流体力学基础(绪论)
流体力学2020_01_绪论-雨课堂

第一章绪论人类生活在一个被大气包围的星球上,而这颗星球表面的3/4又被广阔的海洋覆盖,我们的生活一刻也离不开流体。
流体力学在工业和日常生活中都有着广泛的应用,例如:飞行器、舰船、港口、石油平台、桥梁、水库、城市给排水管网、化工机械、动力设备、医疗设备等的设计需要流体力学;气象、海况和洪水的预报需要流体力学;大气、海洋、湖泊、河流和地下水中环境污染的防治也需要流体力学。
因此,掌握一定的流体力学知识和方法实在是有必要的。
本章内容提要:1)什么是流体?什么是流体力学?2)流体力学的研究方法;3)流体的主要物理性质;4)流体质点的概念和连续介质模型(或连续介质假定)。
连续介质假定是整个流体力学的基石之一,务必深入理解。
1.1 流体力学的研究对象和任务流体力学属于力学的一个重要分支,它是研究流体在各种力的作用下的平衡(静止)和运动规律的一门科学。
Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid statics) and the subsequent effects of the fluid upon the boundaries, which may be either solid surfaces or interfaces with other fluid (Frank M. White).传统上,流体力学的研究对象包括液体(liquid)和气体(gas),二者统称为流体。
近年来,等离子体也被纳入流体力学的研究范畴,因此等离子体在某些情况下也被视为流体。
本书将要讨论的流体限于液体和气体。
此外,在流体力学研究中,通常从形态上将物体分为固体(solid)和流体(fluid)两类。
流体力学研究的是流体中大量分子的宏观运动规律,而不是具体的分子运动,属于宏观力学的范畴。
这一点在本章第3节中将具体讨论。
第1章 流体力学绪论 矿山流体机械

第一节 流体力学概述 流体力学发展简史
第一阶段(16世纪以前):流体力学形成的萌芽阶段 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力
学成为一门独立学科的基础阶段 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个
方向发展——欧拉、伯努利 第四阶段(19世纪末以来)流体力学飞跃发展
第一篇 流体力学基础
流体力学是研究流体运动和平衡规律及 其应用的科学,是力学的一个重要分支。
流体力学研究的对象——液体和气体。来自流体力学的研究内容:1、关于流体平衡的规律,它研究流体处于静止 (或相对平衡)状态时,作用于流体上的各种力 之间的关系,这一部分称为流体静力学;
2、关于流体运动的规律,它研究流体在运动状态 时,作用于流体上的力与运动要素之间的关系, 以及流体的运动特征与能量转换等,这一部分称 为流体动力学。
第三阶段(18世纪中叶-19世纪末)流体力学沿着
两个方向发展——欧拉(理论)、伯努利(实验)
工程技术快速发展,提出很多经验公式
1769年 谢才——谢才公式(计算流速、流量)
1895年 曼宁——曼宁公式(计算谢才系数)
1732年 比托——比托管(测流速)
1797年 文丘里——文丘里管(测流量)
理论
流体力学在煤矿中的应用
矿山通风、排水、压气,水力采煤、 重力选矿,气力、水力运输,采煤机、 支架、机床设备的液压系统等。
第1章 绪论
本章学习目标:
掌握液体和气体流动性的区别; 掌握流体密度和重度的概念及计算; 掌握流体的压缩性和膨胀性特点; 掌握牛顿黏性定律及黏性的度量方法。
流体力学发展简史 流体力学的研究方法 流体的主要物理性质
矿山流体机械
龙岩学院物理与机电工程学院 陈虹微
流体力学基础知识

目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
流体力学基础知识

第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
流体力学第一章 绪 论 第二章 场论与正交曲线坐标

全书分上下两册,三篇,十五章。上册包括第一篇“流体力 学基础”和第二篇“流体动力学基本原理及流体工程”,具体内 容为:绪论、场论与正交曲线坐标、流体静力学、流体运动学、 流体动力学微分形式基本方程、流体动力学积分形式基本方程、 伯努利方程式及其应用、量纲分析和相似原理、流动阻力与管道 计算、边界层理论、流体绕过物体的流动和气体动力学基础。下 册包括第三篇“计算流体动力学”,具体内容为:计算流体动力 学的数学物理基础、流体动力学问题的有限差分解法和流体动力
第一节 第二节 第三节 第四节
连续性方程 动量方程 动量矩方程 能量方程
退出 返回
第七章 伯努利方程式及其应用
第一节 第二节 第三节 第四节 第五节
伯努利方程式及其限定条件 实际流体的伯努利方程式 实际流体的总流伯努利方程式 相对运动的伯努利方程式
伯努利方程式的应用
退出 返回
第八章 量纲分析和相似原理
流体力学第一章 绪 论 第二章 场论与正
交曲线坐标
前言
本书是为高等工科院校非力学专业硕士研究生流体力学课程 教学编写的。考虑到教学时数有限,所以有些内容并未深入展开。 本书重点放在流体力学的基本概念、基本理论和解决流体力学问 题的基本方法上,目的在于为研究生开展课题研究和将来从事工 作提供必需的较为坚实的流体力学基础知识,同时也兼顾到工程 技术人员和科技工作者的需要。
第1页
退出 返回
第一章 绪 论
第一节 流体力学的研究对象和发展历史
自Newton(1642-1727)提出了三大运动定律和线性流体的粘性定律以后, 流体力学得到了较大的发展。十八世纪的一大批数学家如Bernoulli、 Euler、 Lagrange、 Laplace等在理想流体的假定下取得了许多无摩擦流 动问题的研究成果,如Euler的运动微分方程和其积分形式——Bernoulli 方程。但理想流体的假定有较大的局限性,工程实际中的大多数流动无 不受流体粘性的影响。当时的工程师们开始抵制这种他们认为不切实际 的理想流体流动理论,在几乎完全依赖实验的基础上发展了一门新的科 学——水力学。这样的实验科学家有Weber、Hagen、Poiseulle、Darcy 等。他们通过实验得到了诸如明渠流动、船舶阻力、管道流动、波动等 问题的有用数据。
(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
清华工程流体力学基础

流体的平衡微分方程(欧拉平衡微分方程) §2-2 流体的平衡微分方程(欧拉平衡微分方程) 平衡规律:在静止条件下, 平衡规律:在静止条件下,流体受到的静压力与 质量力相平衡。 质量力相平衡。 平衡微分方程的推导: 平衡微分方程的推导: 从平衡流体中取出一微 小正平行六面体微团。 小正平行六面体微团。 体积: 体积 dV = dxdydz
<1>表面力 表面力 1 ∆Fx = p x dydz 2 1 ∆Fy = p y dxdz 2 1 ∆Fz = p z dxdy 2 ∆Fn = pn ⋅ ∆ABC
各个面上的静压力
∆ABC — 斜面面积
<2>质量力 质量力 若
1 ∆V = ⋅ dxdydz 6
∆m =
ρ
6
⋅ dxdydz
则: ∆Fmx =
ρ
6
⋅ dxdydz ⋅ f x ⋅ dxdydz ⋅ f y
质量力在三个坐 标方向上的投影
∆Fmy =
ρ
6
∆Fmz =
ρ
6
⋅ dxdydz ⋅ f z
<3> x 方向上的力平衡方程式(ΣFx= 0) 方向上的力平衡方程式( ) px1/2dydz − pn · ∆ABC·cos(n, x) + ρ1/6dxdydz fx =0 因∆ABC·cos(n, x) = 1/2dydz (∆ABC在yoz平面上 在 平面上 的投影) 的投影 则: 1/2dydz ( px – pn ) + ρ/6·dxdydz fx = 0 略去三阶微量 dxdydz. 可得: 可得: px = pn
第二章
流体静力学
绝对平衡 —— 流体整体 对于地球无相对运动。 对于地球无相对运动。
1 流体力学绪论

体积压缩系数 Coefficient of Volume Compressibility
当流体温度不变时,单位压力变化所引起的体积
变化率。单位为Pa-1。
p
dV V dp
压缩性和膨胀性
体积弹性模量 Bulk Modulus of Elasticity
体积压缩系数的倒数。
液体与气体的异同
液体与气体的共同点:
两者均具有易流动性,即在任何微小切应力作用下都 会发生变形或流动,故二者统称为流体。
液体与气体的区别:
➢ 气体易于压缩;而液体难于压缩。 ➢ 液体有一定的体积,存在自由液面;气体能充满任
意形状的容器,无一定体积,不存在自由液面。
流体力学的研究内容
研究内容: 建立描述流体运动的基本方程,确定流体流 经(flow in)各种通道或绕流(flow around )不同物体时流动参数的分布规律,探求能 量转换及各种损失的计算方法,并解决流体 与限制其流动的固体壁之间的相互作用问题 。
g
比容 Specific Volume 单位质量流体所占据的空间体积。m3/kg
v 1
惯性
相对密度 Relative Density
某 均 质 流 体 的 质 量 与 标 准 大 气 压 下 4℃ 同 体 积纯水的质量之比。
V wV w
比重 Specific Gravity 某均质流体的重量与标准大气压下4℃同体积
1St=100cSt=0.01m2/s
粘性
公式的推广 任意两层间
F A u
y
非线性速度分布
F A du
dy
流体的黏性实验
du 速度梯度 dy
粘性