题型-平面向量求垂直

合集下载

2020年高考数学(理)总复习:平面向量(解析版)

2020年高考数学(理)总复习:平面向量(解析版)

2020年高考数学(理)总复习:平面向量题型一 平面向量的概念及线性运算 【题型要点】对于利用向量的线性运算、共线向量定理和平面向量基本定理解决“用已知向量(基向量)来表示一些未知向量”的问题.解决的关键是:①结合图形,合理运用平行四边形法则或三角形法则进行运算;②善于用待定系数法【例1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2【解析】 如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z =0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3.【答案】 A【例2】.点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,设△OBC 与△ABC 的面积分别为S 1、S 2,则S 1S 2=( )A.18B.16C.14D.12【解析】 延长OC 到D ,使OD =4OC ,延长CO 交AB 于E .∵O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,∴OD →+OA →+OB →=0,∴O 为△DAB 重心,E 为AB 中点,∴OD ∶OE =2∶1,∴OC ∶OE=1∶2,∴CE ∶OE =3∶2,∴S △AEC =S △BEC ,S △BOE =2S △BOC .∵△OBC 与△ABC 的面积分别为S 1、S 2,∴S 1S 2=16.故选B.【答案】 B .题组训练一 平面向量的概念及线性运算1.在梯形ABCD 中,AB →=3DC →,则BC →等于( ) A .-13AB →+23AD →B .-23AB →+43AD →C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形,则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【答案】 D2.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++C O B O A O22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】 如图所示:设AB 的中点是E ,∵O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,∵2EO →=OC →, ∴OP →=13()4EO →+OE →=EO →,∴P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【答案】 B3.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【答案】 B题型二 平面向量的平行与垂直 【题型要点】(1)设a =(x 1,y 1),b =(x 2,y 2): ①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)设非零向量a =(x 1,y 1),b =(x 2,y 2):a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (3)利用向量平行或垂直的充要条件可建立方程或函数是求参数的取值.【例3】已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( )A.9 B.3C.109 D.310【解析】向量a=(2,-4),b=(-3,x),c=(1,-1),∴2a+b=(1,x-8),由(2a+b)⊥c,可得1+8-x=0,解得x=9.则|b|=(-3)2+92=310.故选D.【答案】 B【例4】.已知a=(3,2),b=(2,-1),若λa+b与a+λb平行,则λ=________.【解析】∵a=(3,2),b=(2,-1),∴λa+b=(3λ+2,2λ-1),a+λb=(3+2λ,2-λ),∵λa+b∥a+λb,∴(3λ+2)(2-λ)=(2λ-1)(3+2λ),解得λ=±1【答案】±1题组训练二平面向量的平行与垂直1.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.【解析】由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,解得m=-2.【答案】-22.已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()A.55 B.15C.-55D.-15【解析】∵a=(3,1),b=(1,3),c=(k,-2),∴a-c=(3-k,3),∵(a-c)∥b,∴(3-k)·3=3×1,∴k=2,∴a·c=3×2+1×(-2)=4,∴|a|=10,|c|=22,∴cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A. 【答案】 A题型三 平面向量的数量积 【题型要点】(1)涉及数量积和模的计算问题,通常有两种求解思路: ①直接利用数量积的定义; ②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.求平面向量的模时,常把模的平方转化为向量的平方.【例5】在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2D .211【解析】如图,取AE 的中点G ,连接BG ∵AE →=23AD →,BF →=13BC →,∴AG →=12AE →=13AD →=13BC →=BF →,∴EF →=GB →,∴|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,∴|EF →|=|GB →|=25,故选B. 【答案】 B【例6】.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB →|=2,OC →=53OA →-23OB →.若M是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3【解析】 因为点M 是线段AB 的中点,所以OM →=12()OA →+OB →,|OA =|OB |=|AB |=2,所以△ABC 是等边三角形,即〈OA →,OB →〉=60°,OA →·OB →=2×2×cos60°=2,OC →·OM →=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-B O A O B O A O21213235=56OA →2-13OB 2+12OA →·OB → =56×22-13×22+12×2=3,故选A. 【答案】 A题组训练三 平面向量的数量积1.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( )A .-2B .-32C .-43D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ) 所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32 当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.【答案】 B2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB 的夹角为60°,且OC →⊥AB →,则实数mn的值为( )A.16B.14 C .6D .4【解析】 OA →·OB →=3×2×cos60°=3, ∵OC →=mOA →+nOB →,OC →⊥AB →,∴(mOA →+nOB →)·AB →=(mOA →+nOB →)·(OB →-OA →)=(m -n )OA →·OB →-mOA →2+nOB →2=0,∴3(m -n )-9m +4n =0,∴m n =16,故选A.【答案】 A题型四 数与形相辅相成求解向量问题【例7】 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1] 【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解. 如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),∴OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, ∴OA →+OB →+OD →=OD →-ON →=ND →,∴|OA →+OB →+OD →|=|ND →|,∴|ND →|max =|NC →|+1=7+1,|ND →|min =7-1. 【答案】 D题组训练四 数与形相辅相成求解向量问题已知|b |=1,非零向量a 满足〈a ,b -a 〉=120°,则|a |的取值范围是________. 【解析】如图,设CA →=b ,CB →=a ,则b -a =BA →,在△ABC 中,AC =1,∠ABC =60°. 根据圆的性质:同弧所对的圆周角相等.作△ABC 的外接圆,当BC 为圆的直径时,|a |最大,此时|a |=BC =1sin 60°=233; 当B ,C 无限接近时,|a |=BC →0.故|a |的取值范围是⎥⎦⎤⎝⎛332,0 【答案】 ⎥⎦⎤⎝⎛332,0 【专题训练】 一、选择题1.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A .9 B .3 C.109D .310【解析】 向量a =(2,-4),b =(-3,x ),c =(1,-1),∴2a +b =(1,x -8), 由(2a +b )⊥c ,可得1+8-x =0,解得x =9.则|b |=(-3)2+92=310.故选D. 【答案】 D2.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3D .4【解析】 ∵向量a =(1,k ),b =(2,2), ∴a +b =(3,k +2),又a +b 与a 共线. ∴(k +2)-3k =0,解得k =1,∴a ·b =(1,1)·(2,2)=1×2+1×2=4,故选D. 【答案】 D3.设向量a ,b 满足|a |=1,|b |=2,且a ⊥(a +b ),则向量a 在向量a +2b 方向上的投影为( )A .-1313B.1313C .-113D.113【解析】∵a ⊥(a +b ),∴a ·(a +b )=1+a ·b =0,∴a ·b =-1,∴|a +2b |2=1+4a ·b +16=13,则|a +2b |=13,又a ·(a +2b )=a ·(a +b )+a ·b =-1,故向量a 在向量a +2b 方向上的投影为-113=-1313.选A.【答案】 A4.已知A ,B ,C 是圆O 上的不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)【解析】 由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),故选B.【答案】 B5.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则mn=( ) A .-3 B .-13C.13D .3【解析】 过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →=-26BC →+BA →=-13BC →+BA →,所以m n =1-13=-3.【答案】 A6.如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).∵AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫⎝⎛+-μλμλ2,2,∴⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,∵M ,N 分别为BC ,CD 的中点,∴AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【答案】 D7.如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b ∈R ),则ab 的值为( )A.14 B .1 C.12D.18【解析】由题意易知E 1(2,1),E 2(2,-1),∴e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,∴(2a +2b )24-(a -b )2=1,整理可得4ab =1,∴ab=14. 【答案】 A8.在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a 满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3D.6+2+1【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3),∴|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点,求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【答案】 B9.已知锐角△ABC 的外接圆的半径为1,∠B =π6,则BA →·BC →的取值范围为__________.【解析】 如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,∠B =π6.由正弦定理得a sin A =c sin C =2,∴a =2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,∴BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A =32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. ∵π3<A <π2,∴π3<2A -π3<2π3,∴32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,∴3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32.∴BA →·BC →的取值范围为⎥⎦⎤⎝⎛+233,3. 【答案】 ⎥⎦⎤ ⎝⎛+233,310.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【解析】 因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心.【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( )A .4B .2C .2 2D .2 3【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎪⎭⎫ ⎝⎛4,21⊗(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π⇒(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π⇒⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π⇒y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x ∈⎥⎦⎤⎢⎣⎡3,6ππ时, 由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1⇒2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 【答案】 A 二、填空题12.如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB→+13AD →,又AC →=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12⇒m +n =32.故应填答案32.【答案】 3213.若函数f (x )=2sin ⎪⎭⎫⎝⎛+48ππx (-2<x <14)的图象与x 轴交于点A ,过点A 的直线l与函数f (x )的图象交于B 、C 两点,O 为坐标原点,则(OB →+OC →)·OA →=________.【解析】 ∵-2<x <14,∴f (x )=0的解为x =6,即A (6,0),而A (6,0)恰为函数f (x )图象的一个对称中心,∴B 、C 关于A 对称,∴(OB →+OC →)·OA →=2OA →·OA →=2|OA |2=2×36=72. 【答案】 7214.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则|P A →|2+|PB →|2|PC →|2=________.【解析】 建立如图所示的平面直角坐标系, 设|CA →|=a ,|CB →|=b ,则A (a,0),B (0,b ) ∵点D 是斜边AB 的中点,∴D ⎪⎭⎫⎝⎛2,2b a , ∵点P 为线段CD 的中点,∴P ⎪⎭⎫⎝⎛4,4b a ∴|PC →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛b =a 216+b 216|PB →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛-b b =a 216+9b 216|P A →|2=24⎪⎭⎫ ⎝⎛-a a +24⎪⎭⎫ ⎝⎛b =9a 216+b 216∴|P A →|2+|PB →|2=9a 216+b 216+a 216+9b 216=10⎪⎪⎭⎫ ⎝⎛+161622b a =10|PC →|2,∴|P A →|2+|PB →|2|PC →|2=10.【答案】 1015.在△ABC 中,AB ⊥AC ,AB =1t ,AC =t ,P 是△ABC 所在平面内一点,若AP →=4AB →|AB →|+AC →|AC →|,则△PBC 面积的最小值为________.【解析】 由题意建立如图所示的坐标系,可得A (0,0),B ⎪⎭⎫ ⎝⎛0,1t ,C (0,t ),∵AP →=4AB →|AB →|+AC →|AC →|=(4,0)+(0,1)=(4,1),∴P (4,1);又|BC |=221⎪⎭⎫⎝⎛+t t ,BC 的方程为tx +y t =1,∴点P 到直线BC 的距离为d =221114⎪⎭⎫ ⎝⎛+-+t t t t ,∴△PBC 的面积为S =12·|BC |·d=12·221⎪⎭⎫ ⎝⎛+t t ·221114⎪⎭⎫ ⎝⎛+-+t t t t=12|4t +1t -1|≥12·|24t ·1t -1|=32, 当且仅当4t =1t ,即t =12时取等号,∴△PBC 面积的最小值为32.【答案】 32。

向量知识点及题型总结

向量知识点及题型总结

向量知识点及题型总结一、向量的定义和性质1. 向量的定义:向量是具有大小和方向的量,用箭头来表示。

2. 向量的性质:- 向量的模长:向量的大小,用 ||a|| 表示,是向量的长度。

- 向量的方向:指向的方向,可以用夹角来表示。

- 向量的相等:如果两个向量的模长相等并且方向相同,那么这两个向量是相等的。

- 零向量:模长为0的向量,表示为0。

二、向量的表示及运算1. 向量的表示方式:- 平面向量:即二维向量,用坐标表示;例如向量 a = (a1, a2)。

- 空间向量:即三维向量,用坐标表示;例如向量 a = (a1, a2, a3)。

2. 向量的基本运算:- 向量的加法:向量相加就是对应分量相加;例如 a + b = (a1 + b1, a2 + b2)。

- 向量的减法:向量相减就是对应分量相减;例如 a - b = (a1 - b1, a2 - b2)。

- 向量的数量乘法:向量乘以一个数,就是将向量每个分量都乘以这个数;例如 k * a = (k * a1, k * a2)。

- 向量的点乘:向量的点乘又称数量积,是两个向量对应分量相乘再相加的运算;例如 a·b = a1*b1 + a2*b2。

- 向量的叉乘:向量的叉乘又称向量积,只存在于三维空间中,结果是垂直于原来两个向量的新向量;例如 a × b = (a2b3 - a3b2, a3b1 - a1b3, a1b2 - a2b1)。

三、向量的应用1. 向量的几何意义- 向量的加法和减法可以表示平移和反向平移。

- 向量的数量积可以表示两个向量的夹角和投影。

- 向量的叉乘可以表示平行四边形的面积和法向量。

2. 向量的物理意义- 位移向量:表示物体的位移和移动方向。

- 力向量:表示物体受到的力和力的方向。

- 速度向量:表示物体的速度和运动方向。

- 加速度向量:表示物体的加速度和加速方向。

四、向量的题型1. 向量的基本运算题型- 求向量的模长和方向。

平面向量题型学霸总结六(含答案)-

平面向量题型学霸总结六(含答案)-

平面向量题型学霸总结五(含答案)阳光老师:祝你学业有成一、选择题(本大题共14小题,共70.0分)1.已知,,,则.A. 5B. 7C. 9D. 11【答案】D【解析】【试题解析】【分析】本题主要考查向量的数量积及模,考查向量的坐标运算,属于基础题.由,求出的坐标,根据,可求t,结合向量数量积的坐标运算即可求解.【解答】解:由,,则,,所以.故选D.2.已知向量,,若与的夹角为,则A. 2B.C.D. 1【答案】B【解析】【分析】本题考查向量数量积的坐标运算,向量的模,属于基础题.由题意可得,,即可求,由展开即可求解.【解答】解:由题意可知:,,,则.故选B.3.如图,,为互相垂直的两个单位向量,则A. 20B.C.D.【答案】C【解析】【试题解析】【分析】本题考查两个向量的加减法的法则,以及其模的公式的运用,考查运算能力,属于基础题.以,是互相垂直的单位向量,所在的直线分别为x轴和y轴,建立直角坐标系,得到向量,的终点坐标和起点坐标,从而得到向量a,b的坐标,即可得到和向量的坐标,再由模的公式即可得到答案.【解答】解:以,是互相垂直的单位向量,所在的直线分别为x轴和y轴,建立直角坐标系,则向量的终点坐标为,起点坐标为,的终点坐标为,起点坐标为,则有,,,即有.故选C.4.已知O为内一点且满足,若的面积为且,则A. B. C. D.【答案】A【解析】【分析】本题为中档题.考查向量的平行四边形法则;向量的数量积公式及三角形的面积公式,得出O为三角形的重心是解决问题的关键.根据向量判断出点O为三角形的重心,由重心的性质得出的面积与面积的关系,利用向量的数量积公式和三角形的面积公式可求出,即可求出【解答】解:,,为三角形的重心,的面积为面积的,的面积为,,,,即,由可得,即,即,5.已知向量,若,则与夹角为A. B. C. D.【答案】A【解析】【分析】本题主要考查用数量积表示两个向量的夹角,两个向量的夹角公式,属于基础题.由题意可得与反向,故与的夹角即为与的夹角,利用两个向量的夹角公式求解即可.【解答】解:向量,,,若,则与反向,与的夹角即为与的夹角,设为,,,,即与的夹角为.故选A.6.若单位向量满足:,向量满足,且向量的夹角为,则为.A. B. C. 2 D.【答案】C【解析】【分析】本题考查向量的数量积,考查数量积的运算律,数量积与垂直的关系,掌握数量积的定义是解题关键.由向量垂直得其数量积为0,从而由向量数量积的运算律可求得,再由数量积的定义可得模.解:因为,所以,因为,所以,所以.故选:C.7.下列说法中正确的有.如果非零向量与共线,那么的方向必与之一的方向相同;在中,必有;若均为非零向量,则与一定相等.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】【试题解析】【分析】本题主要考查向量的有关运算,属于基础题.举反例即可得到结论;根据向量的加法即可判断;根据向量的加法以及向量的模即可判断.【解答】解:当时结论不成立;根据向量的加法判断是正确的;只有同向时结论才成立.故选B.8.已知向量,,,若,则向量在方向上的投影为A. B. C. D.【答案】B【解析】解:由已知可得,因为,,所以,解得,故,则,,,故向量在方向上的投影为,故选:B.通过向量共线解得t,然后利用向量的数量积转化求解向量在方向上的投影.本题考查向量的共线与向量的数量积的应用,向量的投影的求法,是基础题.9.设为实数,已知向量,若,则向量与之间的夹角为A. B. C. D.【答案】A【解析】【分析】本题考查平面向量的坐标运算与数量积运算,属于基础题,根据,可知,计算出,然后计算出,再根据夹角公式计算与之间的夹角余弦值,然后得出夹角.【解答】解:依题意,可知,即,即,所以,设与之间的夹角为,根据夹角公式可知,又,所以,故答案选A.10.中,角A,B,C所对应的分别为a,b,c,且,若,则的面积的最大值是A. 1B.C. 2D.【答案】B【解析】【分析】本题主要考查了正弦定理,余弦定理,基本不等式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.由已知利用正弦定理可得,由余弦定理可得,结合范围,可求A的值;再利用余弦定理,基本不等式可求,当且仅当时,取等号,利用三角形的面积公式即可求解.【解答】解:由正弦定理以及得:,整理得,则,,求得,因为,所以由余弦定理得,因为,所以,解得,当且且仅当时取等号,所以,即面积的最大值为.故选B.11.设O为坐标原点,直线与抛物线交于D,E两点,若,则C的焦点坐标为A. ,B.C.D.【答案】B【解析】【分析】本题考查直线与抛物线的位置关系及抛物线的性质,基础题.根据直线与抛物线交于D、E两点,确定D、E两点坐标,由可得,可确定p的值,从而得到抛物线的焦点坐标.【解答】解:根据题意,不妨设,,因为,可得,所以,故,所以抛物线C:,所以抛物线的焦点坐标为.故选B.12.已知在中,内角A,B,C的对边分别是a,b,c,且,,则A. B. C. D.【答案】A【解析】【分析】本题考查正弦定理和余弦定理,属于基础题.由正弦定理及,得,代入余弦定理求值,进而得角.【解答】解:由及,得,.为的内角,.故选A.13.已知,,且,则与的夹角为A. B. C. D.【答案】B【解析】【分析】本题主要考查数量积的定义,以及向量垂直的判定,向量的夹角,属基础题.根据向量垂直,向量的模,向量的数量积求出答案.【解答】解:设,的夹角为,,,且,所以,代入数据求得,又因为,所以,故选B.14.若向量,,则与的夹角等于A. B. C. D.【答案】C【解析】【分析】本题考查了向量的数量积,向量夹角的求解,坐标运算,属于简单题.由题意得,,,利用数量积公式,由此可求得二者的夹角.【解答】解:由题意得,,,,,又,,,,故选C.二、不定项选择题(本大题共3小题,共12.0分)15.已知向量,则A. B.C. 共线D. 夹角是钝角【答案】BCD【解析】【分析】本题考查平面向量的坐标运算、模长公式、共线和夹角,属于基础题.利用已知条件逐个判断即可.【解答】解:由题意,得,对于A,因为,故错误;对于B,因为,故正确;对于C,因为,故与共线,故正确;对于D,因为,则,且与不共线,故与夹角是钝角,故正确,故选BCD.16.已知向量,则A. 若则B. 若则C. 若则D. 若则【答案】AD【解析】【分析】本题考查了向量的数量积,向量垂直的条件,向量的模及向量共线的充要条件,属于中档题.根据向量垂直的条件,向量的模及向量共线的充要条件逐项判定即可.【解答】解:对于A,因为,,所以,所以,故选项正确;对于B,因为,所以,解得,故选项错误;对于C,因为,所以,所以,即,解得,故选项错误;对于D,因为,所以,所以,所以,所以,故选项正确.故选AD.17.多选下列命题中正确的是A. 对于向量,,若,则B. 若A,B,C,D是不共线的四点,则是四边形ABCD为平行四边形的充要条件C. 对于向量,,若,,则D. 对于向量,,的充要条件是且【答案】BC【解析】【试题解析】【分析】本题考查平面向量的有关概念、充分、必要条件的判断和平面向量的几何语言,属于基础题.对选项逐个判断即可.【解答】解:两个向量的长度相等,但它们的方向不一定相同,故A不正确;,且,又A,B,C,D是不共线的四点,四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则,且,方向相同,因此,故B正确;的长度相等且方向相同,又,,的长度相等且方向相同,,的长度相等且方向相同,故,故C正确;当且方向相反时,即使,也不能得到,故且不是的充要条件,故D错误.故选BC.三、填空题(本大题共9小题,共45.0分)18.已知向量,,,若,,则的值为________.【答案】10【解析】【分析】本题考查向量的数量积运算,向量的坐标运算,以及向量平行、垂直的条件,属于基础题.由解得x,由解得y,得到和,进而得解.【解答】解:由,可得,解得,则,由,可得,解得,则,即,则.故答案为10.19.已知向量,,若,则_________.【答案】【解析】【分析】本题考查了向量的坐标运算,属于基础题.由得,可解出再利用向量模的坐标运算即可得出结果.【解答】解:由,解得,则,所以,故.故填.20.设x,,向量,,,且,,则______.【答案】【解析】【分析】本题考查平面向量的坐标运算,考查平行向量、垂直向量的坐标运算,属于基础题.由条件求得x,y,得到,即可得解.【解答】解:由得,.由知.,所以.故答案为:.21.已知,且,则向量与向量的夹角是_______.【答案】【解析】【试题解析】【分析】本题主要考查了向量的模,向量垂直的判断与证明,向量的数量积,向量的夹角,考查学生的计算能力,属于基础题.根据题意可得,设向量与向量的夹角为,从而即可得到,进而可得向量与向量的夹角.【解答】解:,即,,设向量与向量的夹角为,,,,即,,,即向量与向量的夹角为,故答案为.22.已知向量,满足若,则向量与向量的夹角为_______.【答案】或【解析】【分析】本题考查求平面向量的夹角,属于基础题.利用条件求出,再由夹角公式即可求解.【解答】解:,,即,,,,,或,故答案为或.23.已知,,且与的夹角为锐角,则x的取值范围为______ .【答案】【解析】【分析】本题考查了平面向量的数量积及夹角计算,属于基础题.由题意得到与的夹角不可能为0,令即可解出x的范围.【解答】解:若,则,,此时,与的夹角为,即与的夹角不可能为0,与的夹角为锐角,,又,,,故x的取值范围是.故答案为.24.若非零向量满足,且,则___________ ,与的夹角为________.【答案】【解析】【分析】本题考查向量的数量积、向量的垂直关系及向量的夹角,属于中档题.由,得到,结合条件和向量数量积公式得到结果.【解答】解:,,,,,,,,,,则.故答案为,.25.已知,是两个不共线的向量,,,,若A,B,D三点共线,则实数____【答案】【解析】【分析】本题考查向量共线、平面向量的基本定理以及向量的加减运算,A,B,D三点共线,可得存在实数,使得,利用平面向量的基本定理即可得出.【解答】解:,,.又,且A,B,D三点共线,一定存在实数,使,,.26.已知向量,若,,则________.【答案】【解析】【试题解析】【分析】本题考查了向量的坐标运算,向量平行的坐标表示,向量垂直的坐标表示,向量的模.直接应用向量平行和垂直求出向量,再求.【解答】解:设,由,得,由,得,即,联立,解得所以,所以.故答案为.四、解答题(本大题共4小题,共48.0分)27.的内角A,B,C的对边分别为a,b,c,设.Ⅰ求sin B;Ⅱ若的周长为8,求的面积的取值范围.【答案】解:且,又,,,,.由题意知:,故,,,,或舍,即当时等号成立综上,的面积的取值范围为.【解析】直接利用三角函数关系式的变换的应用和倍角公式的应用求出结果.利用余弦定理和不等式的应用和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.28.已知向量,,且函数.若,求的值;在中,且,求面积的最大值.【答案】解:因为,,,且,所以,即,所以,所以.由题可得,因为,所以,又,所以.在中,由余弦定理可得,即.所以,当且仅当时等号成立,故面积的最大值为.【解析】本题考查向量的数量积,向量垂直的判定,二倍角公式,同角三角函数的基本关系,两角差的三角函数公式,三角形面积公式,余弦公式以及基本不等式的应用,属于中档题.因为,且,可得,即可得到,进而求解.由题可得,再根据,得到,结合,即可求出在中由余弦定理可得,即可求出,再根据三角形的面积公式即可得解.29.复平面内有A,B,C三点,点A对应的复数是,向量对应的复数是,向量对应的复数是,求点C在复平面内的坐标.【答案】解:,对应的复数为.设,则,,,,点C在复平面内的坐标为.【解析】本题考查复数的运算,以及向量的加减运算,首先,根据三角形法则用表示出,对应的复数相减,得出对应的复数,接下来,设出C点坐标为,用A点对应的复数以及C点对应的复数表示出,据此求出x和y的值,找到对应的点,即可得到答案.30.设内角的对边分别为,已知.求的值;若,求向量在方向上的投影.【答案】解:由题意得:向量在方向上的投影即求由正弦定理:由余弦定理:故向量在方向上的投影即.【解析】本题考查两角和的余弦公式、正弦定理、余弦定理、同角三角函数的基本关系式以及向量的投影等基本知识,考查计算能力.由已知条件利用三角形的内角和以及两角和的余弦函数公式,求出A的余弦值;利用,,结合正弦定理,求出B的正弦值,进而求出B的值,利用余弦定理求出c的大小,再利用向量的投影公式,求出在方向上的投影.。

平面向量重难点题型训练

平面向量重难点题型训练

平面向量重难点题型训练摘要:一、平面向量的基本概念二、平面向量的重难点题型三、平面向量的解题技巧四、总结与展望正文:一、平面向量的基本概念平面向量是平面内的有序线段,可以用来表示平面内的物理量,如速度、加速度、力等。

平面向量具有大小和方向两个属性,通常用有序实数对(a,b) 来表示,其中a 和b 分别表示向量的水平和垂直分量。

平面向量的基本运算包括加法、减法、数乘和向量积等。

二、平面向量的重难点题型1.向量加法与减法向量加法和减法是平面向量的基本运算之一,其难点在于处理不同方向的向量。

解决这类问题时,需要将向量分解为水平和垂直分量,然后进行相应的加减运算。

2.向量数乘向量数乘是平面向量的另一个基本运算,其难点在于理解数乘的物理意义和计算方法。

向量数乘的结果是一个向量,其大小等于原向量的大小与数乘因子的乘积,方向与原向量相同或相反。

3.向量积向量积是平面向量的高级运算,其难点在于理解向量积的物理意义和计算方法。

向量积的结果是一个向量,其大小等于原向量之积与夹角的余弦值的乘积,方向垂直于原向量所在的平面。

三、平面向量的解题技巧1.图形法图形法是解决平面向量问题的一种直观方法,通过画图可以直观地表示向量的大小和方向,以及向量之间的运算关系。

2.分解法分解法是解决平面向量问题的一种常用方法,通过将向量分解为水平和垂直分量,可以简化向量运算,尤其是处理不同方向的向量时。

3.数学建模法数学建模法是解决平面向量问题的一种高级方法,通过将实际问题抽象为数学模型,可以更好地理解向量的物理意义和计算方法。

四、总结与展望平面向量是物理学、工程学等领域中的重要概念,掌握平面向量的基本概念和解题技巧对于解决实际问题具有重要意义。

向量题型归纳(全)

向量题型归纳(全)

向量题型归纳(全)平面向量部分常见的题型类型(一):向量共线问题1.设向量a=(2,1),b=(2,3),若向量λa+b与向量c=(-4,-7)共线,则λ=?2.已知A(1,3),B(-2,-3),C(x,7),设AB=a,BC=b且a∥b,则x=?3.已知a=(1,2),c=25,且a∥c,求c的坐标。

4.n为何值时,向量a=(n,1)与向量b=(4,n)共线且方向相同?5.已知a,b不共线,c=ka+b,d=a-b,如果c∥d,那么k=?c与d的方向关系是?类型(二):向量的垂直问题1.已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则a=?2.已知a=2,b=4,且a与b的夹角为π/3,若ka+2b与ka-2b垂直,求k的值。

3.已知单位向量m和n的夹角为π/3,求证:(2n-m)⊥m。

4.已知a=(4,2),求与a垂直的单位向量的坐标。

5.已知a∥b,c⊥(a+b),则c=?类型(三):向量的夹角问题1.平面向量a,b,满足a=1,b=4且满足a·b=2,则a与b的夹角为?2.已知非零向量a,b满足a=b,(a-b)·(2a+b)=-4且a=2,b=4,则a与b的夹角为?3.已知平面向量a,b满足|a|=|b|,a+b=c,则⟨a,b⟩=?4.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则⟨a,b⟩=?5.已知a=2,b=3,a+b=7,求a与b的夹角。

6.若非零向量a,b满足a=b,(2a+b)·b=0,则a与b的夹角为?类型(四):求向量的模的问题1.已知零向量a=(2,1),a·b=10,a+b=5,求b=?2.已知向量a=1,b=2,a-b=2,则a+b=?3.已知向量a=(1,3),b=(-2,x),则a+b=?4.已知向量a=(1,sinθ),b=(1,cosθ),则a-b的最大值为?5.设点M是线段BC的中点,点A在直线BC外,BC=16,AB+AC=AB-AC,则AM=?平面向量部分常见的题型类型(一):向量共线问题1.已知向量a=(2,1),b=(2,3),若向量λa+b与向量c=(-4,-7)共线,则λ=?2.已知A(1,3),B(-2,-3),C(x,7),设AB=a,BC=b且a∥b,则x=?3.已知a=(1,2),c=25,且a∥c,求c的坐标。

向量知识点题型归纳

向量知识点题型归纳

专题--平面向量1.向向量的相关概念、、2.向量的线性运算 二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如,,等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=r r r,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

如(1)若(1,1),a b ==r r (1,1),(1,2)c -=-r ,则c =r______ (答:1322a b -r r); (2)下列向量组中,能作为平面内所有向量基底的是A. 12(0,0),(1,2)e e ==-u r u u rB. 12(1,2),(5,7)e e =-=u r u u rC. 12(3,5),(6,10)e e ==u r u u rD. 1213(2,3),(,)24e e =-=-u r u u r (答:B );(3)已知,AD BE u u u r u u u r 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==u u u r r u u u r r ,则BC uuu r可用向量,a b r r 表示为_____(答:2433a b +r r);(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是 (答:0)四.实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2a a λλ=r r当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=r r,注意:λ≠0。

高中数学向量题型和解题方法

高中数学向量题型和解题方法

高中数学向量题型和解题方法由于向量集数形于一体,是沟通代数、几何与三角函数的桥梁,因此关于向量问题的解题方法自然也就多彩多样,解决向量问题时我们应该从多个维度去思考,哪种方法简单,我们就选择哪种方法。

今天我们就从五个方面:利用基本定义求解、利用基底求解、利用坐标或建立坐标系求解、利用几何法求解、利用代数法求解等分别介绍平面向量的解题方法和策略。

只有掌握了所有的这些方法,对于向量的学习才会真正做到融会贯通。

一、利用基本定义求解为了提高和培养孩子的数学学习兴趣,可让孩子读读这本书:二、利用基底求解基底法就是指利用平面向量基本定理,将所求向量转化为已知的两个不共线向量来求解问题。

注意:如果图形中有向量垂直,我们就以互相垂直的向量作为基底。

三、利用坐标或建立坐标系求解利用坐标或建立坐标系求解就是建立适当的直角坐标系,将向量用坐标的形式表示出来,用函数与方程的思想求解。

实际上,坐标法具有天然的优势,有时能轻松解决较为复杂的问题,特别是后面我们要学习的向量在立体几何中的应用。

四、利用几何法求解几何法就是把向量问题利用平面几何的思想和方法,转化为几何问题。

这就需要我们对所学习的平面几何基本图形性质十分清楚。

我们学习到的基本平面图形主要有三角形、四边形、圆、椭圆、双曲线、抛物线等。

每种图形的基本定义、定理、性质甚至推论我们都要了如指掌,转化使用时才会得心应手。

五、利用代数法求解所谓代数法就是将题目中的已知条件和所求结论,利用代数的方法,通过代数运算解决问题。

比如我们学过的完全平方、基本不等式、函数解析式等,通过转化,在这里都会有很巧妙的应用。

以上就是高中数学向量题型和解题方法。

高考平面向量题型归纳总结

高考平面向量题型归纳总结

高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。

平面向量题型包括向量的加减、数量积、向量方向等。

本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。

一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。

2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。

其中,-b表示b的反向量,即方向相反的向量,模长相等。

二、数量积数量积又称为内积或点积,记作a·b。

1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。

另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。

2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。

三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。

2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。

在解决平面向量题型时,可以利用这两种方式来确定向量的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量求垂直
一、题型要求:
1、两向量垂直:0=∙⇔⊥b a b a
2、坐标运算:02121=+⇔⊥y y x x b a
二、例题讲解:
1、已知向量)2,1(=a 和向量)4,(x b =垂直,则x=______。

2、(2014-重庆一模)若向量a b a b k a 与且+=-=),1,3(),,1(垂直,则实数k 的值是_____。

三、练习巩固:
1、(2014-惠州模拟)已知i 和j 是两个互相垂直的单位向量,j i b j i a λ+=-=,2,且a 与b 的夹角为锐角,则实数λ的取值范围是_________。

2、(2014-红河校级考试)已知向量),1,(),2,1(-==x b a 若b a ⊥,则实数x 的值是______。

3、(2013-乐山一模)已知点A (-1,0),B (1,3),向量),2,12(-=k a 若,a AB ⊥则实数k 的值是________。

4、(2011-广东模拟)已知向量),1,2(),4,3(-==b a 如果向量b b x a -+与垂直,则实数x 的值是________。

5、(2012-山东模拟)已知向量b a ,夹角为0
60,且a b m a b a ⊥+==)3(,2||3||若,,则实数m 的值是________。

6、(2014-重庆高考)已知向量,)32(),1,2(),4,1(),3,(c b a c b k a ⊥-===且则实数k =______。

7、(2014-湖北高考)设向量),1,1(),3,3(-==b a 若),()(b a b a λλ-⊥+则实数λ=____。

8、(2013-高考大纲卷)已知向量m=)1,1(+λ,)2,2(+=λn ,若),()(n m n m -⊥+则λ=_______。

9、已知b a b a 与,8||,4||==的夹角是0120,)()2(b a k b a -⊥+,则k 的值是_______。

10、已知平面向量,b a ,),2(,2||,1||b a a b a -⊥==则|2|b a +的值是________。

11、(2013-资阳模拟)已知向量b a ,的夹角为045,,2||||==b a 且向量a 与a b -λ垂直,则实数=λ_________。

12、(2014-葫芦岛期末)已知向量b a ,是夹角为060的两个单位向量,向量)(,R b a ∈+λλ与向量b a 2-垂直,则实数=λ_____。

13、(2014-衡阳校级月考)已知向量b a ,为两个垂直的单位向量,k 为实数,若向量b a +与向量b a k -垂直,则k =______。

14、(2011-广东校级模拟)已知b a ,是夹角为0120的单位向量,则向量b a b a 2-+与λ垂直的充要条件是实数λ的值为_______。

15、(2014-甘肃一模)已知向量)0,1(),2,3(-=-=b a ,向量b a b a 2-+与λ垂直,则实数λ的值为_______。

16、已知,24),(=a 求与a 垂直的单位向量的坐标。

相关文档
最新文档