2016届山东省泰安市肥城市九年级上学期期末数学试卷(带解析)

合集下载

【人教版】2016届九年级上期末数学试卷及答案解析

【人教版】2016届九年级上期末数学试卷及答案解析

九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是()A.﹣1和1 B.1和1 C.2和1 D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3 C.x1=,x2=3 D.x1=﹣,x2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.x<0或x>4 D.0<x<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1 B.3 C.﹣1 D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%10.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c >0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=x2﹣2向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:x2﹣3x+2=0.(2)已知:关于x的方程x2+kx﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7×6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.2015-2016学年四川省绵阳市江油市九年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是()A.﹣1和1 B.1和1 C.2和1 D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3 C.x1=,x2=3 D.x1=﹣,x2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2x(x﹣3)﹣5(x﹣3)=0,再把方程左边进行因式分解得(x ﹣3)(2x﹣5)=0,方程就可化为两个一元一次方程x﹣3=0或2x﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.x<0或x>4 D.0<x<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的x 的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时x的取值范围是0<x<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1 B.3 C.﹣1 D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.10.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.11.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c >0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为x==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当x=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与x轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当x=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为 a∴同圆外切正三角形的边长=2×a×tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2×8=AB×AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=x2﹣2向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣x2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于x轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于x轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣x2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:x2﹣3x+2=0.(2)已知:关于x的方程x2+kx﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程x2﹣3x+2=0进行因式分解,变为(x﹣2)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x1=2,x2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4×1×(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7×6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为x米,则矩形的另一边长为(30﹣2x)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为x米,则x(30﹣2x)=72,解方程得:x1=3,x2=12.当x=3时,长=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当x=0时,y=2,即C(0,2),当y=0时,x+2=0,解得x=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+2;(2)抛物线上是存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。

2016-2017年山东省泰安市肥城市九年级上学期期中数学试卷及参考答案

2016-2017年山东省泰安市肥城市九年级上学期期中数学试卷及参考答案

2016-2017学年山东省泰安市肥城市九年级(上)期中数学试卷一、选择题(本大题共15小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填涂在答题纸的相应位置)1.(3分)在钝角△ABC中,∠C是钝角,sinA=,现在拿一个放大三倍的放大镜置于∠A上方,则放大镜中的∠A的正弦值为()A.B.C.D.条件不足,无法确定2.(3分)如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:13.(3分)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移B.旋转C.轴对称D.位似4.(3分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠ABC=25°,则∠P的度数为()A.50°B.40°C.65°D.55°5.(3分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1) B.(1.5,2)C.(1.6,1)D.(2.4,1)6.(3分)下列计算错误的是()A.sin60°﹣sin30°=sin30°B.sin245°+cos245°=1C.(tan60°)2=3 D.tan30°=7.(3分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=60°,则∠ADC的度数是()A.15 B.20°C.25°D.30°8.(3分)如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A.B.C.D.9.(3分)直线l上一点与圆心O的距离恰好等于圆的半径,则直线l与⊙O的位置关系是()A.相切B.相交C.相切或相交D.相离10.(3分)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.211.(3分)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.(4+4sinθ)米2B.米2C.(4+)米2 D.(4+4tanθ)米2 12.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠A与∠A′互补,则△ABC与△A′B′C′的面积比为()A.: B.5:3 C.25:9 D.5:313.(3分)如图△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AC=5,BC=3,DG=1,则BN 的长度为()A.B.C.D.14.(3分)如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD 上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为()A.1 B.C.D.1.515.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB. C.3+πD.8﹣π二、填空题(请将答案直接填写在答题纸相应位置)16.(3分)已知在△ABC中,AB=3,AC=2,E是边AB上一点,且AE=1,若F 是AC边上的点,且以A、E、F为顶点的三角形与△ABC相似,则AF的长为.17.(3分)已知B港口位于A观测点北偏东30°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC 方向航行,30min后达到C处,现测得C处位于A观测点北偏东60°方向,则此时货轮与A观测点之间的距离AC的长是.18.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.19.(3分)如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为.20.(3分)在半径为1的⊙O中,MN是直径,∠AOM=27°,∠BOA=66°,在直径MN上有一点C,AC+BC的和最小,则这个最小值等于.三、解答题(请在答题纸相应位置写出必要的步骤)21.(9分)(1)﹣tan60°﹣tan45°(2)cos30°﹣|sin60°﹣tan45°|+(2sin45°+1)0﹣(sin30°)﹣2.22.(10分)如图,△ABC是等边三角形,P是CB延长线上一点,Q是BC延长线上一点,且满足∠PAQ=120°.求证:BC2=PB•QC.23.(10分)如图,∠P的两边分别与⊙O交于点A、B、C、D,且其平分线恰好过圆心O.求证:PA=PC.24.(9分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B 处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.(10分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.26.(12分)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,(2)的基础上,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.2016-2017学年山东省泰安市肥城市九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共15小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填涂在答题纸的相应位置)1.(3分)在钝角△ABC中,∠C是钝角,sinA=,现在拿一个放大三倍的放大镜置于∠A上方,则放大镜中的∠A的正弦值为()A.B.C.D.条件不足,无法确定【解答】解:sinA=,现在拿一个放大三倍的放大镜置于∠A上方,则放大镜中的∠A的正弦值为,故选:A.2.(3分)如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:1【解答】解:∵点D、E分别为△ABC的边AB、AC上的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴△ADE的面积与四边形BCED的面积的比为1:3.故选:B.3.(3分)对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是()A.平移B.旋转C.轴对称D.位似【解答】解:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换,故选:D.4.(3分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠ABC=25°,则∠P的度数为()A.50°B.40°C.65°D.55°【解答】解:∵∠ABC=25°,∴∠AOP=2∠ABC=50°,∵PA是⊙O的切线,∴PA⊥AB,∴∠PAO=90°,∴∠P=90°﹣∠AOP=90°﹣50°=40°,故选:B.5.(3分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1) B.(1.5,2)C.(1.6,1)D.(2.4,1)【解答】解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.6.(3分)下列计算错误的是()A.sin60°﹣sin30°=sin30°B.sin245°+cos245°=1C.(tan60°)2=3 D.tan30°=【解答】解:A、sin60°﹣sin30°=﹣≠sin30°,故A符合题意;B、sin245°+cos245°=1,故B不符合题意;C、(tan60°)2=3,故C不符合题意;D、tan30°=,故D不符合题意;故选:A.7.(3分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=60°,则∠ADC的度数是()A.15 B.20°C.25°D.30°【解答】解:连接OA,∵PA、PB是⊙O的两条切线,∴∠APO=∠APB=×60°=30°,OA⊥PA,∴∠AOP=90°﹣∠APO=60°,∴∠ADC=∠AOP=30°.故选:D.8.(3分)如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A.B.C.D.【解答】解:根据题意可得:在Rt△ABF中,有AB=8,AF=AD=10,BF=6,而Rt△ABF∽Rt△EFC,故有∠EFC=∠BAF,故tan∠EFC=tan∠BAF==.故选:A.9.(3分)直线l上一点与圆心O的距离恰好等于圆的半径,则直线l与⊙O的位置关系是()A.相切B.相交C.相切或相交D.相离【解答】解:因为直线l上一点与圆心O的距离恰好等于圆的半径,所以圆心O到直线的距离等于圆的半径或圆心O到直线的距离小于圆的半径,所以直线l与⊙O相切或相交.故选:C.10.(3分)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.2【解答】解:如图所示:平移AB使A点与P点重合,连接B′Q,可得∠QMB=∠P,∵PB′=2,PQ=2,B′Q=4,∴PB′2+QB′2=PQ2,∴△QPB′是直角三角形,∴tan∠QMB=tan∠P===2.故选:D.11.(3分)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.(4+4sinθ)米2B.米2C.(4+)米2 D.(4+4tanθ)米2【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+4tanθ(米2);故选:D.12.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠A与∠A′互补,则△ABC与△A′B′C′的面积比为()A.: B.5:3 C.25:9 D.5:3【解答】解:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•cosBAD,A′D′=A′B′•cosB′A′D′,BC=2BD=2AB•sinBAD,B′C′=2B′D′=2A′B′•sinB′A′D′,∵∠A与∠A′互补,∴sinB=cosB′,s inB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9.故选:C.13.(3分)如图△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AC=5,BC=3,DG=1,则BN 的长度为()A.B.C.D.【解答】解:在Rt△ABC中,AB===4,∵四边形DEFG为正方形,∴DE=EF=GF=DG=1,∠DEG=∠GFE=90°,而∠B=90°,∴∠AED=∠B,∵∠DAE=∠CAB,∴△ADE∽△ACB,∴=,即=,∴AE=,∴AF=AE+EF=,∵∠GFA=∠B,∠GAF=∠NAB,∴△AGF∽△ANB,∴=,积=,∴BN=.故选:D.14.(3分)如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD 上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为()A.1 B.C.D.1.5【解答】解:过点0作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,=S△ACD,∴S△ABD又∵S=S△ABO+S△BOD,△ABD∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故选:B.15.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB. C.3+πD.8﹣π【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.二、填空题(请将答案直接填写在答题纸相应位置)16.(3分)已知在△ABC中,AB=3,AC=2,E是边AB上一点,且AE=1,若F是AC边上的点,且以A、E、F为顶点的三角形与△ABC相似,则AF的长为或.【解答】解:∵∠A=∠A,∴以A、E、F为顶点的三角形与△ABC相似,有△ABC∽△AEF和△ABC∽△AFE 两种情况:①如图1:当=时,△ABC∽△AEF时,即=,解得:AF=;②如图2:当=时,△ABC∽△AFE时,即=,解得:AF=.所以AF=或.故答案为或.17.(3分)已知B港口位于A观测点北偏东30°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC 方向航行,30min后达到C处,现测得C处位于A观测点北偏东60°方向,则此时货轮与A观测点之间的距离AC的长是(16﹣12)km.【解答】解:如图,过点B作BE垂直于AC延长线于点E,在Rt△ABD中,∵∠BAD=30°,BD=16km,∴AB=2BD=32km,∵∠BAE=∠CAD﹣∠BAD=30°,∴AE=ABcos∠BAE=32×=16km,BE=ABsin∠BAE=16,∴CE==12,则AC=AE﹣CE=16﹣12(km),故答案为:(16﹣12)km.18.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.19.(3分)如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为.【解答】解:连接AO并延长到圆上一点D,连接BD,可得AD为⊙O直径,故∠ABD=90°,∵⊙O的半径为5,∴AD=10,在Rt△ABD中,BD===8,∵∠ADB与∠ACB所对同弧,∴∠D=∠C,∴cosC=cosD===,故答案为:.20.(3分)在半径为1的⊙O中,MN是直径,∠AOM=27°,∠BOA=66°,在直径MN上有一点C,AC+BC的和最小,则这个最小值等于.【解答】解:作A点关于MN的对称点A′,过点OD⊥A′B于点D,∵∠AOM=27°,∠BOA=66°,∴∠MOA′=27°,则∠A′OB=120°,∵A′O=BO,∴∠A′OD=∠BOD=60°,∴∠DA′O=30°,∵A′O=1,∴DO=,∴A′D=,∴A′B=.故AC+BC的和最小值等于.故答案为:.三、解答题(请在答题纸相应位置写出必要的步骤)21.(9分)(1)﹣tan60°﹣tan45°(2)cos30°﹣|sin60°﹣tan45°|+(2sin45°+1)0﹣(sin30°)﹣2.【解答】解:(1)原式=﹣﹣1=﹣1;(2)原式=﹣1++1﹣4=﹣4.22.(10分)如图,△ABC是等边三角形,P是CB延长线上一点,Q是BC延长线上一点,且满足∠PAQ=120°.求证:BC2=PB•QC.【解答】证明:∵△ABC是等边三角形,∠PAQ=120°,∴∠PAB+∠QAC=60°,∵∠PAB+∠P=∠ABC=60°,∴∠QAC=∠P,∵∠ABP=∠QCA=180°﹣60°=120°,∴△APB∽△QAC,∴PB:AC=AB:QC,∴AB•AC=PB•QC,∵AB=AC=BC,∴BC2=PB•QC.23.(10分)如图,∠P的两边分别与⊙O交于点A、B、C、D,且其平分线恰好过圆心O.求证:PA=PC.【解答】证明:作OE⊥PB于E,OF⊥PD于F,∴AE=EB,CF=FD,∵OP平分∠BPD,OE⊥PB,OF⊥PD,∴OE=OF,∴AB=CD,∴AE=CF,在△POE和△POF中,,∴△POE≌△POF,∴PE=PF,∴PE﹣AE=PF﹣CF,即PA=PC.24.(9分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B 处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【解答】解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.因此,B处距离码头O大约13.5km.25.(10分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵BC是⊙O的直径,∴∠CEB=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)解:∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,AD=2∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,设BC=x,则=,解得x=4+6.∴BC=4+6.26.(12分)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,(2)的基础上,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.【解答】(1)证明:如图1所示,∵DM∥EF,∴∠AMD=∠AFE,∵∠AFE=∠A,∴∠AMD=∠A,∴DM=DA;(2)证明:如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;(3)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

山东省泰安市九年级上学期期末数学试卷

山东省泰安市九年级上学期期末数学试卷

山东省泰安市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)(2016·姜堰模拟) 下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2019九上·温州期中) 教练对小明推铅球的录像进行技术分析,发现某次铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知小明这次的推铅球成绩是()A . 3mB . 4mC . 8mD . 10m3. (2分) (2017八下·宁波月考) 下列一元二次方程有两个相等的实数根的是()A .B .C .D .4. (2分)(2017·石家庄模拟) 下列说法中正确的是()A . “任意画出一个等边三角形,它是轴对称图形”是随机事件B . “概率为0.001的事件”是不可能事件C . “任意画出一个平行四边形,它是中心对称图形”是必然事件D . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次5. (2分)关于x的方程x2﹣4x+4a=0有两个实数根,则a的取值范围是()A . a<1B . a>1C . a≤1D . a≥16. (2分)(2016·铜仁) 下列命题为真命题的是()A . 有公共顶点的两个角是对顶角B . 多项式x2﹣4x因式分解的结果是x(x2﹣4)C . a+a=a2D . 一元二次方程x2﹣x+2=0无实数根7. (2分)(2017·双桥模拟) 某制药厂两年前生成1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,设这种药品成本的年平均下降率为x,根据题意所列方程为()A . 100(1+x)2=81B . 100(1﹣x)2=81C . 81(1+x)2=100D . 81(1﹣x)2=1008. (2分)下列说法正确的是()A . 同弧或等弧所对的圆心角相等B . 相等的圆周角所对的弧相等C . 弧长相等的弧一定是等弧D . 平分弦的直径必垂直于弦9. (2分)一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是()A .B .C .D .10. (2分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A . ①②③⑤B . ①②③④C . ①②③④⑤D . ①②③11. (2分)下列正多边形中,中心角等于内角的是()A . 正六边形B . 正五边形C . 正四边形D . 正三边形12. (2分) (2016八上·沂源开学考) 二次函数y=kx2﹣6x+3的图象与x轴有两个交点,则k的取值范围是()A . k<3B . k<3且k≠0C . k≤3D . k≤3且k≠013. (2分) (2016七上·乳山期末) 如图为正方形网格,则∠1+∠2+∠3=()A . 105°B . 120°C . 115°D . 135°14. (2分) (2019·泸州) 如图,等腰的内切圆⊙ 与,,分别相切于点,,,且,,则的长是()A .B .C .D .15. (2分) (2016九上·滨州期中) 点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c 的图象上,则y1 , y2 , y3的大小关系是()A . y3>y2>y1B . y3>y1=y2C . y1>y2>y3D . y1=y2>y316. (2分) (2019九上·松滋期末) 二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象如图所示,给出下列结论:①b2>4ac;②abc<0;③a<b;④b+c>3a;⑤方程ax2+bx+c=0的两根之和的一半大于﹣1.其中,正确的结论有()A . ①②③⑤B . .①②④⑤C . ①②④D . .①②③④⑤二、填空题 (共4题;共4分)17. (1分) (2015九上·龙岗期末) 方程4x(2x+1)=3(2x+1)的解为________.18. (1分) (2017八下·东营期末) 对于函数y=x2+2x+1,当1<x<2时,y随x的增大而________(填写“增大”或“减小”).19. (1分)(2018·龙岩模拟) 如图,在中,,,将绕着点逆时针旋转到位置时,点恰好落在边上,则在旋转过程中,点运动到点的路径长为________.20. (1分) (2019九上·海珠期末) 如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围________.三、解答题 (共6题;共66分)21. (10分) (2017八下·金华期中) 解方程:(1)x2+4x﹣12=0(2)3(x﹣5)2=2(x﹣5)22. (11分)有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是________颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?23. (10分)(2017·兰州模拟) 如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且△ABC的面积为6.(2)在方格纸中画出△ABC的中线BD,并把线段BD绕点C逆时针旋转90°,画出旋转后的线段EF(B与E 对应,D与F对应),连接BF,请直接写出BF的长.24. (10分) (2019九上·海淀期中) 请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O 上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB 的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.25. (10分) (2016九上·营口期中) 如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC绕点O顺时针旋转90°后得到△A1B1C1 .(1)在正方形网格中作出△A1B1C1;(2)在x轴上找一点D,使DB+DB1的值最小,并求出D点坐标.26. (15分)(2017·香坊模拟) 已知,⊙O的两条弦AB、CD相交于点E,(1)如图1,若BE=DE,求证: = ;(2)如图2,在(1)的条件下,连接OC,AP为⊙O的直径,PQ为⊙O的弦,且PQ∥AB,求证:∠OCD=∠APQ;(3)如图3,在(2)的条件下,连接BD分别与OA、OC交于点G、H,连接DQ,设CD与AP交于点F,若PQ=2CF,BH=5GH,DQ=4,求⊙O的半径.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共4分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共66分)21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。

山东省泰安市九年级上册数学期末考试试卷

山东省泰安市九年级上册数学期末考试试卷

山东省泰安市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共19题;共38分)1. (2分)下列各式中,是最简二次根式的是()A .B .C .D .2. (2分)在根式中,最简二次根式有()A . 4个B . 3个C . 2个D . 1个3. (2分)(2017·荆门) 不等式组的解集为()A . x<3B . x≥2C . 2≤x<3D . 2<x<34. (2分)关于x的方程2a-x=6的解是非负数,那么a满足的条件是()A . a>3B . a≤3C . a<3D . a≥35. (2分)用配方法解下列方程,配方正确的是()A . 3x2﹣6x=9可化为(x﹣1)2=4B . x2﹣4x=0可化为(x+2)2=4C . x2+8x+9=0可化为(x+4)2=25D . 2y2﹣4y﹣1=0可化为2(y+1)2=36. (2分)已知关于x的方程x2+ax+b+1=0的解为x1=x2=2,则a+b的值为()A . -3B . -1C . 1D . 77. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .8. (2分)(2017·海陵模拟) 如图,将一张锐角三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形一定是下列图形中的()A . 平行四边形B . 矩形C . 菱形D . 正方形9. (2分)如图,点M在BC上,点N在AM上,CM=CN,,下列结论正确的是()A . △ABM∽△ACBB . △ANC∽△AMBC . △ANC∽△ACMD . △CMN∽△BCA10. (2分)如下图,在平面直角坐标系中,以P (4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为().A . (4,2)B . (4,4)C . (4,5)D . (5,4)11. (2分)△ABC在如图所示的平面直角坐标系中,将△AB C向右平移3个单位长度后得△A1B1C1 ,再将△A1B1C1绕点O旋转180°后得到△A2B2C2 .则下列说法正确的是()A . A1的坐标为(3,1)B . S四边形ABB1A1=3C . B2C=2D . ∠AC2O=45°12. (2分)如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③∠CAP=∠BAC;④ .能确定△APC和△ACB相似的是()A . ①②④B . ①③④C . ②③④D . ①②③13. (2分)(2017·岱岳模拟) 如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=()A .B .C .D .14. (2分) (2015八下·伊宁期中) 如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A . 6B .C .D . 415. (2分) (2017八下·丽水期末) 下列计算正确的是()A . ()2=±6B . =-7C . × =3D . ÷ =316. (2分)(2017·绥化) 某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A . 3.5sin29°米B . 3.5cos29°米C . 3.5tan29°米D . 米17. (2分) (2016九上·鄞州期末) 如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A .B .C .D .18. (2分)下列运算中,结果是a6的是()A . a2•a3B . a12÷a2C . (a3)3D . (﹣a)619. (2分)关于二次函数,下列说法正确的是()A . 当x=2时,有最大值-3;B . 当x=-2时,有最大值-3;C . 当x=2时,有最小值-3;D . 当x=-2时,有最小值-3;二、填空题 (共5题;共6分)20. (1分)(2013·河池) 若分式有意义,则x的取值范围是________.21. (2分) (2017九上·江门月考) 已知2是关于x的一元二次方程x2-x+k=0的一个根,那么k=________,另一根是 ________22. (1分) (2017九上·萍乡期末) 如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是________m.23. (1分)己知实数a、b满足a+b=5,ab=3,则a﹣b=________.24. (1分)已知A(-1,y1),B(-2,y2),C(3,y3)三点都在二次函数的图象上,则y1 , y2 ,y3的大小关系是________.三、解答题 (共8题;共71分)25. (5分) (2017八上·高州月考) 实数、在数轴上的位置如图所示,请化简:.26. (15分)解一元二次方程:(1)(x﹣1)2﹣4(x+2)2=0(2) 3x(2x+1)=4x+2(3) x2﹣5=2(x+1)27. (10分)(2017·浦东模拟) 已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.(1)求证:AB=BF;(2)如果BE=2EC,求证:DG=GE.28. (5分) (2017七上·灌云月考) 若关于x的方程2x-3=1和=k-3x有相同的解,求k的值29. (10分)(2017·蓝田模拟) 如图1是一枚质地均匀的正四面体骰子,它的四个面上分别标有数字0,1,2,3,如图2,正方形ABCD的四个顶点处均有一个圈.课间,李丽和王萍利用它们玩跳圈游戏,玩法如下:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形ABCD的边顺时针分钟连续跳几个边长.例如:若从圈A起跳,第一掷得的数字为2,便沿正方形的边顺时针连续跳2个边长,落到圈C,第二次掷得的数字为3,便从圈C开始,沿正方形的边顺时针连续跳3个边长,落到圈B,….设她们从圈A起跳.(1)若李丽随机掷这枚骰子一次,求她跳回圈A的概率;(2)若王萍随机掷这枚骰子两次,请用列表法或画树状图求她最后跳回圈A的概率.30. (5分) (2016八下·安庆期中) 已知a、b、c均为实数,且 +|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.31. (11分)(2019·朝阳模拟) 如图,在中,,, .点P从点A出发,以每秒个单位长度的速度向终点C运动.点Q从点B出发,以每秒2个单位长度的速度向终点A运动.连结PQ,将线段PQ绕点Q顺时针旋转得到线段QE,以PQ、QE为边作正方形PQEF.设点P运动的时间为t秒 .(1)点P到边AB的距离为________(用含t的代数式表示).(2)当时,求t的值.(3)连结BE.设的面积为S,求S与t之间的函数关系式.32. (10分) (2016九上·肇源月考) 在△ABC中,AB=AC,P是BC上任意一点.(1)如图①,若P是BC边上任意一点,PF⊥AB于点F,PE⊥AC于点E,BD为△ABC的高线,试探求PE,PF 与BD之间的数量关系;(2)如图②,若P是BC延长线上一点,PF⊥AB于点F,PE⊥AC于点E,CD为△ABC的高线,试探求PE,PF 与CD之间的数量关系.参考答案一、单选题 (共19题;共38分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、二、填空题 (共5题;共6分)20-1、21-1、22-1、23-1、24-1、三、解答题 (共8题;共71分) 25-1、26-1、26-2、26-3、27-1、27-2、28-1、29-1、29-2、30-1、31-1、31-2、31-3、32-1、32-2、。

山东省泰安市九年级上学期数学期末考试试卷

山东省泰安市九年级上学期数学期末考试试卷

山东省泰安市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下面四个图形中,是轴对称图形的是()A .B .C .D .2. (2分) (2019九上·西安月考) 设抛物线C1: y=x2 向右平移2个单位长度,再向下平移3个单位长度得到抛物线C2 ,则抛物线C2对应的函数解析式是()A . y=(x-2)2-3B . y=(x+2)2-3C . y=(x-2)2+3D . y=(x+2)2+33. (2分)(2017八上·江海月考) 在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3,能确定△ABC为直角三角形的条件有()A . 1个B . 2个C . 3个D . 0个4. (2分)(2019·鄞州模拟) 如图,在平面直角坐标系中,一个含有45〫角的三角板的其中一个锐角顶点置于点A(﹣3,﹣3)处,将其绕点A旋转,这个45〫角的两边所在的直线分别交x轴,y轴的正半轴于点B,C,连结BC,函数y=(x>0)的图象经过BC的中点D,则()A .B .C .D .5. (2分)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()A . k>-1B . k>-1且k≠0C . k<1D . k<1且k≠06. (2分) (2017八下·泉山期末) 如图,点P是轴正半轴上的一个动点,过点P作PQ⊥轴交双曲线(x>0)于点Q,连结OQ. 当点P沿轴的正方向运动时,Rt△QOP的面积().A . 保持不变B . 逐渐减小C . 逐渐增大D . 无法确定7. (2分) (2017九上·宁县期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A . a<0B . c>0C . a+b+c>0D . 方程 ax2+bx+c=0的两根是x1=﹣1,x2=38. (2分) (2017八上·海淀期末) 如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE的度数是()A . 62B . 31C . 28D . 25二、填空题 (共8题;共8分)9. (1分) (2019九上·杭州月考) 二次函数的最小值是________.10. (1分)如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=________.11. (1分) (2016九上·市中区期末) 股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是________.12. (1分)如图,在△ABC中,AB=AC,AD∥BC,∠BAC=130°,则∠DAC等于________13. (1分)如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,如果⊙O的半径为,则O点到BE的距离OM=________.14. (1分)(2017·河西模拟) 在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是________.15. (1分)如图,平移△ABC到△BDE的位置,且点D在边AB的延长线上,连接EC,CD,若AB=BC,那么在以下四个结论:①四边形ABEC是平行四边形;②四边形BDEC是菱形;③AC⊥DC;④DC平分∠BDE,正确的有________.16. (1分)已知一次函数的图象经过(-1,2)和(-3,4),则这个一次函数的解析式为________.三、解答题 (共10题;共100分)17. (10分) (2017八下·丰台期中) 用适当方法解关于的一元一次方程:(1)(2)(3).18. (5分) (2019九上·大丰月考) 如图,在边长为1的正方形组成的网格中,的顶点均在格点上,绕点顺时针旋转后得到 .(1)画出;(其中、对应点分别是、)(2)分别画出旋转过程中,点点经过的路径;①求点经过的路径的长;②求线段所扫过的面积.19. (10分)根据下列问题,列出关于的方程,并将其化为一元二次方程的一般形式:(1)两连续偶数的积是120,求这两个数中较小的数.(2)绿苑小区住宅设计中,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多11米,那么绿地的长为多少?(3)某种产品原来成本价是25元,后经过技术改进,连续二次降低成本,现在这种产品的成本价仅16元,试问平均每次降低成本的百分率为多少?20. (10分)(2019·梁平模拟) 已知x1 , x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式7+4x1x2>x12+x22,且m为整数,求m的值.21. (5分)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.22. (10分)(2019·朝阳模拟) 如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB =90°,OA=AB,△OAB的面积为2,反比例函数y=的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′与反比例函数y=的图象有公共点,直接写出a的取值范围.23. (10分)(2020·松江模拟) 已知:如图,点D、F在△ABC边AC上,点E在边BC上,且DE∥AB ,.(1)求证:EF∥BD;(2)如果,求证: .24. (10分)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25. (15分)(2017·洛阳模拟) 如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+5与坐标轴的交点B,C.已知D(0,3).(1)求抛物线的解析式;(2)M,N分别是BC,x轴上的动点,求△DMN周长最小时点M,N的坐标,并写出周长的最小值;(3)连接BD,设M是平面上一点,将△BOD绕点M顺时针旋转90°后得到△B1O1D1,点B,O,D的对应点分别是B1,O1,D1,若△B1O1D1的两个顶点恰好落在抛物线上,请直接写出点O1的坐标.26. (15分) (2016九上·温州期末) 如图,点A,B的坐标分别为(0,8),(﹣3,0),点P从点A出发,以2单位/秒的速度沿射线AO方向运动,同时点E从点B出发,以1单位/秒的速度沿射线BO方向运动,以PE为斜边构造Rt△PEC(字母按逆时针顺序),且EC=2PC,抛物线y=﹣2x2+bx+c经过点(0,4),(﹣1,﹣2),设运动时间为t秒.(1)求该抛物线的表达式;(2)当t=2时,求点C的坐标;(3)①当t<3时,求点C的坐标(用含t的代数式表示);②在运动过程中,若点C恰好落在该抛物线上,请直接写出所有满足条件的t的值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共100分)17-1、17-2、17-3、18-1、18-2、19-1、19-2、19-3、20-1、20-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。

山东省泰安市新泰市2016届九年级数学上学期期末考试试题(含解析)新人教版

山东省泰安市新泰市2016届九年级数学上学期期末考试试题(含解析)新人教版

山东省泰安市新泰市2016届九年级数学上学期期末考试试题一、选择题:本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣22.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.3.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=64.下列四个命题:真命题有()(1)在同圆或等圆中,相等的圆心角所对的弦相等;(2)经过三个点一定可以作圆;(3)相等的圆周角所对的弧相等;(4)三角形的内心到三角形各顶点的距离相等.A.1个B.2个C.3个D.4个5.下面四个图案:不等边三角形、等边三角形、正方形和矩形,其中每个图案花边的宽度都相同,那么每个图形中花边的内外边缘所围成的几何图形不相似的个数有()A.4个B.3个C.2个D.1个6.如图,在△ABC中,DE∥BC,DF∥AB,那么下列比例式中正确的是()A.B.C.D.7.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A.45° B.75° C.105°D.120°8.如图,已知等边△ABC的边上为2,DE是它的中位线,则下面四个结论:①DE=1;②△CDE∽△CAB;③BC边上的高为;④△CDE的面积与四边形ADEB的面积之比为1:3,其中正确的有()A.1个B.2个C.3个D.4个9.已知两点A(7,4),B(5,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,2)C.(2,1)D.(3,3)10.边长为6的正三角形的外接圆的面积为()A.36π B.4πC.12π D.16π11.在半径为2的⊙O内有长为2的弦AB,这条弦所对的圆周角的度数是()A.120°或60°B.120°C.60° D.75°12.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣13.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.1 B.﹣1 C.D.﹣14.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan ∠OAB=,则AB的长是()A.4 B.2C.8 D.415.如果关于x的方程(m﹣1)x2+x+1=0有实数根,那么m的取值范围是()A.B.且m≠1C.D.且m≠116.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19617.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k 的值为()A.16 B.1 C.4 D.﹣1618.已知一次函数y=3x﹣4与反比例函数y=﹣,那么它们在同一坐标系中的图象可能是()A.B.C.D.19.正方形网格中,∠AOB如图放置,则tan∠AOB的值为()A.B.1 C.D.20.如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为()A.﹣3 B.﹣C.﹣D.﹣2二、填空:本大题共4个小题,满分12分,只要求填写最后结果,每小题填对得3分21.如图,矩形EFGH内接于△ABC,且边FB落在BC上,若BC=5,AD=4,EF=EH,那么EH的长为.22.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A出,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为.23.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1•x2= .24.如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于E,F两点,若点E的坐标是(﹣3,﹣1),则点F的坐标是.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤25.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).26.如图,一次函数y=kx+b的图象与反比例函数y=﹣交于A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数解析式;(2)求△AOB的面积;(3)利用图象直接写出当一次函数大于反比例函数时自变量x的取值范围.27.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.28.为丰富学生的学习生活,某校2016届九年级组织学生参加“人文之旅”泰山两日旅游行活动,所联系的旅行社收费标准如下:活动结束后,该班共支付该旅行社活动费用3520元,请问该班共有多少人参加这次旅行活动?29.已知,如图,△ABC为等边三角形,以边BC为直径作⊙O,⊙O分别与其它两边交于点D、点E,过点E作EF⊥AC于点F.(1)求证:EF为⊙O的切线;(2)若等边三角形ABC的边长为6,求EF的长;(3)在第(2)小题的情形下,求图中阴影部分的面积.山东省泰安市新泰市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题:本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣2【考点】一元二次方程的解.【专题】待定系数法.【分析】把x=2代入已知方程,列出关于p的一元一次方程,通过解该方程来求p的值.【解答】解:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得 p=﹣1.故选:C.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【考点】锐角三角函数的定义;互余两角三角函数的关系.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.3.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【专题】配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.下列四个命题:真命题有()(1)在同圆或等圆中,相等的圆心角所对的弦相等;(2)经过三个点一定可以作圆;(3)相等的圆周角所对的弧相等;(4)三角形的内心到三角形各顶点的距离相等.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别根据圆周角定理、确定圆的条件及三角形内心的定义对各小题进行逐一分析即可.【解答】解:(1)符合圆心角、弧、弦的关系,故是真命题;(2)经过不在同一直线上的三个点一定可以作圆,故原命题是假命题;(3)在同圆或等圆中,相等的圆周角所对的弧相等,故原命题是假命题;(4)三角形的内心到三角形各顶点的距离不一定相等,故原命题是假命题.故选A.【点评】本题考查的是命题与定理,熟知圆周角定理、确定圆的条件及三角形内心的特点是解答此题的关键.5.下面四个图案:不等边三角形、等边三角形、正方形和矩形,其中每个图案花边的宽度都相同,那么每个图形中花边的内外边缘所围成的几何图形不相似的个数有()A.4个B.3个C.2个D.1个【考点】相似图形.【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【解答】解:两个不等边三角形形状相同,符合相似形的定义,故A选项不符合要求;两个等边三角形形状相同,符合相似形的定义,故B选项不符合要求;两个正方形形状相同,符合相似形的定义,故C选项不符合要求;两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.【点评】本题考查的是相似形的定义,联系图形,即形状相同,大小不一定相同的图形叫做相似形.6.如图,在△ABC中,DE∥BC,DF∥AB,那么下列比例式中正确的是()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,由DE∥BC得=,由DF∥AB得=,则=,于是可对A、B进行判断;再由DE∥BC得到=,则可对C进行判断;由DF∥AB得到=,所以+=1,于是可对D进行判断.【解答】解:∵DE∥BC,∴=,∵DF∥AB,∴=,∴=,所以A选项正确,B选项错误;∵DE∥BC,∴=,所以C选项错误;∵DF∥AB,∴=,∴+=1,所以D选项错误.故选A.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.7.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A.45° B.75° C.105°D.120°【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A、∠B的度数,根据三角形内角和定理计算即可.【解答】解:由题意得,sinA﹣=0,﹣cosB=0,即sinA=,=cosB,解得,∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°,故选:C.【点评】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.8.如图,已知等边△ABC的边上为2,DE是它的中位线,则下面四个结论:①DE=1;②△CDE∽△CAB;③BC边上的高为;④△CDE的面积与四边形ADEB的面积之比为1:3,其中正确的有()A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;等边三角形的性质;三角形中位线定理.【分析】根据图形,利用三角形中位线定理,可得DE=1,①成立;DE是△CAB的中位线,可得DE∥AB,利用平行线分线段成比例定理的推论,可得△CDE∽△CAB;②成立;BC边上的高,可利用勾股定理求出等于;③成立;由△CDE∽△CAB,且相似比等于1:2,那么它们的面积比等于相似比的平方,就等于1:4,于是得到△CDE的面积与四边形ADEB的面积之比为1:3,(4)也成立.【解答】解:∵DE是它的中位线,∴DE=AB=1,故①正确,∴DE∥AB,∴△CDE∽△CAB,故(3)正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故(4)正确,∵等边三角形的高=边长×sin60°=2×=,故(2)正确.故选D.【点评】本题主要考查相似三角形的判定与性质、等边三角形的性质、三角形中位线定理,关键在于推出DE∥BC.9.已知两点A(7,4),B(5,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,2)C.(2,1)D.(3,3)【考点】位似变换;坐标与图形性质.【分析】根据平移变换的性质求出平移后点A的坐标,根据位似变换的性质计算即可.【解答】解:将线段AB向左平移一个单位,则点A(7,4)变为(6,4),以原点O为位似中心,在第一象限内将其缩小为原来的,则点A的对应点C的坐标为(6×,4×),即(3,2),故选:B.【点评】本题考查的是位似变换的性质和坐标与图形的关系,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.10.边长为6的正三角形的外接圆的面积为()A.36π B.4πC.12π D.16π【考点】三角形的外接圆与外心;等边三角形的性质.【分析】先求出边长为6的正三角形的外接圆的半径,再求出其面积即可.【解答】解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵△ABC是边长为6的等边三角形,BC=6,∴∠BOC==120°,∠BOD=∠BOC=60°,BD=3,∴OB===2,∴外接圆的面积=π•(2)2=12π;故选:C.【点评】本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.11.在半径为2的⊙O内有长为2的弦AB,这条弦所对的圆周角的度数是()A.120°或60°B.120°C.60° D.75°【考点】圆周角定理;垂径定理.【分析】首先根据题意画出图形,然后由直径所对的圆周角是直角,可得∠ACB的度数,再利用特殊角的三角函数,即可求得答案.【解答】解:如图,AB是直径,BC=2,∴∠ACB=90°,∵⊙O的半径为2,∴AB=4,∴sin∠BAC==,∴∠BAC=60°,∴∠BDC=180°﹣∠BAC=120°,∴这条弦所对的圆周角的度数是:120°或60°.故选A.【点评】此题考查了圆周角定理、圆的内接四边形的性质以及特殊角的三角函数值.注意解题意画出图形,利用图形求解是关键.12.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=,求出 y1与y2的表达式,再根据y1>y2则列不等式即可解答.【解答】解:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=得,y1=﹣2m﹣3,y2=,∵y1>y2,∴﹣2m﹣3>,解得m<﹣,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,要知道,反比例函数图象上的点符合函数解析式.13.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.1 B.﹣1 C.D.﹣【考点】根的判别式.【专题】探究型.【分析】根据关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根可知△=0,求出a的取值即可.【解答】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1.故选B.【点评】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.14.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4 B.2C.8 D.4【考点】切线的性质.【分析】连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.【解答】解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选C.【点评】本题主要考查了切线的性质和垂径定理,连接过切点的半径是解答此题的关键.15.如果关于x的方程(m﹣1)x2+x+1=0有实数根,那么m的取值范围是()A.B.且m≠1C.D.且m≠1【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】分类讨论:当m﹣1=0时,方程为一元一次方程,有解;当m﹣1≠0时,根据判别式的意义得到△=12﹣4×(m﹣1)×1≥0,解得m≤且m≠1,然后综合两种情况就看得到m的取值范围.【解答】解:当m﹣1=0时,x+1=0,解得x=﹣1;当m﹣1≠0时,△=12﹣4×(m﹣1)×1≥0,解得m≤且m≠1,所以m的取值范围为m≤.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.16.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.17.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k 的值为()A.16 B.1 C.4 D.﹣16【考点】反比例函数图象的对称性.【分析】根据反比例函数的中心对称性得到正方形OABC的面积=16,则3a×3a=16,解得a=1(a=﹣1舍去),所以P点坐标为(3,1),然后把P点坐标代入y=即可求出k.【解答】解:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16,∵P点坐标为(4a,a),∴4a×4a=16,∴a=1(a=﹣1舍去),∴P点坐标为(4,1),把P(4,1)代入y=,得k=4×1=4.故选:C.【点评】本题考查了反比例函数的对称性和反比例函数比例系数k的几何意义.k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象的对称性与正方形的性质.18.已知一次函数y=3x﹣4与反比例函数y=﹣,那么它们在同一坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】分别根据两种不同的函数的性质和其比例系数判断其图象的位置后即可得到正确的选项.【解答】解:一次函数y=3x﹣4经过第一、三、四象限,反比例函数y=﹣的图象分布在第二、四象限.故选D.【点评】本题考查了反比例函数图象:反比例函数y=的图象为双曲线,当k>0时,图象分布在第一、三象限,当k<0,图象分布在第二、四象限.也考查了一次函数图象.19.正方形网格中,∠AOB如图放置,则tan∠AOB的值为()A.B.1 C.D.【考点】特殊角的三角函数值;等腰直角三角形.【分析】根据图形连接AC,分别求出AC、OC、AO的长度,可得△OAC为直角三角形,继而求出tan∠AOB 的值.【解答】解:如图,AC==,OC==,OC==,∵AC2+OC2=20=OC2,∴△OAC为直角三角形,∵AC=OC,∴△OAC为等腰直角三角形,∴tan∠AOB=tan45°=1.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是根据题意判断三角形OAC为等腰直角三角形.20.如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为()A.﹣3 B.﹣C.﹣D.﹣2【考点】正多边形和圆;扇形面积的计算.【分析】利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×,即可得出结果.【解答】解:∵⊙O的半径为2,∴⊙O的面积为π×22=4π,∵空白正六边形为六个边长为2的正三角形,∴每个三角形面积为×2×2×sin60°=,∴正六边形面积为6,∴阴影面积为(4π﹣6)×=π﹣,故选:B.【点评】本题主要考查了正多边形和圆的面积公式,注意到阴影面积=(圆的面积﹣正六边形的面积)×是解答此题的关键.二、填空:本大题共4个小题,满分12分,只要求填写最后结果,每小题填对得3分21.如图,矩形EFGH内接于△ABC,且边FB落在BC上,若BC=5,AD=4,EF=EH,那么EH的长为.【考点】相似三角形的判定与性质;矩形的性质.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.【解答】解:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=4﹣2x,∴=,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A出,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为30.【考点】解直角三角形的应用-方向角问题.【分析】根据时间、速度、距离之间的关系求出AC,根据等腰直角三角形的性质解答即可.【解答】解:由题意得,AC=60×0.5=30海里,∵CD∥BF,∴∠CBF=∠DCB=60°,又∠ABF=15°,∴∠ABC=45°,∵AE∥BF,∴∠EAB=∠FBA=15°,又∠EAC=75°,∴∠CAB=90°,∴BC=AC=30海里,故答案为:30.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.23.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1•x2= 6 .【考点】根与系数的关系.【分析】由x1,x2是一元二次方程x2﹣5x+6=0的两个根,直接利用根与系数的关系求解即可求得答案.【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴x1•x2=6.故答案为:6.【点评】此题考查了根与系数的关系.注意x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.24.如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于E,F两点,若点E的坐标是(﹣3,﹣1),则点F的坐标是(﹣3,﹣9).【考点】切线的性质;坐标与图形性质.【分析】过点P作AP⊥EF交EF于点A,连接PE,设OP=x,由点E的坐标易求AP=OB=3,AE=AB﹣BE=x ﹣1,在Rt△ABE中,由勾股定理可得32+(x﹣1)2=x2,解得x的值,即可求出BF的长,进而可求出点F的坐标.【解答】解:过点P作AP⊥EF交EF于点A,连接PE,设OP=x,∵⊙P与x轴相切于原点O,∴OP⊥OE,∵平行于y轴的直线交⊙P于E,F两点,∴四边形APOB是矩形,∴AB=OP=x,∵点E的坐标是(﹣3,﹣1),∴AP=OB=3,AE=AB﹣BE=x﹣1,在Rt△ABE中,32+(x﹣1)2=x2,解得x=5,∴AE=4,∵AF=AE,∴EF=8,∴BF=EF+BE=9,∴点F的坐标是(﹣3,﹣9).故答案为(﹣3,﹣9).【点评】本题综合考查了圆形的性质和坐标的确定以及勾股定理的运用和矩形的判定及其性质,是综合性较强,难度中等的综合题,解题的关键是根据勾股定理求出⊙P的半径,从而得到F的坐标.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤25.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【考点】解直角三角形的应用-方向角问题.【分析】过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.【解答】解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键.26.如图,一次函数y=kx+b的图象与反比例函数y=﹣交于A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数解析式;(2)求△AOB的面积;(3)利用图象直接写出当一次函数大于反比例函数时自变量x的取值范围.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,m)、B(n,﹣1)代入y=﹣求出m、n的值,从而得到A(﹣1,5),B (5,﹣1),然后利用待定系数法求一次函数解析式;(2)设直线y=﹣x+4与y轴的交点为C,则C(0,4),根据三角形面积公式,利用S△AOB=S△AOC+S△BOC 进行计算;(3)观察函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的取值范围即可.【解答】解:(1)把A(﹣1,m)、B(n,﹣1)代入y=﹣得﹣m=﹣5,﹣n=﹣5,解得m=5,n=4,则A(﹣1,5),B(5,﹣1),把A(﹣1,5),B(5,﹣1)代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+4;(2)设直线y=﹣x+4与y轴的交点为C,则C(0,4),所以S△AOB=S△AOC+S△BOC=×4×1+×4×5=12;(3)x<﹣1或0<x<5.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.27.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;(2)根据相似三角形的性质得到,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到,等量代换得到,即可得到结论.【解答】证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,∴△ACE∽△BDE;(2)∵△ACE∽△BDE,∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴,∴BE•DC=AB•DE.【点评】本题考查了相似三角形的判定和性质,邻补角的定义,熟练掌握相似三角形的判定和性质是解题的关键.28.为丰富学生的学习生活,某校2016届九年级组织学生参加“人文之旅”泰山两日旅游行活动,所联系的旅行社收费标准如下:活动结束后,该班共支付该旅行社活动费用3520元,请问该班共有多少人参加这次旅行活动?【考点】一元二次方程的应用.【专题】图表型.【分析】判断得到这次春游活动的人数超过24人,设人数为x名,根据题意列出方程,求出方程的解即可得到结果.【解答】解:∵24人的费用为2880元<3520元,∴参加这次春游活动的人数超过24人,设该班参加这次春游活动的人数为x名.根据题意,得[120﹣2(x﹣24)]x=3520,整理,得x2﹣84x+1760=0,解得:x1=44,x2=40,x1=44时,120﹣2(x﹣24)=80<85,不合题意,舍去;x2=40时,120﹣2(x﹣24)=88>85.答:该班共有40人参加这次春游活动.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键,解题时候一定注意首先判断人数是否超过24人,难度不大.29.已知,如图,△ABC为等边三角形,以边BC为直径作⊙O,⊙O分别与其它两边交于点D、点E,过点E作EF⊥AC于点F.(1)求证:EF为⊙O的切线;(2)若等边三角形ABC的边长为6,求EF的长;(3)在第(2)小题的情形下,求图中阴影部分的面积.。

九年级上册泰安数学期末试卷模拟练习卷(Word版 含解析)

九年级上册泰安数学期末试卷模拟练习卷(Word版 含解析)

九年级上册泰安数学期末试卷模拟练习卷(Word 版 含解析) 一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=02.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .3 3.已知34a b =(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b = C .43b a = D .43a b =4.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒;②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,0 6.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数 7.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°8.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α 9.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-3 10.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤ C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 11.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根 12.二次函数y =x 2﹣2x +1与x 轴的交点个数是( )A .0B .1C .2D .3 二、填空题13.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 .14.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.15.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.16.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.17.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 18.关于x 的方程220kx x --=的一个根为2,则k =______.19.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.20.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.21.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.22.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.23.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.24.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。

九年级上册泰安数学期末试卷模拟练习卷(Word版 含解析)

九年级上册泰安数学期末试卷模拟练习卷(Word版 含解析)

九年级上册泰安数学期末试卷模拟练习卷(Word 版 含解析)一、选择题1.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x+= B .220x x --=C .2320x xy -=D .240y -=2.sin 30°的值为( ) A .3B .32C .12D .223.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36°4.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .195.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.26.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④7.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .238.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16 B .15,15 C .15,15.5 D .16,15 9.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .180 10.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .211.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=12.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2D .中位数是3,众数是4二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.14.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.15.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.16.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.17.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.18.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.19.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 20.23x +x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=39=3满足题意;当x 2=﹣11=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x 5x +=1的解为_____.21.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.22.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 23.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____. 24.已知234x y z x zy+===,则_______ 三、解答题25.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.26.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E . (1)求∠DAC 的度数; (2)若AC =6,求BE 的长.27.如图,在Rt ABC ∆中,90BAC ∠=︒,点G 是BC 中点.连接AG .作BD AG ⊥,垂足为F ,ABD ∆的外接圆O 交BC 于点E ,连接AE .(1)求证:AB AE =;(2)过点D 作圆O 的切线,交BC 于点M .若14GM GC =,求tan ABC ∠的值; (3)在(2)的条件下,当1DF =时,求BG 的长.28.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧),已知A 点坐标为(0,3). (1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴与⊙C 有怎样的位置关系,并给出证明.29.如图,AB 是⊙O 的直径,D 是弦AC 的延长线上一点,且CD =AC ,DB 的延长线交⊙O 于点E .(1)求证:CD =CE ;(2)连结AE ,若∠D =25°,求∠BAE 的度数.30.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率.31.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次. (1)用树状图列出所有可能出现的结果; (2)求3次摸到的球颜色相同的概率.32.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情. (1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程. 【详解】 解:A.2210x x+=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程,【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.2.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.3.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.4.B解析:B【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.5.B【解析】 【分析】根据平行线分线段成比例定理即可解决问题. 【详解】 解:////AD BE CF ,AB DEBC EF ∴=,即1 1.23EF =, 3.6EF ∴=, 3.6 1.2 4.8DF EF DE ∴++===,故选B . 【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.6.A解析:A 【解析】 【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可. 【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心, ∴OA =OC =OB , ∵四边形OCDE 为正方形, ∴OA =OC <OD , ∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心, OA =OE =OB ,即O 是△AEB 的外心, OB =OC =OE ,即O 是△BCE 的外心, OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A . 【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.8.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.9.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C.此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.10.C解析:C 【解析】 【分析】根据根与系数的关系即可求出αβ+的值. 【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C . 【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=ba-是解决此题的关键. 11.C解析:C 【解析】 【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论. 【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =- 则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =, ∴关于t 的方程20at bt c ++=的解为11t =-,23t =,∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3 解得:10x =,24x =, 故选C . 【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.12.A解析:A 【解析】 【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.二、填空题13.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.14.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.15.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22 【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.16.24 【解析】 【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交A C 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24 【解析】 【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积. 【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J . ∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9, ∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2 即AH 2=HM 2+AM 2 (12-x )2=x 2+62 解得x=4.5 ∵EK ∥AC , ∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK= ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6, ∵EG ∥AB ,EF ∥AC ,FG ∥BC ,∴∠EGF =∠ABC ,∠FEG =∠CAB , ∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG= 解得FG=8∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.17.4 【解析】 【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决. 【详解】 解:由图可知, 第一行1个数, 第二行2个数, 第解析:4 【解析】 【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决. 【详解】 解:由图可知, 第一行1个数, 第二行2个数, 第三行3个数, …,则第n 行n 个数,故前n 个数字的个数为:1+2+3+…+n =(1)2n n +, ∵当n =63时,前63行共有63642⨯=2016个数字,2020﹣2016=4, ∴2020在第64行左起第4个数, 故答案为:64,4. 【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.18.【解析】 【分析】根据二次函数图象的平移规律平移即可. 【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 即故答案为:. 【点睛】本题主要考查二次函 解析:22(1)2y x =+-【解析】 【分析】根据二次函数图象的平移规律平移即可. 【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-. 【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.19.4 【解析】 【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.20.x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x移到等号右边得到:=1﹣x,两边平方,得x+5=1﹣2x解析:x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x1﹣x,两边平方,得x+5=1﹣2x+x2,解得x1=4,x2=﹣1,检验:x=4时,=5,左边≠右边,∴x=4不是原方程的解,当x=﹣1时,﹣1+2=1,左边=右边,∴x=﹣1是原方程的解,∴原方程的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.21.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.22.y=﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a的值,进而得平移后抛物线的函数表达式.【详解】解析:y=﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式. 【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2), 设平移后函数的解析式为()212y a x +-=, ∵所得的抛物线经过点(0,﹣3), ∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--, 故答案为()212y x +=--. 【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2016届山东省泰安市肥城市九年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:133分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2013•遵义)如图,已知直线y=x 与双曲线y=(k >0)交于A 、B 两点,点B 的坐标为(﹣4,﹣2),C 为双曲线y=(k >0)上一点,且在第一象限内,若△AOC 的面积为6,则点C 的坐标为 .【答案】(2,4)或(8,1) 【解析】试题分析:把点B 的坐标代入反比例函数解析式求出k 值,再根据反比例函数图象的中心对称性求出点A 的坐标,然后过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,设试卷第2页,共26页点C 的坐标为(a ,),然后根据S △AOC =S △COF +S 梯形ACFE ﹣S △AOE 列出方程求解即可得到a 的值,从而得解.解:∵点B (﹣4,﹣2)在双曲线y=上,∴=﹣2,∴k=8,根据中心对称性,点A 、B 关于原点对称, 所以,A (4,2),如图,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,设点C 的坐标为(a ,), 若S △AOC =S △COF +S 梯形ACFE ﹣S △AOE , =×8+×(2+)(4﹣a )﹣×8,=4+﹣4,=,∵△AOC 的面积为6,∴=6,整理得,a 2+6a ﹣16=0, 解得a 1=2,a 2=﹣8(舍去), ∴==4,∴点C 的坐标为(2,4).若S △AOC =S △AOE +S 梯形ACFE ﹣S △COF =,∴=6,解得:a=8或a=﹣2(舍去) ∴点C 的坐标为(8,1). 故答案为:(2,4)或(8,1).考点:反比例函数与一次函数的交点问题.2、(2013•龙岩)如图,A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,则弦AB 的长为( )A .B .2C .2D .4【答案】C 【解析】试题分析:由A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继而求得答案.解:∵A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°, ∴∠AOB=2∠APB=90°, ∴△OAB 是等腰直角三角形, ∴AB=OA=2.故选C .考点:圆周角定理;等腰直角三角形.3、(2013•青海)如图在直角△ABC 中,∠ACB=90°,AC=8cm ,BC=6cm ,分别以A 、B 为圆心,以的长为半径作圆,将直角△ABC 截去两个扇形,则剩余(阴影)部分的面积为( )试卷第4页,共26页A .B .C .D .【答案】A 【解析】试题分析:根据勾股定理求出AB ,则得出圆的半径,分别求出三角形ACB 和扇形AEF 和扇形BEM 的面积和,即可得出答案.解:∵在Rt △ACB 中,∠C=90°,BC=6,AC=8,由勾股定理得:AB=10, 即两圆的半径是5,∴阴影部分的面积是S=S △ACB ﹣S 扇形AEF ﹣S 扇形BEM=×6×8﹣=24﹣π.故选A .考点:扇形面积的计算.4、(2014•泉州)在同一平面直角坐标系中,函数y=mx+m 与y=(m≠0)的图象可能是( )A .B .C .D .【答案】A 【解析】试题分析:先根据一次函数的性质判断出m 取值,再根据反比例函数的性质判断出m 的取值,二者一致的即为正确答案.解:A 、由函数y=mx+m 的图象可知m >0,由函数y=的图象可知m >0,故A 选项正确;B 、由函数y=mx+m 的图象可知m <0,由函数y=的图象可知m >0,相矛盾,故B 选项错误;C 、由函数y=mx+m 的图象y 随x 的增大而减小,则m <0,而该直线与y 轴交于正半轴,则m >0,相矛盾,故C 选项错误;D 、由函数y=mx+m 的图象y 随x 的增大而增大,则m >0,而该直线与y 轴交于负半轴,则m <0,相矛盾,故D 选项错误; 故选:A .考点:反比例函数的图象;一次函数的图象.5、(2013•黄石)如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .【答案】C 【解析】试题分析:先根据勾股定理求出AB 的长,过C 作CM ⊥AB ,交AB 于点M ,由垂径定理可知M 为AD 的中点,由三角形的面积可求出CM 的长,在Rt △ACM 中,根据勾股定理可求出AM 的长,进而可得出结论.试卷第6页,共26页解:∵在Rt △ABC 中,∠ACB=90°,AC=3,BC=4, ∴AB===5,过C 作CM ⊥AB ,交AB 于点M ,如图所示, ∵CM ⊥AB , ∴M 为AD 的中点,∵S △ABC =AC•BC=AB•CM ,且AC=3,BC=4,AB=5, ∴CM=,在Rt △ACM 中,根据勾股定理得:AC 2=AM 2+CM 2,即9=AM 2+()2,解得:AM=, ∴AD=2AM=.故选C .考点:垂径定理;勾股定理.6、(2015秋•肥城市期末)已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:则当x=4时,y 的值为( )A .5B .C .3D .不能确定【答案】A 【解析】试题分析:根据二次函数的对称性结合图表数据可知,x=4时的函数值与x=﹣1时的函数值相同.解:由图表可知,x=4时的函数值与x=﹣1时的函数值相同. 所以当x=4时,y 的值为5.故选A .考点:二次函数的性质.7、(2013•台州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且,则S △ADE :S 四边形BCED 的值为( )A .1:B .1:2C .1:3D .1:4【答案】C 【解析】试题分析:首先根据两边对应成比例且夹角相等的两三角形相似,证得△ADE ∽△ACB ,再由相似三角形面积的比等于相似比的平方即可求得答案. 解:在△ADE 与△ACB 中,,∴△ADE ∽△ACB ,∴S △ADE :S △ACB =(AE :AB )2=1:4, ∴S △ADE :S 四边形BCED =1:3. 故选C .考点:相似三角形的判定与性质.8、(2015•徐州)若函数y=kx ﹣b 的图象如图所示,则关于x 的不等式k (x ﹣3)﹣b >0的解集为( )A .x <2B .x >2C .x <5D .x >5【答案】C 【解析】试题分析:根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析试卷第8页,共26页式中,可求出k 、b 的关系式;然后将k 、b 的关系式代入k (x ﹣3)﹣b >0中进行求解即可.解:∵一次函数y=kx ﹣b 经过点(2,0), ∴2k ﹣b=0,b=2k .函数值y 随x 的增大而减小,则k <0; 解关于k (x ﹣3)﹣b >0, 移项得:kx >3k+b ,即kx >5k ;两边同时除以k ,因为k <0,因而解集是x <5. 故选:C .考点:一次函数与一元一次不等式.9、(2013•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD ,AB=3,BD=2,则CD 的长为( )A .B .C .2D .3【答案】B 【解析】试题分析:先根据题意判断出△ABD ∽△BDC ,再根据相似三角形的对应边成比例即可得出CD 的长.解:∵∠ABD=∠BDC=90°,∠A=∠CBD ,AB=3,BD=2, ∴△ABD ∽△BDC , ∴=,即=,解得CD=. 故选B .考点:相似三角形的判定与性质.10、(2015秋•肥城市期末)若a 、b 是互不相等的两个实数,且分别满足a 2﹣a ﹣1=0,b 2﹣b ﹣1=0,则a+b+2ab 的值为( )A .﹣1B .1C .3D .【答案】A 【解析】试题分析:根据题意可把a 、b 看作方程x 2﹣x ﹣1=0的两根,则利用根与系数的关系得到a+b=1,ab=﹣1,然后利用整体代入的方法计算a+b+2ab 的值.解:∵a 、b 是互不相等的两个实数,且分别满足a 2﹣a ﹣1=0,b 2﹣b ﹣1=0, ∴a 、b 可看作方程x 2﹣x ﹣1=0的两根, ∴a+b=1,ab=﹣1,∴a+b+2ab=1+2×(﹣1)=﹣1. 故选A .考点:根与系数的关系.11、(2013•苏州)如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数y=(x >0)的图象经过顶点B ,则k 的值为( )A .12B .20C .24D .32【答案】D 【解析】试题分析:过C 点作CD ⊥x 轴,垂足为D ,根据点C 坐标求出OD 、CD 、BC 的值,进而求出B 点的坐标,即可求出k 的值. 解:过C 点作CD ⊥x 轴,垂足为D , ∵点C 的坐标为(3,4), ∴OD=3,CD=4, ∴OC===5,∴OC=BC=5,试卷第10页,共26页∴点B 坐标为(8,4),∵反比例函数y=(x >0)的图象经过顶点B , ∴k=32, 故选:D .考点:反比例函数综合题.12、(2015秋•肥城市期末)如图,A ,B ,C 是⊙O 上的三点,已知∠AOC=110°,则∠ABC 的度数是( )A .50°B .55°C .60°D .70°【答案】B 【解析】试题分析:由A ,B ,C 是⊙O 上的三点,已知∠AOC=110°,根据圆周角定理,即可求得答案.解:∵A ,B ,C 是⊙O 上的三点,∠AOC=110°, ∴∠ABC=∠AOC=55°. 故B .考点:圆周角定理.13、(2011•东营)河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是1:(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( )试卷第11页,共26页A .5米B .10米C .15米D .10米【答案】A 【解析】试题分析:Rt △ABC 中,已知了坡比是坡面的铅直高度BC 与水平宽度AC 之比,通过解直角三角形即可求出水平宽度AC 的长. 解:Rt △ABC 中,BC=5米,tanA=1:;∴AC=BC÷tanA=5米;故选A .考点:解直角三角形的应用-坡度坡角问题.14、(2013•宜昌)如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2)【答案】B 【解析】试题分析:根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.解:△ABC 中,∠ABC=90°,AB=6,BC=3,AB :BC=2.A 、当点E 的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB :BC=CD :DE ,△CDE ∽△ABC ,故本选项不符合题意;B 、当点E 的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB :BC≠CD :DE ,△CDE 与△ABC 不相似,故本选项符合题意;C 、当点E 的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB :BC=DE :CD ,△EDC ∽△ABC ,故本选项不符合题意;D 、当点E 的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB :BC=CD :CE ,试卷第12页,共26页△DCE ∽△ABC ,故本选项不符合题意; 故选:B .考点:相似三角形的判定;坐标与图形性质.15、(2015•长宁区一模)抛物线y=2x 2,y=﹣2x 2,y=x 2共有的性质是( ) A .开口向下 B .对称轴是y 轴 C .都有最低点D .y 的值随x 的增大而减小【答案】B 【解析】试题分析:结合抛物线的解析式和二次函数的性质,逐项判断即可. 解:∵y=2x 2,y=x 2开口向上, ∴A 不正确,∵y=﹣2x 2,开口向下, ∴有最高点, ∴C 不正确,∵在对称轴两侧的增减性不同, ∴D 不正确,∵三个抛物线中都不含有一次项, ∴其对称轴为y 轴, ∴B 正确, 故选B .考点:二次函数的性质.16、(2013•湘潭)如图,点P (﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式( )试卷第13页,共26页A .B .C .D .【答案】D 【解析】试题分析:把P 点坐标代入反比例函数解析式即可算出k 的值,进而得到答案. 解:∵点P (﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D .考点:待定系数法求反比例函数解析式.17、(2015秋•肥城市期末)你认为tan15°的值可能是( ) A .B .2C .2D .【答案】C 【解析】试题分析:根据特殊角三角函数值,可得tan30°,根据正切函数的增减性,可得答案. 解:由15°<30°, 得tan15°<tan30°=, tan15°大约是2﹣,故选:C .考点:锐角三角函数的增减性;特殊角的三角函数值.18、(2015秋•肥城市期末)一元二次方程x=x (x ﹣2)的根是( ) A .0或2B .0或3C .1或2D .3【答案】B 【解析】试题分析:移项后分解因式,即可得出两个一元一次方程,求出方程的解即可. 解:x=x (x ﹣2), x ﹣x (x ﹣2)=0, x[1﹣(x ﹣2)]=0,试卷第14页,共26页x=0,1﹣(x ﹣2)=0, x 1=0,x 2=3, 故选B .考点:解一元二次方程-因式分解法.19、(2015秋•肥城市期末)下列方程是一元二次方程的是( ) A .ax 2+bx+c=0 B .(x+1)2=x (x ﹣1) C .x 2+1=0 D .【答案】C 【解析】试题分析:根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解:A 、a=0时是一元一次方程,故A 错误; B 、(x+1)2=x (x ﹣1)是元一次方程,故B 错误; C 、x 2+1=0是一元二次方程,故C 正确; D 、x+=1是分式方程,故D 错误; 故选:C .考点:一元二次方程的定义.20、(2009•成都)若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( ) A .k >﹣1B .k >﹣1且k≠0C .k <1D .k <1且k≠0【答案】B 【解析】试题分析:根据根的判别式及一元二次方程的定义得出关于k 的不等式组,求出k 的取值范围即可.解:∵关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,∴,即,试卷第15页,共26页解得k >﹣1且k≠0. 故选B .考点:根的判别式;一元二次方程的定义.21、(2014•达州)如图是二次函数y=ax 2+bx+c 的图象的一部分,对称轴是直线x=1. ①b 2>4ac ; ②4a ﹣2b+c <0;③不等式ax 2+bx+c >0的解集是x≥3.5;④若(﹣2,y 1),(5,y 2)是抛物线上的两点,则y 1<y 2. 上述4个判断中,正确的是( )A .①②B .①④C .①③④D .②③④【答案】B 【解析】试题分析:根据抛物线与x 轴有两个交点可得b 2﹣4ac >0,进而判断①正确; 根据题中条件不能得出x=﹣2时y 的正负,因而不能得出②正确;如果设ax 2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax 2+bx+c >0的解集是x <α或x >β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解:①∵抛物线与x 轴有两个交点, ∴b 2﹣4ac >0,∴b 2>4ac ,故①正确;②x=﹣2时,y=4a ﹣2b+c ,而题中条件不能判断此时y 的正负,即4a ﹣2b+c 可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax 2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax 2+bx+c >0的解集是x <α或x >β,故③错误;④∵二次函数y=ax 2+bx+c 的对称轴是直线x=1, ∴x=﹣2与x=4时的函数值相等,试卷第16页,共26页∵4<5,∴当抛物线开口向上时,在对称轴的右边,y 随x 的增大而增大,∴y 1<y 2,故④正确.故选:B .考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).试卷第17页,共26页第II 卷(非选择题)二、填空题(题型注释)22、(2015•河南模拟)如图,以等边三角形ABC 的BC 边为直径画半圆,分别交AB 、AC 于点E 、D ,DF 是圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为 .【答案】3【解析】试题分析:连结OD ,作DH ⊥FG 于H ,DM ⊥BC 于M ,根据等边三角形的性质得∠A=∠C=∠ABC=60°,AC=BC ,根据切线的性质得OD ⊥DF ,再证明OD ∥AB ,则DF ⊥AB ,在Rt △ADF 中根据含30度的直角三角形三边的关系得DF=AF=2,由BC 为⊙O 的直径,根据圆周角定理得∠BDC=90°,则AD=CD=4,OD=4,所以OM=OD=2,在Rt △DFH 中可计算出FH=,DH=FH=3,则GM=3,于是OG=GM ﹣OM=1,BG=OB ﹣OG=3,在Rt △BGF 中可计算FG=BG=3.解:连结OD ,作DH ⊥FG 于H ,DM ⊥BC 于M ,如图, ∵△ABC 为等边三角形,∴∠A=∠C=∠ABC=60°,AC=BC , ∵DF 是圆的切线, ∴OD ⊥DF ,∵△ODC 为等边三角形, ∴∠ODC=60°, ∴∠A=∠ODC , ∴OD ∥AB ,试卷第18页,共26页∴DF ⊥AB ,在Rt △ADF 中,AF=2,∠A=60°, ∴AD=4,DF=AF=2,∵BC 为⊙O 的直径, ∴∠BDC=90°, ∴BD ⊥AC , ∴AD=CD=4, ∴OD=4, ∴OM=OD=2,在Rt △DFH 中,∠DFH=60°,DF=2,∴FH=,DH=FH=3,∴GM=3,∴OG=GM ﹣OM=1, ∴BG=OB ﹣OG=3,在Rt △BGF 中,∠FBG=60°,BG=3, ∴FG=BG=3.故答案为3.考点:切线的性质;等边三角形的性质.试卷第19页,共26页23、(2015秋•肥城市期末)如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,则楼房CD 的高度为 .(≈1.7)【答案】32.4m 【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.解:如图,过点B 作BE ⊥CD 于点E , 根据题意,∠DBE=45°,∠CBE=30°. ∵AB ⊥AC ,CD ⊥AC , ∴四边形ABEC 为矩形. ∴CE=AB=12m .在Rt △CBE 中,cot ∠CBE=, ∴BE=CE•cot30°=12×="12".在Rt △BDE 中,由∠DBE=45°, 得DE="BE=12".∴CD=CE+DE=12(+1)≈32.4.答:楼房CD 的高度约为32.4m . 故答案为:32.4m .试卷第20页,共26页考点:解直角三角形的应用-仰角俯角问题. 24、(2015秋•肥城市期末)将抛物线y=﹣﹣﹣3x+1写成y=a (x+h )2+k 的形式应为 .【答案】y=﹣(x+3)2+【解析】试题分析:根据配方法,可得顶点式函数解析式. 解:y=﹣﹣﹣3x+1配方,得 y=﹣(x+3)2+,故答案为:y=﹣(x+3)2+.考点:二次函数的三种形式.三、解答题(题型注释)25、(2013•海南)如图,二次函数的图象与x 轴相交于点A (﹣3,0)、B (﹣1,0),与y 轴相交于点C (0,3),点P 是该图象上的动点;一次函数y=kx ﹣4k (k≠0)的图象过点P 交x 轴于点Q .(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q 运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.①连接AN,当△AMN的面积最大时,求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.【答案】(1)y=(x+3)(x+1)=x2+4x+3.(2)见解析;(3)①当t=时,△AMN 的面积最大.②直线PQ能垂直平分线段MN.【解析】试题分析:(1)利用交点式求出抛物线的解析式;(2)证明四边形POQC是平行四边形,则结论得证;(3)①求出△AMN面积的表达式,利用二次函数的性质,求出△AMN面积最大时t 的值.注意:由于自变量取值范围的限制,二次函数并不是在对称轴处取得最大值;②直线PQ上的点到∠AQC两边的距离相等,则直线PQ能平分∠AQC,所以直线PQ 能垂直平分线段MN.(1)解:设抛物线的解析式为:y=a(x+3)(x+1),∵抛物线经过点C(0,3),∴3=a×3×1,解得a=1.∴抛物线的解析式为:y=(x+3)(x+1)=x2+4x+3.(2)证明:在抛物线解析式y=x2+4x+3中,当x=﹣4时,y=3,∴P(﹣4,3).∵P(﹣4,3),C(0,3),∴PC=4,PC∥x轴.∵一次函数y=kx﹣4k(k≠0)的图象交x轴于点Q,当y=0时,x=4,∴Q(4,0),OQ=4.∴PC=OQ,又∵PC∥x轴,∴四边形POQC是平行四边形,∴∠OPC=∠AQC.(3)解:①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.如答图1所示,过点N作ND⊥x轴于点D,则ND∥OC,试卷第22页,共26页∴△QND ∽△QCO ,∴,即,解得:ND=3﹣t .设S=S △AMN ,则:S=AM•ND=•3t•(3﹣t )=﹣(t ﹣)2+.又∵AQ=7,∴点M 到达终点的时间为t=, ∴S=﹣(t ﹣)2+(0<t≤).∵﹣<0,<,且x <时,y 随x 的增大而增大,t=2.5时已超过运动时间又因为开口向下所以取, ∴当t=时,△AMN 的面积最大.②假设直线PQ 能够垂直平分线段MN ,则有QM=QN ,且PQ ⊥MN ,PQ 平分∠AQC . 由QM=QN ,得:7﹣3t=5﹣t ,解得t=1. 设P (x ,x 2+4x+3),若直线PQ ⊥MN ,则:过P 作直线PE ⊥x 轴,垂足为E , 则△PEQ ∽△MDN , ∴,∴∴x=,∴P (,)或(,)∴直线PQ 能垂直平分线段MN . 考点:二次函数综合题.26、(2012•莆田)如图,点C 在以AB 为直径的半圆O 上,延长BC 到点D ,使得CD=BC ,过点D 作DE ⊥AB 于点E ,交AC 于点F ,点G 为DF 的中点,连接CG 、OF 、FB .(1)求证:CG 是⊙O 的切线;(2)若△AFB 的面积是△DCG 的面积的2倍,求证:OF ∥BC .【答案】见解析 【解析】试题分析:(1)连接OC .欲证CG 是⊙O 的切线,只需证明∠CGO=90°,即CG ⊥OC ; (2)根据直角三角形ABC 、直角三角形DCF 的面积公式,以及直角三角形斜边的中线等于斜边的一半求得AC=2AF ;然后根据三角形中位线的判定与定理证得该结论. 证明:(1)如图,连接OC . 在△ABC 中,∵AB 是⊙O 的直径,∴∠ACB=90°(直径所对的圆周角是直角); 又∵OA=OC ,∴∠A=∠ACO (等边对等角);在Rt △DCF 中,∵点G 为DF 的中点,∴CG=GF (直角三角形斜边上的中线是斜边的一半),∴∠GCF=∠CFG (等边对等角);∵DE ⊥AB (已知),∠CFG=∠AFE (对顶角相等); ∴在Rt △AEF 中,∠A+∠AFE=90°; ∴∠ACO+∠GCF=90°,即∠GCO=90°, ∴CG ⊥OC , ∴CG 是⊙O 的切线; (2)∵AB 是⊙O 的直径,∴∠ACB=90°(直径所对的圆周角是直角),即AC ⊥BD ;试卷第24页,共26页又∵CD=BC ,点G 为DF 的中点,∴S △AFB =S △ABC ﹣S △BCF =(AC•BC ﹣CF•BC ),S △DCG =S △FCD =×DC•CF=BC•CF ; ∵△AFB 的面积是△DCG 的面积的2倍, ∴(AC•BC ﹣CF•BC )=2×BC•CF , ∴AC=2CF ,即点F 是AC 的中点; ∵O 点是AB 的中点, ∴OF 是△ABC 的中位线, ∴OF ∥BC .考点:切线的判定;圆周角定理.27、(2012•东莞)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【答案】(1)20%;(2)8640万人次 【解析】试题分析:(1)设年平均增长率为x .根据题意2010年公民出境旅游总人数为 5000(1+x )万人次,2011年公民出境旅游总人数 5000(1+x )2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x )万人次. 解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x . 根据题意得:5000(1+x )2 =7200,解得 x 1 =0.2=20%,x 2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为 7200(1+x )=7200×(1+20%)=8640(万人次). 答:预测2012年我国公民出境旅游总人数约8640万人次. 考点:一元二次方程的应用.28、(2013•巴中)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B .(1)求证:△ADF ∽△DEC ; (2)若AB=8,AD=6,AF=4,求AE 的长.【答案】(1)见解析;(2)6. 【解析】试题分析:(1)利用对应两角相等,证明两个三角形相似△ADF ∽△DEC ; (2)利用△ADF ∽△DEC ,可以求出线段DE 的长度;然后在Rt △ADE 中,利用勾股定理求出线段AE 的长度.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC , ∴∠C+∠B=180°,∠ADF=∠DEC . ∵∠AFD+∠AFE=180°,∠AFE=∠B , ∴∠AFD=∠C . 在△ADF 与△DEC 中,∴△ADF ∽△DEC .(2)解:∵四边形ABCD 是平行四边形,∴CD=AB=8. 由(1)知△ADF ∽△DEC ,∴,∴DE===12.在Rt △ADE 中,由勾股定理得:AE===6.考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.29、(2015秋•肥城市期末)请尝试作出函数y=x 3的图象,并写出其三条性质.试卷第26页,共26页【答案】见解析 【解析】试题分析:列表,根据表中数据描点连线即可求得函数的图象,根据图象得出函数的性质.解:列表如下:描点、连线,画出函数图象如图:性质:①函数y=x 3图象关于原点对称, ②y 随x 的增大而增大;③y 既没有最大值也没有最小值. 考点:函数的图象.。

相关文档
最新文档