2017九年级上数学期中考试卷

合集下载

2017届九年级数学上学期期中联考试题

2017届九年级数学上学期期中联考试题

2017届九年级数学上学期期中联考试题考生注意:1.本次测试满分120分,考试时间100分钟.2.请用兰、黑塞钢笔或圆珠笔答题,答题前先将测试卷左侧密封线内的姓名、班级等内容填写清楚.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x 2-2x =0的根是( )A .x 1=x 2=0B .x 1=x 2=2C .x 1=0,x 2=2D .x 1=0,x 2=-22.某学校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩试试( )A .80分B .82分C .84分D .86分3.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB ,若AD =2BD ,则BF CF的值为( )A .1∶2B .1∶3C .1∶4D .2∶34.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则下列三角函数表示正确的是( )A .sin A =1312 B .cos A =1312C .tan A =125 D .tan B=5125.若22)1(-+=a x a y 是反比例函数,则a 的取值为( )A .1B .-1C .±1D .任意实数 6.某人一周内爬楼的层数统计如下表第3题图关于这组数据,下列说法错误的是( )A .中位数是22B .平均数是26C .众数是22D .极差是15 7.一元二次方程x 2-3x -2=0的两个根为x 1、x 2,则下列结论正确的是( )A .x 1=-1,x 2=2B .x 1=1,x 2=-2C .x 1+x 2=3D .x 1x 2=28.如图,以点O 为位似中心,将△ABC 缩小后得到△C B A ''',已知OB =3B O ',则△C B A '''与△ABC 的面积的比为( )A .1∶3B .1∶4C .1∶5D .1∶99.已知反比例函数y =xk的图像经过P (-1,2),则这个函数的图像位于( ) A .第二,三象限 B .第一,三象限 C .第三,四象限 D .第二,四象限10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升a 米处,在A 处观察B 地的俯角为40°则BC 两地之间的距离为( ) A .a sin40°米 B .a cos40°米 C .a tan40°米 D .︒40tan a米11.如图所示,31==AB AC AE AD ,则下列结论不成立的是( ) A .△ABE ∽△ACD B .△BOD ∽△COEC .OC =ODD .CD ∶BE =1∶312.如图,在平面直角坐标系中,点P (1,4)、Q (m ,n )在反比例函数y =xk(x >0)的图象上,第10题图40°A BCDOE 第11题图OABA 'C 'B '第8题图当m >1时,过点P 分别作x 轴、y 轴的垂线,垂足为A 、B ;过点Q 分别作x 轴、y 轴的垂线,垂足为C 、D ;QD 与PA 交于点E ,随着m 的增大,四边形ACQE 的面积( ) A .减小 B .增大C .先减小后增大D .先增大后减小二、填空题(本大题共8个小题,每小题3分,共24分.把答案写在题中横线上)13.若432c b a ==,则cb a 523+=__________. 14.若一元二次方程12--x x =0的两个根分别为1x ,2x ,则x 12+x 22= . 15.计算:sin 245°+2cos60°-tan45°+3tan30°= .16.若点P 1(1,-3),P 2(m ,3)在同一反比例函数的图像上,则m 的值为 . 17.如图,在△ABC 中,D 为AB 边上一点,且∠BCD =∠A ,BC =22,AB =3,则BD = 。

2017届九年级上期中考试数学试题含答案

2017届九年级上期中考试数学试题含答案

2016-2017学年第一学期期中试卷初三数学(时间:120分钟满分:130分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 81的平方根是()A .9B .C .D .2.下列一元二次方程中,两实数根的积为4的是()A .2x 2-5x +4=0B .3x 2-5x +4=0C .x 2+2x +4=0D .x 2-5x +4=0 3.若关于x 的方程022=+-n x x 无实数根,则一次函数n x n y --=)1(的图像不.经过() A .第一象限 B.第二象限 C.第三象限 D.第四象限4:则该日这6个时刻的PM2.5的众数和中位数分别是()A. 0.032, 0.0295B. 0.026,0.0295C. 0.026, 0.032D. 0.032, 0.0275.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是() A . S 1> S 2 B .S 1 = S 2 C .S 1<S 2 D .S 1、S 2的大小关系不确定6.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)7.据调查,2011年11月无锡市的房价均价为7530元/m 2,2013年同期将达到8120元/m 2,假设这两年无锡市房价的平均增长率为x ,根据题意,所列方程为()A .27530(1%)8120x -=B .27530(1%)8120x +=C.27530(1)8120x -=D .27530(1)8120x +=8.如图,四边形ABCD 中,AD ∥BC ,∠D=90°,以AB 为直径的⊙O 与CD 相切于E ,与BC 相交于F ,若AB=8,AD=2,则图中两阴影部分面积之和为( ) A . B .3C .D .9.如图,直线343+=x y 与x 轴、y 轴分别交于A 、B 两点,已知点C (0,-1)、D (0,k ),且0< k < 3,以点D 为圆心、DC 为半径作⊙D ,当⊙D 与直线AB 相切时,k 的值为( ) A .95 B .32 C .97 D .98 10.如图,在平面直角坐标系xOy 中,点(1,0)A ,(2,0)B ,正六边形ABCDEF 沿x 轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是().第5题图第6题图 第8题图A.C或E B.B或D C.A或E D.B或F二、填空题(本大题共8小题,每小题2分,共16分.)11.写出一个以2与-3为根的一元二次方程________________________.12. 若方程()22570m x x++-=是关于x的一元二次方程,则m的取值范围是.13.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.14.将一个底面半径为5cm,母线长为12cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为.16. 如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.17.已知正方形ABCD边长是2,点P从点D出发沿DB向点B运动,至点B停止运动,连结AP,过点B作BH⊥AP于点H,在点P运动过程中,点H所走过的路径长是.18.如图,Rt△AOB中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数y=1x(x>0)的图象上运动,那么点B在函数(填函数解析式并写出自变量取值范围)的图象上运动.三、解答题(本大题共10小题,共84分.解答时应写出文字说明、证明过程或演算步骤)19.(本题8分,每小题4分) 计算或化简:(1)()023200921)1(---+-(2)22121x xxx x x--⎛⎫÷-⎪+⎝⎭20.(本题8分,每小题4分)解方程:(1) 5x(x-3)=2(3-x).(2)0242=-+xx;21.(本题6分)在正方形方格纸中,我们把顶点都在“格点”上的三角第9题图第15题图第16题图第17题图第18题图形称为“格点三角形”,如图,△ABC 是一个格点三角形.(1)请你在所给的方格纸中,以O 为位似中心,将△ABC 放大为原来的2倍,得到一个△A 1B 1C 1. (2)若每一个方格的面积为1, 则△A 1B 1C 1的面积为_____.22.(本题7分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分) (1)两个班的平均得分分别是多少?(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.23.(本题7分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点, AD 交BC 于E 点,2AE =,4ED =. (1)求证:△ABE ∽△ADB ; (2)求BE 长;24.(本题8分)如图,△ABC 中,AB=AC ,F 为BC 的中点,D 为CA 延长线上一点,∠DFE=∠B .(1)求证:△CDF ∽△BFE ;(2)若EF ∥CD ,求证:2CF 2=AC•CD .25.(本题8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2? (2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?26.(本题10分)如图,已知AB 为⊙O 的直径,点E 是OA 上任意一点,过E 作弦CD ⊥AB ,点F 是⊙O 上一点,连接AF 交CE 于H ,连接AC 、CF 、BD 、OD .(1)求证:△ACH ∽△AFC ;(2)猜想:AH•AF 与AE•AB 的数量关系,并说明你的猜想; (3)当AE=______AB 时,S △AEC :S △BOD =1:4.27.(本题10分)如图,在平面直角坐标系中,O 为坐标原点,⊙C 的圆心坐第24题图第26题图第25题图第23题图标为(-2,-2),半径为2.函数y =-x +2图象与x 轴交于点A ,与y 轴交于点B ,点P 为线段AB 上一动点(包括端点).(1)连接CO ,求证:CO ⊥AB ;(2)当直线PO 与⊙C 相切时,求∠POA 的度数; (3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的 函数关系,并写出t 的取值范围;(4)请在(3)的条件下,直接..写出点M 运动路径的长度.28.(本题12分)如图,在平面直角坐标系中,等腰直角△ABC 的直角顶点C 为(﹣4,0),腰长为2,将三角形绕着顶点C 旋转.(点A 在x 轴的上方)分别过点A 、点B 向x 轴作垂线,垂足分别为O 1,O 2.(1)如图①和图②证明在点B 不在坐标轴上的情况下,△ACO 1与△BCO 2全等吗?选择其中一幅图说明你的理由;(2)如图③所示,点B 运动到x 轴上时,点O 1与C 重合,以C 为圆心CA 为半径作圆,得到如图所示的⊙C ,在⊙C 上有一个动点P (点P 不在x 轴上),过点P 作⊙C 的切线与y 轴的交点为点Q ,直线BP 交y 轴于点M .①如图,当点Q 在y 轴的正半轴时,写出线段PQ 与线段QM 之间的数量关系,并说明理由;②随着点P 的运动(点P 在坐标轴上除外)①中的两条线段之间的关系变吗?若变说明理由,若不变,则它们有最小值吗?最小值为多少?第28题图第27题图初三数学期中试卷参考答案2016.11(时间:120分钟满分:130分)一、选择题(每题3分,共30分)BDBAA CDACD二、填空题(每空2分,共16分)11.答案不唯一;12.m-2___;13.2__;14.___150゜;15.__25゜;16.__50_;17._π__;18.___(x>0).三、解答题19.(1)(2)20.(1)x1=3,x2=-0.4(2)x1=-2+,x2=2-21.(1)图略(2)___16________.22.解:(1)一班的平均得分:(95+85+90)÷3=90,二班的平均得分:(90+95+85)÷3=90,(2)一班的加权平均成绩:85×25%+90×35%+95×40%=90.75,二班的加权平均成绩:95×25%+85×35%+90×40%=89.5,所以一班的卫生成绩高.23.(1)略(2)BE=424.(1)证明:∵∠DFB=∠DFE+∠EFB=∠C+∠FDC,∴∠EFB=∠FDC,∵AB=AC,∴∠C=∠B,∴△CDF∽△BFE;(2)解:∵EF∥CD,∴∠EFD=∠FDC,∵∠B=∠C,∠DEG=∠B,∴∠FDC=∠C=∠B,∴△CDF∽△BCA,∴,∵BC=2CF,DF=CF,∴,∴2CF2=AC•CD.25.(本题8分).(1)解:(1)设该项绿化工程原计划每天完成x米2,根据题意﹣=4解得:x=2000经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合题意,舍去). 答:人行道的宽为2米. 26.(1)∵直径AB ⊥CD ,∴∴∠F=∠ACH ,又∠CAH=∠FAC,∴△ACH ∽△AFC (2)AH ·AF=AE ·AB ,连接FB ,∵AB 是直径,∴∠AFB=∠AEH=90°,又∠EAH=∠FAB , ∴Rt △AEH ∽Rt △AFB ,∴AH ·AF=AE ·AB ;(3)27.解:(1)延长CO 交AB 于D ,过点C 作CG⊥x轴于点G .∵易得A(2,0),B(0,2),∴AO =BO =2.又∵∠AOB =90°, ∴∠DAO =45°.∵C(-2,-2),∴∠COG =45°,∠AOD =45°,∴∠ODA =90°. ∴OD ⊥AB ,即CO ⊥AB .(2)当直线PO 与⊙C 相切时,设切点为K ,连接CK ,则CK ⊥OK .由点C 的坐标为(-2,-2),易得CO =∴∠POD =30°,又∠AOD =45°, ∴∠POA=75°,同理可求得∠POA 的另一个值为15°. (3)∵M 为EF 的中点,∴CM ⊥EF ,又∵∠COM =∠POD ,CO ⊥AB ,∴△COM ∽△POD ,所以CO MOPO DO =,即MO ·PO =CO ·DO .∵PO =t ,MO =s ,CO = DO st =4.但PO 过圆心C 时,MO =CO =PO =DO即MO ·PO =4,也满足st =4.∴s =4t t(4)28.解:(1)△ACO1与△BCO2全等如图①,∵∠ACB=90°,∴∠ACO1+∠BCO2=90°,∵AO1⊥OC,BO2⊥OC,∴∠AO1C=∠BO2C=90°,∴∠BCO2+∠CBO2=90°,∴∠ACO1=∠CBO2,在△ACO1和△CBO2中,,∴△ACO1≌△CBO2,如图2,同①的方法可证;(2)①∵PQ是⊙C的切线,∴∠QPC=90°,∴∠QPM+∠CPB=90°,∵CP=CB,∴∠CPB=∠CBP,∴∠QPM+∠CBP=90°,∵∠CBP=∠OBM,∴∠QPM+∠OBM=90°,∵∠OBM+∠OMB=90°,∴∠QPM=∠OMB,∴QP=QM,②不变,理由:同(1)连接CQ,在Rt△CPQ中,PQ2=CQ2﹣CP2,∵CP是⊙C的半径,∴CP为定值是2,∴CQ最小时,PQ最小,∵点Q在y轴上,点C在x轴,∴点Q在点O处时,CQ最小,最小值为CO=4,=2,∴PQ最小=第28题图。

2017九年级数学上期中试卷(附答案和解释)

2017九年级数学上期中试卷(附答案和解释)

2017九年级数学上期中试卷(附答案和解释)2016-2017学年陕西省西安XX学校九年级(上)期中数学试卷一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等.对角线互相平分D.对角线互相垂直2.如图,在菱形ABD中,A=8,BD=6,则△ABD的周长等于()A.18B.16.1D.143.如图,是矩形ABD对角线A的中点,是AD的中点,若B=8,B=,则的长为()A.1B.2.3D.44.如图,正方形ABD的边长为4,则图中阴影部分的面积为()A.62B.82.162D.不能确定.下列条之一能使菱形ABD是正方形的为()①A⊥BD ②∠BAD=90°③AB=B ④A=BD.A.①③B.②③.②④D.①②③6.若关于x的一元二次方程(﹣1)x2+4x+1=0有两个不相等的实数根,则的取值范围是()A.<B.<,且≠1.≤,且≠1D.>7.若关于x的方程x2+(+1)x+ =0的一个实数根的倒数恰是它本身,则的值是()A.﹣B..﹣或D.18.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于的概率是()A.B..D.9.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B..D.10.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7.(x+2)2=13D.(x+2)2=19二.填空题11.在一个不透明的口袋中,装有A,B,,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+x+2=0的一个解,则的值为.13.如图:在矩形ABD中,对角线A,BD交于点,已知∠AB=60°,A=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABD的外侧,作等边△ADE,则∠BED的度数是.1.矩形的两条邻边长分别是6和8,则顺次连接各边中点所得的四边形的面积是.三、解答题16.解方程:(1)x2﹣1=2(x+1)(2)2x2﹣4x﹣=0.17.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点的纵坐标.(1)写出点坐标的所有可能的结果;(2)求点的横坐标与纵坐标之和是偶数的概率.18.已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.19.如图,在菱形ABD中,A,BD相交于点,E为AB的中点,DE ⊥AB.(1)求∠AB的度数;(2)如果,求DE的长.20.已知:如图,在&#9649;ABD中,点E是B的中点,连接AE并延长交D的延长线于点F,连接BF.(1)求证:△ABE≌△FE;(2)若AF=AD,求证:四边形ABF是矩形.2016-2017学年陕西省西安XX学校九年级(上)期中数学试卷参考答案与试题解析一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等.对角线互相平分D.对角线互相垂直【考点】菱形的性质;平行四边形的性质.【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.如图,在菱形ABD中,A=8,BD=6,则△ABD的周长等于()A.18B.16.1D.14【考点】菱形的性质;勾股定理.【分析】根据菱形对角线互相垂直平分的性质,可以求得B=D,A=,在Rt△AD中,根据勾股定理可以求得AB的长,进而△ABD的周长.【解答】解:菱形对角线互相垂直平分,∴B=D=3,A==4,∴AB=,∴△ABD的周长等于++6=16,故选B.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.3.如图,是矩形ABD对角线A的中点,是AD的中点,若B=8,B=,则的长为()A.1B.2.3D.4【考点】矩形的性质.【分析】首先由是矩形ABD对角线A的中点,可求得A的长,然后由勾股定理求得AB的长,即D的长,又由是AD的中点,可得是△AD 的中位线,继而求得答案.【解答】解:∵是矩形ABD对角线A的中点,B=,∴A=2B=10,∴D=AB= = =6,∵是AD的中点,∴= D=3.故选.【点评】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质.注意利用直角三角形斜边上的中线等于斜边的一半,求得A的长是关键.4.如图,正方形ABD的边长为4,则图中阴影部分的面积为()A.62B.82.162D.不能确定【考点】正方形的性质.【分析】根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.【解答】解:S阴影= ×4×4=82.故选B.【点评】本题考查了正方形的性质以及轴对称的性质.注意利用轴对称的性质,将阴影面积转化为三角形面积求解是解题的关键..下列条之一能使菱形ABD是正方形的为()①A⊥BD ②∠BAD=90°③AB=B ④A=BD.A.①③B.②③.②④D.①②③【考点】正方形的判定.【分析】直接利用正方形的判定方法,有一个角是90°的菱形是正方形,以及利用对角线相等的菱形是正方形进而得出即可.【解答】解:∵四边形ABD是菱形,∴当∠BAD=90°时,菱形ABD是正方形,故②正确;∵四边形ABD是菱形,∴当A=BD时,菱形ABD是正方形,故④正确;故选:.【点评】此题主要考查了正方形的判定,正确掌握正方形的判定方法是解题关键.6.若关于x的一元二次方程(﹣1)x2+4x+1=0有两个不相等的实数根,则的取值范围是()A.<B.<,且≠1.≤,且≠1D.>【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:<且≠1.故选B.【点评】本题考查了根的判别式以及一元二次方程的定义,解题的关键是得出关于的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合一元二次方程的定义以及根的判别式得出不等式组是关键.7.若关于x的方程x2+(+1)x+ =0的一个实数根的倒数恰是它本身,则的值是()A.﹣B..﹣或D.1【考点】一元二次方程的解.【分析】由根与系数的关系可得:x1+x2=﹣(+1),x1&#8226;x2= ,又知一个实数根的倒数恰是它本身,则该实根为1或﹣1,然后把±1分别代入两根之和的形式中就可以求出的值.【解答】解:由根与系数的关系可得:x1+x2=﹣(+1),x1&#8226;x2= ,又知一个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(+1),而x2= ,解得=﹣;若是﹣1时,则= .故选:.【点评】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系.解此类题目要会把代数式变形为两根之积或两根之和的形式,代入数值计算即可.8.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于的概率是()A.B..D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和等于的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于的有4种情况,∴两次摸出的小球的标号之和等于的概率是:.故选.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.9.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B..D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图得出所有等可能的情况数,找出落地后出现两个正面一个反面朝上的情况数,即可求出所求的概率.【解答】解:画树状图得:所有等可能的情况有8种,其中两个正面一个反面的情况有3种,则P= .故选B.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7.(x+2)2=13D.(x+2)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.二.填空题11.在一个不透明的口袋中,装有A,B,,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)= =故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事有n种可能,而且这些事的可能性相同,其中事A出现种结果,那么事A的概率P(A)= .12.方程2x﹣4=0的解也是关于x的方程x2+x+2=0的一个解,则的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+x+2=0,求出的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+x+2=0得:4+2+2=0,解得:=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+x+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABD中,对角线A,BD交于点,已知∠AB=60°,A=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出D=AB,B=D= BD,A== A=8,BD=A,推出B=D=A==8,得出△AB是等边三角形,推出AB=A=8=D.【解答】解:∵A=16,四边形ABD是矩形,∴D=AB,B=D= BD,A== A=8,BD=A,∴B=D=A==8,∵∠AB=60°,∴△AB是等边三角形,∴AB=A=8,∴D=8,即图中长度为8的线段有A、、B、D、AB、D共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABD的外侧,作等边△ADE,则∠BED的度数是4°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=10°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=1°,∠BED=∠DAE﹣∠AEB=60°﹣1°=4°,故答案为:4°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.1.矩形的两条邻边长分别是6和8,则顺次连接各边中点所得的四边形的面积是242.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、A、BD,设AB=6,AD=8,∵四边形ABD是矩形,E、F、G、H分别是四边的中点,∴HF=6,EG=8,A=BD,EH=FG= BD,EF=HG= A,∴四边形EFGH是菱形,∴S菱形EFGH= ×FH×EG= ×6×8=242.故答案为242.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题16.解方程:(1)x2﹣1=2(x+1)(2)2x2﹣4x﹣=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)移项后分解因式得出(x+1)(x﹣1﹣2)=0,再解两个一元一次方程即可;(2)用一元二次方程的求根公式x= 可求出方程的两根.【解答】解:(1)∵x2﹣1=2(x+1),∴(x+1)(x﹣1)﹣2(x+1)=0,∴(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(2)∵2x2﹣4x﹣=0,∴a=2,b=﹣4,=﹣,∴b2﹣4a=16+40=6,∴x= = ,∴x1=1+ ,x2=1﹣.【点评】本题主要考查了解一元二次方程的知识,根据方程的特点选择合适的方法解一元二次方程是解决此类问题的关键.一般解一元二次方程的方法有直接开平方法、因式分解法、公式法、配方法.17.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点的纵坐标.(1)写出点坐标的所有可能的结果;(2)求点的横坐标与纵坐标之和是偶数的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)列表得出所有等可能的情况结果即可;(2)列表得出点的横坐标与纵坐标之和是偶数的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1 2 31(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)则点坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)求出横纵坐标之和,如图所示:1 2 31234234346得到之和为偶数的情况有种,故P(点的横坐标与纵坐标之和是偶数)= .【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)写出根的判别式,配方后得到完全平方式,进行解答;(2)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根.【解答】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a ﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得a= ;方程为x2+ x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1&#8226;x1=﹣,解得x1=﹣.【点评】本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.19.如图,在菱形ABD中,A,BD相交于点,E为AB的中点,DE ⊥AB.(1)求∠AB的度数;(2)如果,求DE的长.【考点】菱形的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;(2)根据菱形的对角线互相平分求出A,再根据等边三角形的性质可得DE=A.【解答】解:(1)∵E为AB的中点,DE⊥AB,∴AD=DB,∵四边形ABD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.∴∠DAB=60°.∵菱形ABD的边AD∥B,∴∠AB=180°﹣∠DAB=180°﹣60°=120°,即∠AB=120°;(2)∵四边形ABD是菱形,∴BD⊥A于,A= A= ×4 =2 ,由(1)可知DE和A都是等边△ABD的高,∴DE=A=2 .【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记各性质是解题的关键.20.(2014春&#8226;仙游县校级期末)已知:如图,在&#9649;ABD 中,点E是B的中点,连接AE并延长交D的延长线于点F,连接BF.(1)求证:△ABE≌△FE;(2)若AF=AD,求证:四边形ABF是矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)根据平行四边形性质得出AB∥D,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=F,根据AB∥F得出平行四边形ABF,推出B=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABD是平行四边形,∴AB∥D 即AB∥DF,∴∠1=∠2,∵点E是B的中点,∴BE=E.在△ABE和△FE中,,∴△ABE≌△FE(AAS).(2)∵△ABE≌△FE,∴AB=F,∵AB∥F,∴四边形ABF是平行四边形,∴AD=B,∵AF=AD,∴AF=B,∴四边形ABF是矩形.【点评】本题考查了平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定等知识点的应用,本题主要考查学生运用定理进行推理的能力.。

2016-2017新人教版九年级上期中考试数学试题及答案

2016-2017新人教版九年级上期中考试数学试题及答案

2016-2017学年度初三(上)数学期中检测试题(试卷共分A ,B 卷,A 卷满分120分,B 卷满分30分,全卷共150分)A 卷(共120分)一、选择题:(共12个小题,每小题4分,共48分)1. 将一元二次方程22(3)1x x x -=+-化成一般形式后,一次项系数和常数项分别为( ) A .1,4- B .1-,5 C .1-,5- D .1,6- 2. 下列图形中,是中心对称图形而不是轴对称图形的是( ) A .正三角形 B .正十边形 C .矩形 D .平行四边形 3. 下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++= B .210x x+= C .220x c += D .(2)(31)x x x -+= 4. 若关于x的一元二次方程的两个根为12x =,22x = )A .2410x x ++=B .2410x x -+=C .2410x x --=D .2410x x +-= 5. 下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6. 把二次函数2134y x x =--+用配方法化成2()y a x h k =-+的形式时,应为( ) A .21(2)24y x =--+ B .21(2)44y x =--+C .21(2)44y x =-++D . 211322y x ⎛⎫=--+ ⎪⎝⎭7. 已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,当50x -≤≤时,下列说法正确的是( )A .有最小值5-、最大值0B .有最小值3-、最大值6C .有最小值0、最大值6D .有最小值2、最大值68. 将抛物线23y x =向左平移2个单位,再向下平移1个单位,所得抛物线为( )A .23(2)1y x =-- B .23(2)1y x =-+ C .23(2)1y x =+- D .23(2)1y x =++9. 二次函数2y ax bx c =++(0a ≠)的图象如图所示,下列结论正确的是( )A .0a <B .240b ac -< C .当13x -<<时,0y > D .12ba-=(第7题图)10.若方程02=++c bx ax 的两个根是3-和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( ) A .2x = B .2x =- C .1x =- D .1x = 11.在同一坐标系内,一次函数y =ax +b 与二次函数28y ax x b =++的图象可能是( )12. 如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 作0︒~90︒的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )二、填空题:(本大题共10小题,每小题3分,共30分) 13. 已知点A (2,a )与点B (b ,5-)关于原点对称,则a b +的值等于 。

2017学年第一学期九年级期中测试数学试题卷之一(含答题卡及答案)

2017学年第一学期九年级期中测试数学试题卷之一(含答题卡及答案)

2017学年第一学期九年级期中测试数 学 试 题 卷一、选择题(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内) 1. 二次函数()2234y x =-+的顶点坐标是(▲)A .(3,4)B .(2-,4)C .(2,4)D .(3-,4) 2. 投掷一枚质地均匀的硬币两次,对两次朝上一面的描述,下列说法正确的是(▲) A .都是正面的可能性较大 B .都是反面的可能性较大 C .一正一反的可能性较大 D .上述三种的可能性一样大 3. 一个直角三角形的两条直角边长的和为14cm ,其中一直角边长为x (cm),面积为y (cm 2),则y 与x 的函数的关系式是(▲)A .7y x =B .()14y x x =-C .()7y x x =-D .()1142y x x =-4. 以坐标原点O 为圆心,5为半径作圆,则下列各点中,一定在⊙O 上的是(▲) A .(3,3) B .(3,4) C .(4,4) D .(4,5)5. 已知34a b =,则a bb +的值是(▲)A .14-B .34C .54D .746. 如图,等边△ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上且不与A ,B 重合,则∠BPC等于(▲) A .60° B .45° C .30° D .90°第6题图 第7题图 第8题图7. 如图,A 、B 、C 、D 是⊙O 上的四个点,AB =AC ,AD 交BC 于点E ,AE =3,ED =4,则AB 的长为(▲)A .3B .CD .8. 如图,已知BD 是⊙O 的直径,弦BC ∥OA ,若∠B 的度数是50°,则∠D 的度数是(▲)1.2.3.A .50°B .40°C .30°D .25°9. 如图是二次函数2y ax bx c =++图象的一部分,图象过点A (3-,0),对称轴为直线1x =-.给出四个结论:①24b ac >;②20a b +=;③0a b c ++=;④0c <.其中正确的结论是(▲) A .②④B .①③C .②③D .①④第9题图 第10题图10.如图,点C 在半圆AB 上运动,以AC ,BC 为直径向外作半圆,点C 从A 向B 运动过程中,两弯新月(阴影部分)的面积之和(▲) A .不变 B .逐渐变大 C .逐渐变小 D .先变大后变小 二、填空题(共6小题,每小题5分,满分30分) 11.抛物线2241y x x =-++12.在一个不透明的袋子中装有4红球2 13.一个点到圆的最小距离为5cm ,最大距离为9cm14.如图,在△ABC 中,AD 与EF 交于点G ,已知EF ∥BC ,点G 是△ABC 的重心,则EFBC15.如图,在ABCD 中,BD 与AE DF ∶FB =1∶3,三角形DEF 的面积为2cm 2,则四边形BCEF 2.第14题图 第15题图 第16题图16.如图,在直角坐标系中,正方形ABCD 的顶点坐标分别为A (1,1-)、B (1-,1-)、C(1-,1)、D (1,1) .曲线AA 1A 2A 31、A 1A2、A 2A 3、A 3A 4…的圆心依次是B 、C 、D 、A 循环,则点A 2017EB D A FB CADE FG三、解答题(共8小题,满分80分) 17.(本题8分)已知二次函数的表达式是243y x x =-+.(1)用配方法把它化成()2y x m k =++的形式; (2)在直角坐标系中画出抛物线243y x x =-+的图象;(3)若A (1x ,1y )、B (2x ,2y )是函数243y x x =-+图象上的两点,且21x x <<,请比较1y ,2y 的大小关系:y 2(填“>”、“<”或“=”);(4)利用函数x +3的图象直接写出方程2431x x -+=的近似解(精确到0.1). 18.(本题8分)如图,转盘的红色(阴影部分)和白色扇形的圆心角分别为120°和240°,让转盘自由转动,停止时若指针恰好落到分界线上,本次操作不算,则重转.求以下事件的概率:(1)让转盘自由转动1次,求指针落在白色区域的概率;(2)让转盘自由转动2次,请用树状图法或列表法,求指针一次落在白色区域,另一次落在红色区域的概率.第18题图 第19题图19.(本题8分)某居民小区一处圆柱形的输水管破裂,维修人员为更新管道,需确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面(要求:保留作图痕迹,标出圆心O ); (2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.20.(本题10分)在△BOD 中,OB =7cm ,OD =3cm ,BD =5cm .将△BOD 绕点O 逆时针旋转90°至△AOC 的位置.求图中阴影部分的周长和面积.第20题图 第21题图21.(本题10分)如图,在四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形,∠ADC =30°,AD =3,BD =5.(1)画出△BCD 绕点C 顺时针旋转60°的图形; (2)求CD 的长.AB CDDOB AC22.(本题10分)如图,在△ABC 中,AB =AC ,以腰AB 为直径画半圆O ,分别交BC ,AC 于点D ,E ,连结DE . (1)求证:BD =DE ; (2)若∠BAC =40°,求(3)若AB =8cm ,∠BAC =60°,求EC 的长. 23.(本题12分)某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九年级数学兴趣小组根据调查,整理出第x 天(1≤(1)(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x 天的收入y (元)与x (天)之间的函数关系式.(当天收入=日销售额-日捕捞成本) (3)试说明(2)中的函数y 随x 的变化情况,并指出在第几天y 取得最大值,最大值是多少? 24.(本题14分)已知直线()30y kx k =+<分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒. (1)当1k =-时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1). ①直接写出1t =秒时C 、Q 两点的坐标;②若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值.(2)当34k =-时,设以C 为顶点的抛物线()2y x m n =++与直线AB 的另一交点为D (如图2).①求CD 的长;②设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?第24题图2017学年第一学期九年级期中测试数学答题卡此方框为缺考学生标记,由监考员用2B 铅笔填涂一、 选择题(共10小题,每小题4分,满分40分) 1 6 2 7 3 8 4 9 5 10 三、解答题(共8小题,满分80分) 17.(满分8分) (1) (2) (3) (4)学校 条 形 码粘 贴 处班级姓名注意事项: 1、选择题作答必须用2B 铅笔,修改时用橡皮擦干净。

初三数学期中考试试卷上册附答案2017

初三数学期中考试试卷上册附答案2017

初三数学期中考试试卷上册附答案2017期中对我们来说是一次考验,又是一次检验,考验学习态度是否端正,检验前半学期学到的成果。

以下是店铺为大家搜索整理的初三数学试卷上册附答案2017,希望能给大家带来帮助!更多精彩内容请及时关注我们应届毕业生!一、选择题(本大题共15个小题,每小题3分,共45分)1.一元二次方程x2-3x+2=0的两根为x1,x2,则x1+x2的值是( )A.2B.-2C.3D.-32.一元二次方程x2-4x+5=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.如果2是方程x2-3x+c=0的一个根,那么c的值是( )A.4B.-4C.2D.-24.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.45.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )A.14B.12C.12或14D.以上都不对6.下列命题正确的是( )A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )A.x(x-11)=180B.2x+2(x-11)=180C.x(x+11)=180D.2x+2(x+11)=1808.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.359.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( )A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠210.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )A.4B.6C.8D.1011.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( )A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢12.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8 000元,则售价应定为( )A.60元B.80元C.60元或80元D.70元13.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是( )A.70°B.75°C.80°D.95°14.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使平行四边形ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④15.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=12(BC-AD);⑤四边形EFGH是菱形,其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题5分,共25分)16.一元二次方程x2+x=0的解是________________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=________.18.若x1、x2是方程2x2-3x-4=0的两个根,则x1x2+x1+x2的值为________.19.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)用适当的方法解方程:(1)x2-4x+3=0; (2)(x-2)(3x-5)=1.22.(8分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB.23.(10分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.24.(12分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.25.(12分)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.26.(14分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表(不需化简):时间第一个月第二个月清仓时单价(元) 80 40销售量(件) 200(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?27.(16分)已知: ABCD的两边AB,AD的长是关于x的方程x2-mx+m2-14=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么 ABCD的周长是多少?参考答案1.C2.D3.C4.C5.B6.D7.C8.C9.D 10.C 11.B12.C 13.C 14.B 15.C 16.x1=0,x2=-1 17.5 18.-12 19.2320.2221.(1)x1=1,x2=3.(2)x1=11+136,x2=11-136.22.证明:∵四边形ABCD为矩形,∴∠A=∠B=90°,AD=BC.∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-∠DOC,即∠AOD=∠BOC.∴△AOD≌△BOC(AAS).∴AO=OB.23.设这个增长率为x.依题意得20(1+x)2-20(1+x)=4.8.解得x1=0.2,x2=-1.2(不合题意,舍去).0.2=20%.答:这个增长率是20%.24.(1)14(2)画树状图:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16. 25.证明:连接MC.∵在正方形ABCD中,AD=CD,∠ADM=∠CDM,又∵DM=DM,∴△ADM≌△CDM.∴AM=CM.∵ME∥CD,MF∥BC,∴四边形CEMF是平行四边形.又∵∠ECF=90°,∴ CEMF是矩形.∴EF=MC。

(宁波)2017学年第一学期九年级期中测试-数学试题卷参考答案及评分建议

(宁波)2017学年第一学期九年级期中测试-数学试题卷参考答案及评分建议

三、解答题(6+8+8+10+10+10+12+14=78分)19.如图所示,即为所求20.解:(1)根据题意得:抽取的数字为正数的情况有1个,则14P=;(2)∵方程ax2﹣2ax+a+3=0有实数根,∴△=4a2﹣4a(a+3)=﹣12a ≥0,且a≠0,解得a<0,则关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率为23;(3)所有等可能的情况有12种,其中点(x ,y )落在第二象限内的情况有2种, 则21126P ==. 21. 解:(1)∵二次函数228y x x =--可化为()219y x =--, ∴顶点坐标(1,﹣9),对称轴直线x =1, ∵令x =0,则y =﹣8,∴抛物线与y 坐标轴交点的坐标(0,﹣8),∵令y =0,则x 2﹣2x ﹣8=0,解得x 1=4,x 2=﹣2, ∴抛物线与x 坐标轴交点的坐标(4,0),(﹣2,0); (2)如图所示:由图可知,x <﹣2或x >4时y >0.解:(1)∵AB ⊥CD ,CD =16, ∴CE =DE =8, 设OB =x , 又∵BE =4,∴()22248x x =-+, 解得:x =10,∴⊙O 的直径是20.(2)∵12M BOD =∠∠,∠M =∠D ,∴12D BOD =∠∠,∵AB ⊥CD , ∴∠D =30°.23.(1)证明:∵AD 平分∠BAC , ∴∠BAD =∠DAC , ∵∠EAD =∠ADE , ∴∠BAD =∠ADE , ∴AB ∥DE ,∴△DCE ∽△BCA ; (2)解:∵∠EAD =∠ADE , ∴AE =DE , 设DE =x ,∴CE =AC ﹣AE =AC ﹣DE =4﹣x , ∵△DCE ∽△BCA , ∴DE :AB =CE :AC , 即x :3=(4﹣x ):4,解得:127x =, ∴DE 的长是127.(1)()()2302050010104005000y x x x x =+--=-++(2)∵y =8000,∴2104005000=8000x x -++,∴110x =,230x =, ∴10+30=40(元/件)或30+30=60(元/件) 答:销售单价为每件40元或每件60元. (3)()2210400500010209000y x x x =-++=--+∵30220x +4且0x ³,∴010x #, ∵当010x #时,y 随x 的增大而增大,∴x =10时,y 最大=8000元. 答:此时商场获得的最大月利润是8000元.25. 解:(1)如图1所示:(2)△AEF 是否为“智慧三角形”, 理由如下:设正方形的边长为4a , ∵E 是DC 的中点, ∴DE =CE =2a , ∵BC :FC =4:1,∴FC =a ,BF =4a ﹣a =3a ,在Rt △ADE 中,AE 2=(4a )2+(2a )2=20a 2, 在Rt △ECF 中,EF 2=(2a )2+a 2=5a 2, 在Rt △ABF 中,AF 2=(4a )2+(3a )2=25a 2, ∴AE 2+EF 2=AF 2,∴△AEF 是直角三角形,∵斜边AF 上的中线等于AF 的一半, ∴△AEF 为“智慧三角形”; (3)如图3所示:由“智慧三角形”的定义可得△OPQ 为直角三角形, 根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值, 由垂线段最短可得斜边最短为3,由勾股定理可得PQ =13PM =⨯=13OM ,故点P 的坐标(3-13),(3,13).解:(1)∵抛物线()230y ax x a =-+≠的对称轴为直线2x =-. ∴122a --=-,∴14a =-,∴2134y x x =--+. ∴D (-2,4)(2)探究一:当04t <<时,W 有最大值.∵抛物线2134y x x =--+交x 轴于A 、B 两点,交y 轴于点C , ∴A (-6,0),B (2,0),C (0,3), ∴OA =6,OC =3.当04t <<时,作DM ⊥y 轴于M ,则DM =2,OM =4. ∵P (0,t ),∴OP =t ,MP =OM -OP =4-t . ∵PAD AOP DMP OADM S S S S =--△△△梯形()111222DM OA OM OA OP DM MP =+⋅-⋅-⋅ ()()111264624222t t =+⨯-⨯⨯-⨯⨯- 122t =-∴()()21222318W t t t =-=--+ ∴当t =3时,W 有最大值,18W =最大值. 探究二:存在.分三种情况:①当190PDA =︒∠时,作DE ⊥x 轴于E ,则OE =2,DE =4,∠DEA =90°, ∴AE =OA -OE =6-2=4=DE .∴∠DAE =∠ADE =45°,AD ==,∴11904545PDE PDA ADE =-=︒-︒=︒∠∠∠. ∵DM ⊥y 轴,OA ⊥y 轴,∴DM ∥OA ,∴∠MDE =∠DEA =90°,∴11904545MDP MDE PDE =-=︒-︒=︒∠∠∠.∴12PM DM ==,1PD =此时1OC OA PD AD =,又因为190AOC PDA ==︒∠∠, ∴1Rt Rt ADP AOC △△,∴11422OP OM PM =-=-=, ∴P 1(0,2).∴当190PDA =︒∠时,存在点P 1,使1Rt Rt ADP AOC △△,此时P 1点的坐标为(0,2).②当290P AD =︒∠时,则245P AO =︒∠,∴2P A =2P A OA ==∵AD OC =2P AAD OC OA≠. ∴2P AD △与△AOC 不相似,此时点P 2不存在.③当390AP D =︒∠时,以AD 为直径作⊙O 1,则⊙O 1的半径2ADr == 圆心O 1到y 轴的距离d =4. ∵d >r ,∴⊙O 1与y 轴相离.不存在点P 3,使390AP D =︒∠.∴综上所述,只存在一点P (0,2)使Rt △ADP 与Rt △AOC 相似.。

2017届九年级数学上学期期中试题含答案

2017届九年级数学上学期期中试题含答案

九年级(上)数学试题卷参考公式:二次函数c bx ax y ++=2(a ≠0)图象的顶点坐标公式:-(a b 2,ab ac 442-)一、选择题(本题有10小题,每小题3分,共30分)1.在下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.若圆内接四边形ABCD 的内角满足:∠A :∠B :∠C =2:4:7,则∠D =( )A .80°B . 100°C .120°D .160°3.已知⊙O 的弦AB 长为8厘米,弦AB 的弦心距为3厘米,则⊙O 的直径等于( )A .5厘米B .8厘米C .10厘米D .12厘米4.设P 是抛物线5422++=x x y 的顶点,则点P 位于( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 5.下列各式的变形中,正确的是( )A .x x x =÷66B .1)1(2-=÷-x x xx C .532x x x =+D .43)21(122+-=+-x x x6.如图是某石圆弧形(劣弧)拱桥,其中跨度AB =24米,拱高CD =8米,则该圆弧的半径r =( )A .8 米B .12 米C .13米D .15 米7.如图,已知△ABC 为⊙O 的内接三角形,若∠ABC +∠AOC =90°,则∠AOC =( ) A .30°B .45°C .60°D .70°8.在长为3cm ,4cm ,6cm ,7cm 的四条线段中任意选取三条线段,这三条线段能构成三角形的概率是( )A .43B .32C .21D .419.抛物线y=-x 2+2x -2经过平移得到抛物线y=-x 2,平移方法是( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位10.设抛物线2y ax bx c =++(a <0)的顶点在线段AB 上运动,抛物线与x 轴交于C ,D 两点(C 在D 的左侧).若点A ,B 的坐标分别为(-2,3)和(1,3),给出下列结论:① c <3;②当x <-3时,y 随x 的增大而增大;③若点D 的横坐标最大值为5,则点C 的横坐标最小值为-5;④当四边形ACDB 为平行四边形时,43a =-.其中正确的是 ( )A .①②④B .①③④C .②③D .②④二、填空题(本题有6小题,每小题4分,共24分)11.已知圆O 的半径长为6,若弦AB =63,则弦AB 所对的圆心角等于 ▲ .12.已知一次函数的图像经过点A (0,2)和点B (2,-2),则y 关于x 的函数表达式为 ▲ ;当-2<y ≤4时,x 的取值范围是 ▲ .13.A ,B 两同学可坐甲,乙,丙三辆车中的任意一辆,则A ,B 两同学均坐丙车的概率是 ▲ .14.在平面直角坐标系中,以点(1,1O ,则圆O 与坐标轴的交点坐标是 ▲ .15.在直径为20的⊙O 中,弦AB ,CD 相互平行.若AB =16,CD =10,则弦AB ,CD 之间的距离是 ▲ .16.设直线y x m n =-++与双曲线y =1x交于A (m ,n )(m ≥2)和B (p ,q )两点.设该直线与y 轴交于点C ,O 是坐标原点,则△OBC 的面积S 的取值范围是 ▲ .三、解答题(本题有7小题,共66分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)33[(2)2]---18.(本小题满分8分)在一个不透明的袋中装有32个黄球,30个黑球,18个红球,它们仅有颜色区别.(1)求从袋中任意摸出一个球是黄球的概率;(2)若从袋中取出若干个黑球(不放回),设再从袋中摸出一个球是黑球的概率是31,问取出了多少个黑球?19.(本小题满分8分)在平面直角坐标系中,若抛物线652--=x x y 与x 轴分别交于A ,B 两点,且点A 在点B 的左边,与y 轴交于C 点.(1)求抛物线的顶点坐标和对称轴,以及抛物线与坐标轴的交点坐标,并画出这条抛物线; (2)设O 为坐标原点,△BOC 的BC 边上的高为h ,求h 的值.20.(本小题满分10分)设点A 、B 、C 在⊙O 上,过点O 作OF ⊥AB ,交⊙O 于点F .若四边形ABCO 是平行四边形,求∠BAF 的度数.21.(本小题满分10分)某商店购进一批玩具,购进的单价是20元.调查发现,售价是30元时,月销售量是320件,而售价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x 元时(x 为正整数),月销售利润为y 元.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)每件玩具的售价定为多少元时,可使月销售利润最大?最大的月销售利润是多少?22.(本小题12 分)如图,已知△ACB和△DCE为等边三角形,点A,D,E在同一直线上,连结BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)若△ACB和△DCE为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM ⊥DE于点M,连结BE.①计算∠AEB的度数;②写出线段CM,AE,BE之间的数量关系,并说明理由.23.(本小题满分12分)设二次函数y=-14x2+bx+c的图象与坐标轴交于A(0,10),B(-4,0),C三点.(1)求二次函数的表达式及点C的坐标;(2)设点F为二次函数位于第一象限内图象上的动点,点D的坐标为(0,4),连结CD,CF,DF,记三角形CDF的面积为S.求出S的函数表达式,并求出S的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年第一学期期中考试初三数学
注意事项:
1、 本试卷满分120分,考试时间100分钟。

2、 请用钢笔或圆珠笔直接答在试卷上或答题卡上。

一、选择题(共8小题,每小题3分,共24分.)
1.下列四个图形中,既是轴对称图形又是中心对称图形的是( )
2. 将一元二次方程0222=
--x x 配方后所得的方程是( )
A. ()222=-x
B. ()212=-x
C. ()312=-x
D. ()322=-x
3. 将抛物线()21+=x y 向下平移2个单位,再向右平移1个单位,所得到的抛物线是(
)
A. ()222++=x y
B. ()222-+=x y
C. 22+=x y
D. 22-=x y
4. 在同一平面直角坐标系中,函数m mx y +=和函数222++-=x mx y (m 是常数,且0≠m )的
图象可能是( )
5. 某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每
月的增长率是多少?若设平均每月的增长率为x ,根据题意,可列方程为( ) A .()1751502=+x B .()()175150150502=++++x x
C .()()1751501502=+++x x
D .()175150502
=++x
6. 如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,AD ⊥BC ,
则∠BAC 的度数为 ( ) A. 60° B. 75° C. 85° D. 90°
7. 如图是二次函数c bx ax y ++=2图象的一部分,其对称轴为1-=x ,且过点()0,3-.下列说法:
①0< abc ②02=-b a ;③024<++c b a ;④若()1,5y - ,⎪⎭⎫ ⎝⎛2,2
5y 是抛物线上两点,则
21y y >;其中正确的是( )
A. ①②
B. ②③
C. ①②④
D. ②③④
8. 如图,⊙O 与矩形ABCD 的边相切于点E 、F 、G ,, 点P 是弧EFG 上一点,则∠P 的度数是( ) A. 45° B. 60° C. 30° D. 无法确定
第6题图 第7题图 第8题图
二、填空题(共7小题,每小题3分,计21分)
9. 方程x x =2的根是 ;
10. 若点()1,- a M 与点()b N ,1 关于原点对称,则=+b a ;
11. 某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数表达式是
25.160y x x -=,该型号飞机着陆后需滑行 m 才能停下来.
12. 已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC
的周长为 ;
13. ⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm ,则AB 和CD 之间的距离为 ;
14. 如图,AB ,AC 是⊙O 的弦,D 是CA 延长线上的一个点,AD=AB ,∠ADB=25°,则 ∠BOC= ;
15. 如图,Rt △OAB 的顶点()4,2 -A 在抛物线2ax y =上,将Rt △OAB 绕点O 顺时针旋转90°,得
到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 ;
三、解答题(共75分)
16. (8分)解方程:
()x x 73212=+ (2))1(332+=+x x
17.(8分) 在如图的方格纸中,每个小方格都
是边长为1个单位的正方形,△ABC 的点都在格点上(每个小方格的顶点叫格点) (1)画出△ABC 绕点O 顺时针旋转90°后的
△C B A 111 (2)求点A 旋转到A 1,所经过的路线长.
18.(9分)已知关于x 的方程()04
22
=+
++k
x k kx 有两个不相等的实数根。

(1)求k 的取值范围;
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,请说明理由;
19. (10分)如图,在△ABC 中,∠ACB=90°,D 是边AB 上的一点,且∠A=2∠DCB ,E 是BC 边
上的一点,以EC 为直径的⊙O 经过点D. (1) 求证:AB 是⊙O 的切线;
(2) 若CD 的弦心距为1,BE=EO ,求BD 的长。

20. (10分) 如图,有长为m 24的篱笆,一面利用墙(墙长m 10)围成中间隔有一道篱笆的长方形花
圃;(1)现要围成面积为2
45m 的花圃,则AB 的长是多少米? (2)现要围成面积为2
48m 的花圃,能行吗?若行AB 的长是多少米?若不行,说明理由。

.
21.(9分) 二次函数
()02≠++=a c bx ax y 的图像如图所示,根据图
像回答问题:
(1) 写出方程ax 2+bx+c=0的两个根; (2) 写出不等式02
>++c bx ax 的解集;
(3) 写出y 随x 的增大而减小的自变量x 的取值范围;
22.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进
价为40元,超市规定每盒售价不得少于45元,根据以往的销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒。

(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门规定,这种粽子每盒售价不得高于58元,如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
23.(11分) 如图,抛物线经过()0,1 -A ,()0,5 B ,⎪⎭
⎫ ⎝⎛-25,0 C 三点。

(1) 求抛物线的解析式;
(2) 在抛物线的对称轴上有一点P ,使PC PA +的值最小,求点P 的坐标;
(3) 点M 为x 轴上一动点,在抛物线上是否存在一点N ,使N M C A ,,,
四点构成的四边形为平行四边形?若存在,请直接写出点N 的坐标;若不存在,请说明理由。

参考答案
一、选择题(每小题3分,共24分) 1.D 2.C 3.D 4.D 5.B 6.C
7.C
8.A
二、填空题(每小题3分,共21分) 9. x 1=-1,x 2=-0 10. 0 11. 600 12 . 11或13 13. 7或17 14. 100° 15.(
2,2 )
三、解答题(共75分)
16.(1)2x 2+3=7x ; (2) )1(332+=+x x
解:x 1=
2
1
,x 2=3; 原方程可化为032
=-x x (x-3)x=0
解:解得x 1=-3,x 2=-0.
17. (1) 图略
(2) 连接AO AO=
233
3
2
2
=+
则A 点经过的路径长为:
ππ2
2323236090=⨯ 18. (1) ∵方程有两个不相等的实数根
∴4
4)2(2
k
k k ⨯-+>0 解得k >-1
(2)设方程的两个实数根分别为
x x 2
1
,由题意知
202
00
1
1
2
1
21
2
11
2
12
21
-==+-
=+=+=+
k k k x
x x x x x x x
又∵k >-1
∴不存在这样的k 19.
22.。

相关文档
最新文档