的几何意义函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率,在点P 处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示] 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念从求函数f(x)在x=x0处导数的过程看到,当x=x0时,f′(x0)是一个确定的数;当x 变化时,f′(x)是x的一个函数,称为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f x+Δx-f xΔx.[基础自测]1.思考辨析(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线.( )(4)函数f(x)在点x0处的导数f′(x0)与导函数f′(x)之间是有区别的.( )[答案](1)×(2)×(3)×(4)√2.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交B[由f′(x0)=0知,曲线y=f(x)在点(x0,f(x0))处的切线斜率为0,所以切线与x轴平行或重合.] 3.如图315所示,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=( )【导学号:97792127】图315A.12B .1C.2 D.0C[由题意知f′(5)=-1,f(5)=-5+8=3,则f(5)+f′(5)=2.][合作探究·攻重难]求曲线的切线方程(1)y=-1x在点⎝⎛⎭⎪⎫12,-2处的切线方程是( )A.y=x-2 B.y=x-12C.y=4x-4 D.y=4x-2(2)已知曲线y=x3-x+2,则曲线过点P(1,2)的切线方程为__________.[思路探究] (1)先求y′|x=12,即切线的斜率,然后写出切线方程.(2)设出切点坐标,求切线斜率,写出切线方程,利用点P(1,2)在切线上,求出切点坐标,从而求出切线方程.[解析](1)先求y=-1x在x=12处的导数:Δy=-112+Δx+112=4Δx1+2Δx.y′|x=12=limΔx→0ΔyΔx=limΔx→041+2Δx=4.所以切线方程是y+2=4⎝⎛⎭⎪⎫x-12,即y=4x-4.(2)设切点为(x0,x30-x0+2),则得y′|x=x0=limΔx→0[x0+Δx3-x0+Δx+2]-x30-x0+2Δx=limΔx→0((Δx)2+3x0Δx+3x20-1)=3x20-1.所以切线方程为y-(x30-x0+2)=(3x20-1)(x-x0).将点P(1,2)代入得:2-(x30-x0+2)=(3x20-1)(1-x0),即(x0-1)2(2x0+1)=0,所以x0=1或x0=-12,所以切点坐标为(1,2)或⎝⎛⎭⎪⎫-12,198,所以当切点为(1,2)时,切线方程为y-2=2(x-1),即2x-y=0,当切点为⎝⎛⎭⎪⎫-12,198时,切线方程为y-198=-14x+12,即x+4y-9=0,所以切线方程为2x-y=0或x+4y-9=0.[答案](1)C (2)2x-y=0或x+4y-9=0[规律方法] 1.求曲线在某点处的切线方程的步骤2.求过点(x1,y1)的曲线y=f(x)的切线方程的步骤(1)设切点(x0,y0)(2)求f′(x0),写出切线方程y-y0=f′(x0)(x-x0)(3)将点(x1,y1)代入切线方程,解出x0,y0及f′(x0)(4)写出切线方程.[跟踪训练]1.(1)曲线y=f(x)=2x在点(-2,-1)处的切线方程为__________.x+2y+4=0[y′=limΔx→0f x+Δx-f xΔx=limΔx→02x+Δx-2xΔx=limΔx→0-2·Δxx x+ΔxΔx=-2x2,因此曲线f(x)在点(-2,-1)处的切线的斜率k=-2-22=-12.由点斜式可得切线方程为y+1=-12(x+2),即x+2y+4=0.](2)试求过点P(3,5)且与曲线y=x2相切的直线方程.【导学号:97792128】[解] 设所求切线的切点为A(x0,y0).∵点A在曲线y=x2上,∴y0=x20,又∵A是切点,y′=limΔx→0ΔyΔx=limΔx→0x+Δx2-x2Δx=2x.∴过点A 的切线的斜率y ′|x =x 0=2x 0. ∵所求切线过P (3,5)和A (x 0,y 0)两点,∴其斜率为y 0-5x 0-3=x 20-5x 0-3.∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25). 当切点为(1,1)时,切线的斜率为k 1=2x 0=2; 当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即y =2x -1和y =10x -25.求切点坐标在曲线y =x 2上求一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路探究] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0 f x +Δx -f x Δx =lim Δx →0 x +Δx 2-x 2Δx =lim Δx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.[规律方法] 解答此类题目时,所给直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0?[解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2∴ΔyΔx=4x 0+2Δx ∴y ′|x =x 0=lim Δx →0 ΔyΔx =lim Δx →0(4x 0+2Δx )=4x 0.(1)∵抛物线的切线平行于直线4x -y -2=0, ∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1, 该点为(1,3).(2)∵抛物线的切线与直线x +8y -3=0垂直, ∴斜率为8,即f ′(x 0)=4x 0=8,得x 0=2, 该点为(2,9).导数几何意义的应用[1.函数值增加的越来越快,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的? 提示:图象上升且下凸,函数图象上每一点的切线的斜率越来越大.2.函数值增加的越来越慢,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的? 提示:图象上升且上凸,函数图象上每一点的切线的斜率越来越小.如图316,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )图316[思路探究] 根据面积S 增加的快慢情况判断S =f (x )的图象形状. [解析] 函数的定义域为(0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 越来越大,即斜率f ′(x )在[0,2]内越来越大,因此,函数S =f (x )的图象是上升的,且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 越来越小,即斜率f ′(x )在(2,3)内越来越小,因此,函数S =f (x )的图象是上升的,且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.故选D.[答案] D[规律方法] 函数在每一点处的切线斜率的变化情况反映函数在相应点处的变化情况,由切线的倾斜程度,可以判断出函数升降的快慢.因此,研究复杂的函数问题,可以考虑通过研究其切线来了解函数的性质.[跟踪训练]3.已知函数f (x )在区间[0,3]上的图象如图317所示,记k 1=f ′(1),k 2=f ′(2),k 3=k AB ,则k 1,k 2,k 3之间的大小关系为__________.(请用“>”连接)图317k 1>k 3>k 2 [由导数的几何意义可得k 1>k 2,又k 3=f 2-f 12-1表示割线AB 的斜率,所以k 1>k 3>k 2.][当 堂 达 标·固 双 基]1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ) A .2B .4C .6+6Δx +2(Δx )2D .6D [∵y =2x 3,∴y ′=lim Δx →0 Δy Δx =lim Δx →0 2x +Δx 3-2x3Δx=2 lim Δx →0Δx3+3x Δx 2+3x 2ΔxΔx=2 lim Δx →0[(Δx )2+3x Δx +3x 2]=6x 2.∴y ′|x =1=6.∴点A (1,2)处切线的斜率为6.]3.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________. (3,30) [设点P (x 0,2x 20+4x 0), 则f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →02Δx 2+4x 0·Δx +4ΔxΔx=4x 0+4,令4x 0+4=16,得x 0=3,∴P (3,30).]4.曲线y =x 2-2x +2在点(2,2)处的切线方程为________.【导学号:97792129】2x -y -2=0 [Δy =(2+Δx )2-2(2+Δx )+2-(22-2×2+2)=2Δx +(Δx )2, ∴ΔyΔx=2+Δx . ∴y ′|x =2=lim Δx →0(2+Δx )=2. ∴曲线在点(2,2)处的切线斜率为2. ∴切线方程为y -2=2(x -2), 即2x -y -2=0.]5.函数f (x )的图象如图318所示,试根据函数图象判断0,f ′(1),f ′(3),f 3-f 12的大小关系.图318[解] 设x =1,x =3时对应曲线上的点分别为A ,B ,点A 处的切线为AT ,点B 处的切线为BQ ,如图所示.则f 3-f 13-1=k AB ,f ′(3)=k BQ ,f ′(1)=k AT ,由图可知切线BQ 的倾斜角小于直线AB 的倾斜角,直线AB 的倾斜角小于切线AT 的倾斜角,即k BQ <k AB <k AT ,∴0<f ′(3)<f 3-f 12<f ′(1).。
2019-2020学年高中数学 3.1.3导数的几何意义教案 新人教版选修1-1.doc

2019-2020学年高中数学 3.1.3导数的几何意义教案新人教版选修1-1
【学情分析】:
上一节课已经学习了导数定义,以及运用导数的定义来求导数。
【教学目标】:
1.了解曲线的切线的概念
2.掌握用割线的极限位置上的直线来定义切线的方法.
3.并会求一曲线在具体一点处的切线的斜率与切线方程
【教学重点】:
理解曲线在一点处的切线的定义,以及曲线在一点处的切线的斜率的定义.光滑曲线的切线斜率是了解导数概念的实际背景.导数的几何意义及“数形结合,以直代曲”的思想方法.
【教学难点】:
发现、理解及应用导数的几何意义,会求一条具体的曲线在某一点处的切线斜率.
【教学过程设计】:
t0.2 0.4 0.6 0.8
药物浓度的
瞬时变化率
(说明:要求学生动脑(审题),动手(画切线),动口(说出如何估计切线斜率),进一步体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。
)
(以上几题可以让学生在课堂上完成)
6. 求下列曲线在指定点处的切线斜率.
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3 导数的几何意义(教师用书独具)●三维目标1.知识与技能理解导数的几何意义,初步体会“以直代曲”的辩证思想;掌握求曲线上一点出的切线的斜率的方法.2.过程与方法培养学生的观察、动手动脑、归纳总结的能力;培养学生合作学习、创新能力.3.情感、态度与价值观经过FLASH动画演示割线“逼近”成切线过程,让学生感受函数图象的切线“形成”过程,获得函数图象的切线的意义;增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.●重点、难点重点:导数的几何意义,求曲线上过一点处的切线方程.难点:“以直代曲”的数学思想方法;以及切线定义的理解——在每处“附近”变化率与瞬时变化率的近似关系的理解.(教师用书独具)●教学建议为了更好的完成本节课的教学目标,帮助学生理解本节课内容,突出重点,突破难点,宜设计了如下的教法和学法:(1)教学设计:探讨教学法,即教师通过问题→诱导→演示→讨论→探索结果→归纳总结.(2)学法设计:自主思考,参与探究、合作交流、形成共识.(3)教学手段:以“多媒体辅助教学手段”为辅,以“问题的探讨,学生发言、演板,老师黑板板书”为主.●教学流程创设问题情境,引出问题:导数是否有一定的几何意义呢?⇒引导学生结合切、割线知识,用“逼近”思想探究出导数的几何意义.⇒通过引导学生回答所提问题进一步理解导数的几何意义.⇒通过例1及其变式训练,使学生对导数的几何意义加深理解,为应用埋下伏笔.⇒通过例2及其变式训练,使学生掌握求曲线的切线方程的方法.⇒在深入理解导数几何意义的基础上完成例3及其变式训练,学会其几何意义的综合应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第49页)1.我们知道,导数f ′(x 0)表示函数f (x )在x 0处的瞬时变化率,反映了函数f (x )在x =x 0附近的变化情况,那么,导数f ′(x 0)是否有一定的几何意义呢?【提示】 f ′(x 0)有几何意义.割线PP n 的变化趋势是什么?【提示】 点P n 趋近于点P 时,割线PP n 趋近于过点P 的切线PT . 3.第2题图中割线PP n 的斜率k n =f x n -f x 0x n -x 0,当点P n 无限趋近于点P 时,此斜率与切线PT 的斜率有何大小关系?【提示】 k n 无限趋近于切线PT 的斜率.1.设点P (x 0,f (x 0)),P n (x n ,f (x n ))是曲线y =f (x )上不同的点,当点P n (x n ,f (x n ))(n 定位置的直线PT 称为过点P 的切线,且PT 的斜率k =li m x n →x 0f x n -f x 0x n -x 0=f ′(x 0).2.函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率,在点P 的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).000是一个确定的数;当x 变化时,f ′(x )是x 的一个函数,称为f (x )的导函数,即f ′(x )=y ′=lim Δx →0 f x +Δx -f xΔx.【问题导思】导函数f (x )与函数在x =x 0处的导数f ′(x 0)相同吗?它们有什么区别与联系? 【提示】 不相同.(1)两者的区别:由导数的定义知,f ′(x 0)是一个具体的值,f ′(x )是由于f (x )在某区间I 上每一点都存在导数而定义在I 上的一个新函数,所以两者的区别是:前者是数值,后者是函数.(2)两者的联系:在x=x0处的导数f′(x0)是导函数f′(x)在x=x0处的函数值,因此求函数在某一点处的导数.(对应学生用书第49页)b]上的图象可能是( )【思路探究】(1)导数的几何意义是什么?(2)y=f(x)的导函数在区间[a,b]上是增函数,说明y=f(x)图象的切线有什么特点?【自主解答】因为函数y=f(x)的导函数y=f′(x)在[a,b]上是增函数,由导数的几何意义可知,在区间[a,b]上各点处的切线斜率是逐渐增大的,只有A选项符合.【答案】 A1.f′(x0)即为过曲线y=f(x)上点P(x0,f(x0))切线的斜率.2.若曲线y=f(x)在(a,b)上任一点处的导数值都大于零,可以判断曲线y=f(x)在(a,b)上图象呈上升趋势,则函数y=f(x)在(a,b)上单调递增.而若y=f(x)在(a,b)上任一点处的导数都小于零,则函数y=f(x)的图象在(a,b)上呈下降趋势,y=f(x)在(a,b)单调递减.当函数y=f(x)在(a,b)上的导数值都等于零时,函数y=f(x)的图象应为垂直于y轴的直线的一部分.已知y=f(x)的图象如图3-1-1所示,则f′(x A)与f′(x B)的大小关系是( )图3-1-1A.f′(x A)>f′(x B)B.f′(x A)=f′(x B)C.f′(x A)<f′(x B)D.f′(x A)与f′(x B)大小不能确定【解析】由y=f(x)的图象可知,k A>k B,根据导数的几何意义有:f′(x A)>f′(x B).【答案】 A(2)求过点(-1,0)与曲线y=x2+x+1相切的直线方程.【思路探究】(1)所给点是切点吗?(2)若是切点,该如何求切线方程?若不是切点该怎么办?【自主解答】(1)y′=limΔx→0x+Δx2+x+Δx+-x2+x+Δx=2x+1,∵(1,3)在曲线上,∴切线斜率k=y′|x=1=2×1+1=3.∴所求切线方程为y-3=3(x-1),即3x-y=0.(2)y′=2x+1,∵点(-1,0)不在曲线上,设切点坐标为(x0,y0),则切线斜率为k=2x0+1=y0x0+1.∵y0=x20+x0+1,∴x0=0或x0=-2.当x0=0时,切线斜率k=1,过(-1,0)的切线方程为y-0=x+1,即x-y+1=0,当x0=-2时,切线斜率k=-3,过(-1,0)的切线方程为y-0=-3(x+1),即3x+y +3=0,故所求切线方程为x-y+1=0或3x+y+3=0.1.如果所给点P(x0,y0)就是切点,一般叙述为“在点P处的切线”,此时只要求函数f (x )在点x 0处的导数f ′(x 0),即得切线的斜率k =f ′(x 0),再根据点斜式得出切线方程.2.如果所给点P 不是切点,应先设出切点M (x 0,y 0),再求切线方程.要特别注意“过点P 的切线”这一叙述,点P 不一定是切点,也不一定在曲线上.求曲线y =1x 在点A (12,2)处的切线的斜率,并写出切线方程.【解】 ∵Δy =f (12+Δx )-f (12)=21+2Δx -2=-4Δx1+2Δx ,∴Δy Δx =-41+2Δx, ∴切线的斜率k =y ′|x =12=lim Δx →0 -41+2Δx =-4. ∴切线方程为y -2=-4(x -12),即4x +y -4=0.方程.【思路探究】 设切点Px 0,y 0→求导数y ′=f x →由k =4,求x 0→确定切点P x 0,y 0→求切线方程【自主解答】 设P 点坐标为(x 0,y 0), y ′=lim Δx →0 Δy Δx =lim Δx →0 x +Δx 2-x2Δx =lim Δx →0 2x ·Δx +Δx 2Δx=lim Δx →0 (2x +Δx )=2x . ∴y ′|x =x 0=2x 0,又由切线与直线4x -y +2=0平行, ∴2x 0=4,∴x 0=2,∵P (2,y 0)在抛物线y =x 2上,∴y 0=4, ∴点P 的坐标为(2,4),∴切线方程为y -4=4(x -2),即4x -y -4=0.1.导数的几何意义是曲线的切线的斜率,已知切点可以求斜率,反过来,已知斜率也可以求切点.2.导数几何意义的综合应用题的解题关键是对函数进行求导,注意灵活利用题目提供的诸如斜率的线性关系、斜率的最值、斜率的范围等关系求解相应问题.已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线方程; (2)(1)中的切线与曲线C 是否还有其他的公共点? 【解】 (1)将x =1代入曲线C 的方程,得y =1, ∴切点为P (1,1).∵y ′=lim Δx →0 Δy Δx =lim Δx →0 x +Δx 3-x3Δx =lim Δx →0 3x 2Δx +3x Δx 2+Δx3Δx=lim Δx →0[3x 2+3x Δx +(Δx )2]=3x 2, ∴y ′|x =1=3.∴过P 点的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8).说明切线与曲线C 的公共点除了切点外,还有另外的点(-2,-8).(对应学生用书第51页) 错把所给点当作切点致误已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 【错解】 f ′(3)=lim Δx →0 Δy Δx =lim Δx →0+Δx2-7]-2-Δx=lim Δx →0 (12+2Δx ) =12.故切线斜率为12.由直线的点斜式方程,得切线方程为y -9=12(x -3), 即12x -y -27=0.【错因分析】 点P 不是切点,故切线斜率不是在x =3处的导数.【防范措施】 求曲线的切线方程时,一定要判断所给点是否为切点,否则极易出错. 【正解】 f ′(x 0)=lim Δx →0 Δy Δx =limΔx →0x 0+Δx2-7]-x 20-Δx=lim Δx →0(4x 0+2Δx )=4x 0. 由于2×32-7=11≠9,故点P (3,9)不在曲线上. 设所求切线的切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求的切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2,或x 0=4.所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0,或16x -y -39=0.1.函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是f ′(x 0),相应地,切线的方程为y -f (x 0)=f ′(x 0)(x -x 0).2.导数f ′(x ),是针对某一区间内任意点x 而言的,函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在区间(a ,b )内就构成了一个新的函数,就是函数f (x )的导函数f ′(x ).(对应学生用书第51页)1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴斜交【答案】 B2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在【解析】 由x +2y -3=0知斜率k =-12,∴f ′(x 0)=-12<0.【答案】 B3.抛物线y =2x 2在点P (1,2)处的切线l 的斜率为____. 【解析】 k =f ′(1)=4 【答案】 44.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程为y =12x +2.求f (1)与f ′(1)的值.【解】 由题意f (1)=12×1+2=52.由导数的几何意义得f ′(1)=k =12.(对应学生用书第105页)一、选择题1.(2013·临沂高二检测)设函数f (x )满足lim Δx →0f-f -ΔxΔx=-1,则曲线y=f (x )在点(1,f (1))处的切线的斜率是( )A .2B .-1 C.12 D .-2【解析】 ∵lim Δx →0f-f -ΔxΔx=f ′(1)=k =-1,∴y =f (x )在点(1,f (1))处的切线的斜率是-1. 【答案】 B2.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +3=0 B .3x -y +5=0 C .2x +y +1=0D .x -y +1=0【解析】 ∵点(-1,0)不在抛物线y =x 2+x +1上,故点(-1,0)不是切点,但此点在切线上,应满足切线方程,经验证,只有D 符合.【答案】 D3.函数y =f (x )的导函数f ′(x )的图象如图3-1-2所示,则在y =f (x )的图象上A ,B 的对应点附近,有( )图3-1-2A .A 处下降,B 处上升 B .A 处上升,B 处下降C .A 处下降,B 处下降D .A 处上升,B 处上升【解析】 ∵所给图象的导函数的图象,且A 点处y <0,B 点处y >0,故原函数图象上A 处下降,B 处上升.【答案】 A4.(2013·鹤壁高二检测)如图3-1-3所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( )图3-1-3A.12B .1C .2【解析】 由图象知f (5)=-5+8=3. 由导数几何意义知f ′(5)=-1. ∴f (5)+f ′(5)=3-1=2. 【答案】 C5.(2013·黄冈高二检测)已知曲线y =4x在点P (1,4)处的切线与直线l 平行且距离为17,则直线l 的方程为( ) A .4x -y +9=0B .4x -y +9=0或4x -y +25=0C .4x +y +9=0或4x +y -25=0D .以上均不对【解析】 y ′=lim Δx →0 ΔyΔx=-4,∴k =-4,∴切线方程为y -4=-4(x -1),即4x +y -8=0,设l :4x +y +c =0,由题意17=|c +8|42+12,∴c =9或-25,应选C.【答案】 C 二、填空题6.已知y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________. 【解析】 由题意lim Δx →0a+Δx 2+b -a -bΔx=lim Δx →0 (a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2,∴ba=2.【答案】 27.(2013·杭州高二检测)曲线f (x )=3x +x 2在点(1,f (1))处的切线方程为__________. 【解析】 k =lim Δx →0 +Δx ++Δx 2-3-12Δx=5.∵f (1)=4.由点斜式得y -4=5(x -1),即y =5x -1. 【答案】 y =5x -18.y =f (x ),y =g (x ),y =α(x )的图象如图3-1-4所示:图3-1-4而下图是其对应导数的图象:则y =f (x )对应________;y =g (x )对应________;y =α(x )对应________. 【解析】 由导数的几何意义,y =f (x )上任一点处的切线斜率均小于零且保持不变,则y =f (x )对应B.y =g (x )上任一点处的切线斜率均小于零,且在起始部分斜率值趋近负无限,故y =g (x )对应C.y =α(x )图象上任一点处的切线斜率都大于零,且先小后大,故y =α(x )对应A.【答案】 B C A 三、解答题9.已知函数f (x )=x 2+2.(1)求f ′(x );(2)求f (x )在x =2处的导数. 【解】 (1)∵Δy =f (x +Δx )-f (x ) =(x +Δx )2+2-(x 2+2) =(Δx )2+2x ·Δx , ∴ΔyΔx=2x +Δx . ∴f ′(x )=lim Δx →0 ΔyΔx =2x . (2)f ′(2)=f ′(x )|x =2=2×2=4. 10.已知曲线y =13x 3上一点P (2,83),求:(1)点P 处的切线的斜率; (2)点P 处的切线方程. 【解】 (1)由y =13x 3,得y ′=lim Δx →0 ΔyΔx =lim Δx →0 13x +Δx 3-13x 3Δx =13lim Δx →0 3x 2Δx +3x Δx 2+Δx3Δx=13lim Δx →0[3x 2+3x Δx +(Δx )2] =x 2,y ′|x =2=22=4.所以点p 处的切线的斜率等于4.(2)在点p 处的切线方程为y -83=4(x -2),即12x -3y -16=0.11.已知f (x )=x 2,g (x )=x 3.(1)求f ′(x ),g ′(x ),并判断f ′(x )和g ′(x )的奇偶性;(2)若对于所有的实数x ,f ′(x )-2<ag ′(x )恒成立,试求实数a 的取值范围. 【解】 (1)由导数的定义知,f ′(x )=lim Δx →0 x +Δx 2-x 2Δx=2x ; g ′(x )=lim Δx →0 x +Δx 3-x 3Δx =lim Δx →0[3x 2+3x ·Δx +(Δx )2]=3x 2. f ′(x )和g ′(x )的定义域为R ,故定义域关于原点对称,∵f ′(-x )=-2x =-f ′(x ), ∴f ′(x )为奇函数.∵g ′(-x )=3(-x )2=3x 2=g ′(x ), ∴g ′(x )为偶函数.(2)由f ′(x )-2<ag ′(x ),得3ax 2-2x +2>0对任意实数x 恒成立, ①当a =0时,转化为-2x +2>0恒成立,即x <1,不合题意; ②当a ≠0时,由3ax 2-2x +2>0对所有实数x 都成立得,⎩⎪⎨⎪⎧a >0,Δ=-2-4×2×3a <0,解得a >16.综上,a 的取值范围是(16,+∞).(教师用书独具)在曲线y =x 2上过哪一点的切线, (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)与x 轴成135°的倾斜角.【解】 f ′(x )=lim Δx →0 f x +Δx -f x Δx =lim Δx →0 x +Δx 2-x 2Δx=2x ,设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以 2x 0=4,x 0=2,y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,所以2x 0·13=-1,得x 0=-32,y 0=94,即P (-32,94).(3)因为切线与x 轴成135°的倾斜角,所以其斜率为-1. 即2x 0=-1,得x 0=-12,y 0=14,即P (-12,14).直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切. (1)求a 的值; (2)求切点的坐标.【解】 设直线l 与曲线C 相切于P (x 0,y 0)点.f ′(x )=lim Δx →0f x +Δx -f xΔx=lim Δx →0x +Δx3-x +Δx 2+1-x 3-x 2+Δx=3x 2-2x .由题意知,k =1,即3x 20-2x 0=1,解得x 0=-13或x 0=1.于是切点的坐标为(-13,2327)或(1,1).当切点为(-13,2327)时,2327=-13+a ,a =3227.当切点为(1,1)时,1=1+a ,a =0(舍去). 所以a 的值为3227,切点坐标为(-13,2327).。