北京市西城区(北区)2011-2012学年八年级数学下学期期末考试试题
北京市西城区2011 — 2012学年度第一学期期末试卷(数学理)

北京市西城区2011 — 2012学年度第一学期期末试卷高三数学(理科) 2012.1第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数i1i =+( ) (A )1i 22+ (B )1i 22-(C )1i22-+ (D )1i 22-- 2.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为( ) (A )2cos ρθ= (B )2sin ρθ= (C )2cos ρθ=-(D )2sin ρθ=-3.已知向量=a ,(0,2)=-b .若实数k 与向量c 满足2k +=a b c ,则c 可以是( )(A)1)-(B)(1,-(C)(1)-(D)(1-4.执行如图所示的程序框图,输出的S 值为( ) (A )3 (B )6- (C )10 (D )15-5.已知点(,)P x y 的坐标满足条件1,2,220,x y x y ≤⎧⎪≤⎨⎪+-≥⎩那么22x y +的取值范围是( )(A )[1,4] (B )[1,5] (C )4[,4]5(D )4[,5]56.已知,a b ∈R .下列四个条件中,使a b >成立的必要而不充分的条件是( ) (A )1a b >- (B )1a b >+ (C )||||a b >(D )22ab>7.某几何体的三视图如图所示,该几何体的 体积是( ) (A )8 (B )83 (C )4 (D )438.已知点(1,1)A --.若曲线G 上存在两点,B C ,使ABC △为正三角形,则称G 为Γ型曲线.给定下列三条曲线:① 3(03)y x x =-+≤≤; ②0)y x =≤≤;③ 1(0)y x x=->. 其中,Γ型曲线的个数是( ) (A )0(B )1(C )2(D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9. 函数21()log f x x=的定义域是______. 10.若双曲线221x ky -=的一个焦点是(3,0),则实数k =______. 11.如图,PA 是圆O 的切线,A 为切点,PBC 是圆O的割线.若PA BC =PB BC =______. 12. 已知{}n a 是公比为2的等比数列,若316a a -=,则1a = ;22212111na a a +++= ______. 13. 在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c.若b =4B π∠=,sin C =,则c = ;a = . 14. 有限集合P 中元素的个数记作card()P .已知card()10M =,A M ⊆,B M ⊆,A B =∅ ,且card()2A=,card()3B =.若集合X 满足A X M ⊆⊆,则集合X 的个数是_____;若集合Y 满足Y M ⊆,且A Y ⊄,B Y ⊄,则集合Y 的个数是_____. (用数字作答)三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()sin cos f x x x x +,π[,π]2x ∈. (Ⅰ)求()f x 的零点; (Ⅱ)求()f x 的最大值和最小值.16.(本小题满分13分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.(Ⅰ)从盒中每次随机抽取1个零件,每次观察后都将零件放回盒中,求3次抽取中恰有1次抽到使用过的零件的概率;(Ⅱ)从盒中随机抽取2个零件,使用后...放回盒中,记此时盒中使用过的零件个数为X ,求X 的分布列和数学期望. 17.(本小题满分14分)如图,在直三棱柱111C B A ABC -中,12AB BC AA ==,90ABC ︒∠=,D 是BC 的中点.(Ⅰ)求证:1A B ∥平面1ADC ; (Ⅱ)求二面角1C AD C --的余弦值;(Ⅲ)试问线段11A B 上是否存在点E ,使AE 与1DC 成60︒角?若存在,确定E 点位置,若不存在,说明理由.18.(本小题满分13分)已知椭圆:C 22221(0)x y a b a b+=>>的一个焦点是(1,0)F ,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设经过点F 的直线交椭圆C 于,M N 两点,线段MN 的垂直平分线交y 轴于点0(0,)P y ,求0y 的取值范围.19.(本小题满分14分)已知函数)1ln(21)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.20.(本小题满分13分)已知数列12:,,,n n A a a a .如果数列12:,,,n n B b b b 满足1n b a =,11k k k k b a a b --=+-, 其中2,3,,k n = ,则称n B 为n A 的“衍生数列”.(Ⅰ)若数列41234:,,,A a a a a 的“衍生数列”是4:5,2,7,2B -,求4A ;(Ⅱ)若n 为偶数,且n A 的“衍生数列”是n B ,证明:n B 的“衍生数列”是n A ;(Ⅲ)若n 为奇数,且n A 的“衍生数列”是n B ,n B 的“衍生数列”是n C ,….依次将数列n A ,n B ,n C ,…的第(1,2,,)i i n = 项取出,构成数列:,,,i i i i a b c Ω .证明:i Ω是等差数列.北京市西城区2011 — 2012学年度第一学期期末高三数学(理科)参考答案及评分标准2012.1一、选择题:本大题共8小题,每小题5分,共40分.1. A ;2. B ;3. D ;4. C ;5. D ;6. A ;7. D ;8. C .二、填空题:本大题共6小题,每小题5分,共30分. 9.{|01x x <<,或1}x >; 10.18; 11.12;12.2,1(14)3n--; 13.6; 14.256,672. 注:12、13、14题第一问2分,第二问3分;9题结论正确但表示形式非集合,扣1分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) 解法一:(Ⅰ)解:令()0f x =,得 sin cos )0x x x ⋅+=, ………………1分所以sin 0x =,或tan x =………………3分 由 sin 0x =,π[,π]2x ∈,得πx =; ………………4分由 tan x =π[,π]2x ∈,得5π6x =. ………………5分综上,函数)(x f 的零点为5π6或π.(Ⅱ)解:1π()1cos2sin 2sin(2)23f x x x x =-+=-+) ………………8分 因为π[,π]2x ∈,所以π2π5π2[]333x -∈,. ………………9分当π2π233x -=,即π2x =时,)(x f ………………11分当π3π232x -=,即11π12x =时,)(x f 的最小值为12-+. ………………13分解法二:(Ⅰ)解:1π()1cos2sin 2sin(2)23f x x x x =-+=-+)………………3分令()0f x =,得 πsin(2)3x -=. ………………4分 因为π[,π]2x ∈,所以π2π5π2[]333x -∈,. ………………5分 所以,当π4π233x -=,或π5π233x -=时,()0f x =. ………………7分即 5π6x =或πx =时,()0f x =.综上,函数)(x f 的零点为5π6或π. ………………9分(Ⅱ)解:由(Ⅰ)可知,当π2π233x -=,即π2x =时,)(x f ………………11分当π3π232x -=,即11π12x =时,)(x f 的最小值为12-+. ………………13分16.(本小题满分13分)(Ⅰ)解:记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A ,则2()7P A =. ………………2分 所以3次抽取中恰有1次抽到使用过的零件的概率12325150C ()()77343P ==. ……5分(Ⅱ)解:随机变量X 的所有取值为2,3,4. ………………7分2227C 1(2)C 21P X ===; 115227C C 10(3)C 21P X ===;2527C 10(4)C 21P X ===. ………………10分X :………………11分11010242342121217EX =⨯+⨯+⨯=. ………………13分 17.(本小题满分14分)(Ⅰ)证明:连结1AC ,交1AC 于点O ,连结OD .由 111C B A ABC -是直三棱柱,得 四边形11ACC A 为矩形,O 为1AC 的中点.又D 为BC 中点,所以OD 为1A BC △中位线,所以 1A B ∥OD , ………………2分 因为 OD ⊂平面1ADC ,1A B ⊄平面1ADC , 所以 1A B ∥平面1ADC . ………………4分(Ⅱ)解:由111C B A ABC -是直三棱柱,且90ABC ︒∠=,故1,,BB BC BA 两两垂直.如图建立空间直角坐标系xyz B -. ………………5分 设2=BA ,则)0,0,1(),1,0,2(),0,2,0(),0,0,2(),0,0,0(1D C A C B .所以 (1,2,0)AD =-,1(2,2,1)AC =-设平面1ADC 的法向量为=()x,y,z n ,则有10,0.n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩所以 20,220.x y x y z -=⎧⎨-+=⎩取1=y ,得)2,1,2(-=n . ………………7分易知平面ADC 的法向量为(0,0,1)=v . ………………8分 由二面角1C AD C --是锐角,得 ||2cos ,3⋅〈〉==n v n v n v . ………………9分 所以二面角1C AD C --的余弦值为23.(Ⅲ)解:假设存在满足条件的点E .因为E 在线段11B A 上,)1,2,0(1A ,)1,0,0(1B ,故可设)1,,0(λE ,其中02λ≤≤.所以 (0,2,1)AE λ=-,1(1,0,1)DC = . ………………11分因为AE 与1DC 成60︒角,所以1112AE DC AE DC ⋅= . ………………12分12=,解得1λ=,舍去3λ=. ………………13分 所以当点E 为线段11B A 中点时,AE 与1DC 成60︒角. ………………14分 18.(本小题满分13分)(Ⅰ)解:设椭圆C 的半焦距是c .依题意,得 1c =. ………………1分 因为椭圆C 的离心率为12, 所以22a c ==,2223b a c =-=. ………………3分故椭圆C 的方程为 22143x y +=. ………………4分 (Ⅱ)解:当MN x ⊥轴时,显然00y =. ………………5分当MN 与x 轴不垂直时,可设直线MN 的方程为(1)(0)y k x k =-≠.由 22(1),3412,y k x x y =-⎧⎨+=⎩消去y 整理得 0)3(48)43(2222=-+-+k x k x k . ………………7分 设1122(,),(,)M x y N x y ,线段MN 的中点为33(,)Q x y ,则 2122834k x x k +=+. ………………8分 所以 212324234x x k x k+==+,3323(1)34k y k x k -=-=+. 线段MN 的垂直平分线方程为)434(1433222k k x k k k y +--=++. 在上述方程中令0=x ,得k kk k y 4314320+=+=. ………………10分当0k <时,34k k +≤-0k >时,34k k+≥.所以00y ≤<,或00y <≤. ………………12分综上,0y 的取值范围是[. ………………13分19.(本小题满分14分) (Ⅰ)解:(1)(),(1,)1x a ax f x x x --'=∈-+∞+. ………………2分依题意,令(2)0f '=,解得 13a =. ………………3分经检验,13a =时,符合题意. ………………4分(Ⅱ)解:① 当0=a 时,()1xf x x '=+.故)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-. ………………5分 ② 当0a >时,令()0f x '=,得10x =,或211x a=-. 当10<<a 时,()f x 与()f x '的情况如下:所以,()f x 的单调增区间是(0,1)a -;单调减区间是)0,1(-和(1,)a-+∞. …6分 当1=a 时,)(x f 的单调减区间是),1(+∞-. ………………7分当1a >时,210x -<<,()f x 与()f x '的情况如下:所以,()f x 的单调增区间是(1,0)a -;单调减区间是(1,1)a--和(0,)+∞. …8分 ③ 当0<a 时,)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-. ……9分 综上,当0a ≤时,)(x f 的增区间是(0,)+∞,减区间是)0,1(-; 当10<<a 时,()f x 的增区间是1(0,1)a -,减区间是)0,1(-和1(1,)a-+∞; 当1=a 时,)(x f 的减区间是),1(+∞-;当1a >时,()f x 的增区间是1(1,0)a -;减区间是1(1,1)a--和(0,)+∞. ………………10分(Ⅲ)由(Ⅱ)知 0a ≤时,)(x f 在(0,)+∞上单调递增,由0)0(=f ,知不合题意. ………………11分当10<<a 时,)(x f 在(0,)+∞的最大值是1(1)f a-,由1(1)(0)0f f a->=,知不合题意. ………………12分 当1≥a 时,)(x f 在(0,)+∞单调递减,可得)(x f 在[0,)+∞上的最大值是0)0(=f ,符合题意.所以,)(x f 在[0,)+∞上的最大值是0时,a 的取值范围是[1,)+∞. …………14分20.(本小题满分13分)(Ⅰ)解:4:2,1,4,5A . ………………3分 (Ⅱ)证法一:证明:由已知,111()n b a a a =--,212121()n b a a b a a a =+-=+-.因此,猜想1(1)()i i i n b a a a =+--. ………………4分 ① 当1i =时,111()n b a a a =--,猜想成立; ② 假设*()i k k =∈N 时,1(1)()k k k n b a a a =+--. 当1i k =+时,11k k k k b a a b ++=+-11[(1)()]k k k k n a a a a a +=+-+-- 11(1)()k k k k n a a a a a +=+---- 111(1)()k k n a a a ++=+--故当1i k =+时猜想也成立.由 ①、② 可知,对于任意正整数i ,有1(1)()i i i n b a a a =+--. ………………7分 设数列n B 的“衍生数列”为n C ,则由以上结论可知111(1)()(1)()(1)()i i i i i n i n n c b b b a a a b b =+--=+--+--,其中1,2,3,,i n = .由于n 为偶数,所以11(1)()n n n n b a a a a =+--=,所以 11(1)()(1)()i i i i n n i c a a a a a a =+--+--=,其中1,2,3,,i n = .因此,数列n C 即是数列n A . ………………9分 证法二: 因为 1n b a =,1212b b a a +=+, 2323b b a a +=+,……11n n n n b b a a --+=+,由于n 为偶数,将上述n 个等式中的第2,4,6,,n 这2n个式子都乘以1-,相加得 11223112231()()()()()()n n n n n b b b b b b b a a a a a a a ---+++--+=-+++--+ 即1n b a -=-,1n b a =. ………………7分由于1n a b =,11(2,3,,)i i i i a b b a i n --=+-= ,根据“衍生数列”的定义知,数列n A 是n B 的“衍生数列”. ………………9分 (Ⅲ)证法一:证明:设数列n X ,n Y ,n Z 中后者是前者的“衍生数列”.欲证i Ω成等差数列,只需证明,,i i i x y z 成等差数列,即只要证明2(1,2,3,,)i i i y x z i n =+= 即可. ……10分 由(Ⅱ)中结论可知 1(1)()i i i n y x x x =+--,1(1)()i i i n z y y y =+--11(1)()(1)()i i i n n x x x y y =+--+--11(1)()(1)[(1)()]i i n i n n n n x x x x x x x =+--+----- 11(1)()(1)()i i i n n x x x x x =+--+-- 12(1)()i i n x x x =+--,所以,122(1)()2i i i i n i x z x x x y +=+--=,即,,i i i x y z 成等差数列,所以i Ω是等差数列. ………………13分 证法二:因为 11(2,3,4,,)i i i i b a a b i n --=+-= , 所以 11()(2,3,4,,)i i i i b a b a i n ---=--= .- 11 - 所以欲证i Ω成等差数列,只需证明1Ω成等差数列即可. ………………10分 对于数列n A 及其“衍生数列”n B ,因为 1n b a =,1212b b a a +=+,2323b b a a +=+,……11n n n n b b a a --+=+,由于n 为奇数,将上述n 个等式中的第2,4,6,,1n - 这12n -个式子都乘以1-,相加得11223112231()()()()()()n n n n n b b b b b b b a a a a a a a ---+++-++=-+++-++ 即112n n n n b a a a a a =-+=-.设数列n B 的“衍生数列”为n C ,因为 1n b a =,112n n c b a a ==-,所以 1112b a c =+, 即111,,a b c 成等差数列.同理可证,111111,,;,,,b c d c d e 也成等差数列.即 1Ω是等差数列.所以 i Ω成等差数列. ………………13分。
2010-2011学年北京市西城区八年级(下)期末数学试卷

2010-2011学年北京市西城区八年级(下)期末数学试卷2010-2011学年北京市西城区八年级(下)期末数学试卷一、选择题(共10小题,每小题5分,满分50分)1.(2009•肇庆)函数y=中,自变量x的取值范围是()A.x>5B.x<5C.x≥5D.x≤52.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.6,8,10B.8,15,17C.1,,2D.2,2,3.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣3x B.y=﹣x+4C.D.4.对角线相等且互相平分的四边形一定是()A.等腰梯形B.矩形C.菱形D.平行四边形5.已知关于x的方程x2﹣6x+m﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<10B.m=10C.m>10D.m≥106.如图,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠DBC=30°,AD=5,则BC等于()A.5B.7.5C.D.107.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=1B.(x﹣2)2=﹣1C.(x﹣2)2=3D.(x+2)2=38.图为在某居民小区中随机调查的10户家庭一年的月均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是()A.6.5,6.5B.6.5,7C.7,7D.7,6.59.如图,点M,N在反比例函数(x>0)的图象上,点A,C在y轴上,点B,D在x轴上,且四边形OBMA 是正方形,四边形ODNC是矩形,CN与MB交于点E,下列说法中不正确的是()A.正方形OBMA的面积等于矩形ODNC的面积B.点M的坐标为(6,6)C.矩形ODNC的面积为6D.矩形CEMA的面积等于矩形BDNE的面积10.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD一定是等腰三角形.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题2分,满分16分)11.若,则x﹣y的值为_________.12.在“2011年北京郁金香文化节”中,北京国际鲜花港的3×106株郁金香为京城增添了亮丽的色彩.若这些郁金香平均每平方米种植的数量为n(单位:株/平方米),总种植面积为S(单位:平方米),则n与S的函数关系式为_________.(不要求写出自变量S的取值范围)13.如图,矩形ABCD中,对角线AC,BD交于点O,∠AOD=120°,BD=8,则AB的长为_________.14.点A(2,3)在反比例函数的图象上,当1≤x≤3时,y的取值范围是_________.15.菱形ABCD中,AB=2,∠ABC=60°,顺次连接菱形ABCD各边的中点所得四边形的面积为_________.16.若关于x的方程x2+mx﹣12=0的一个根是4,则m=_________,此方程的另一个根是_________.17.如图,矩形纸片ABCD中,AB=6cm,BC=10cm,点E 在AB边上,将△EBC沿EC所在直线折叠,使点B落在AD边上的点B′处,则AE的长为_________cm.点都在格点上;拼接时图形互不重叠,不留空隙),如果用这4个直角梯形拼接成一个等腰梯形,那么(1)仿照图1,在图2中画出一个拼接成的等腰梯形;(2)这个拼接成的等腰梯形的周长为_________.三、解答题(共2小题,满分16分)19.计算:(1);(2).20.解方程:(1)x2﹣3x=7+x;(2)2x(x﹣1)=3(1﹣x).四、解答题(本题共21分,第21题6分,第22、23、24题每题5分)21.已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长CD至F,使DF=CD,连接BF交AD于点E.(1)求证:AE=ED;(2)若AB=BC,求∠CAF的度数.(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲,乙两位球员谁来罚球更好?(请通过计算说明理由)23.为了增强员工的团队意识,某公司决定组织员工开展拓展活动.从公司到拓展活动地点的路程总长为126千米,活动的组织人员乘坐小轿车,其他员工乘坐旅游车同时从公司出发,前往拓展活动的目的地.为了在员工们到达之前做好活动的准备工作,小轿车决定改走高速公路,路程比原路线缩短了18千米,这样比按原路线行驶的旅游车提前24分钟到达目的地.已知小轿车的平均速度是旅游车的平均速度的1.2倍,求这两种车平均每小时分别行驶多少千米.24.已知:如图,梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=8,DC=10,点M是AB边的中点.(1)求证:CM⊥DM;(2)求点M到CD边的距离.五、解答题(本题共17分,第25题6分,第26题5分,第27题6分)25.已知:如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(m,4)和点B(﹣4,﹣2).(1)求一次函数y=ax+b和反比例函数的解析式;(2)求△AOB的面积;(3)根据图象,直接写出不等式的解集.26.已知:△ABC和△ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,点M为EC的中点.(1)如图,当点D,E分别在AC,AB上时,求证:△BMD为等腰直角三角形;(2)如图,将图中的△ADE绕点A逆时针旋转45°,使点D落在AB上,此时问题(1)中的结论“△BMD为等腰直角三角形”还成立吗?请对你的结论加以证明.27.已知:如图1,平面直角坐标系xOy中,四边形OABC是矩形,点A,C的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线y=﹣+b交折线O﹣A﹣B于点E.(1)在点D运动的过程中,若△ODE的面积为S,求S与b的函数关系式,并写出自变量的取值范围;OA于点D,M,O′A′分别交CB,OA点N,E.求证:四边形DMEN是菱形;(3)问题(2)中的四边形DMEN中,ME的长为_________.2010-2011学年北京市西城区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(2009•肇庆)函数y=中,自变量x的取值范围是()A.x>5B.x<5C.x≥5D.x≤5考点:函数自变量的取值范围;二次根式有意义的条件。
北京市西城区2011—2012学年度第一学期期末试卷(南区)数学word

北京市西城区2011—2012学年度第一学期期末试卷(南区)九年级数学 2012.1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(1)1y x =-+的顶点坐标为A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)--2.若相交两圆的半径分别为4和7,则它们的圆心距可能是A .2B .3C . 6D .113.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为A B C .12D .2 4. 如图,在⊙O 中,直径AB ⊥弦CD 于E ,连接BD ,若∠D =30°,BD =2,则AE 的长为A .2B .3C .4D .55.下列图形中,中心对称图形有A .4个B .3个C .2个D .1个6.抛掷一枚质地均匀的正方体骰子,出现大于3点的概率为A .21 B .31 C .41 D .61 7.如图,抛物线2y ax bx c =++经过点(-1,0),对称轴为x =1,则下列结论中正确的是A .0>aB .当1>x 时,y 随x 的增大而增大C .0<cD .3x =是一元二次方程20ax bx c ++=的一个根8.如图,在平面直角坐标系xOy 中,(2,0)A ,(0,2)B ,⊙C 的圆心为点(1,0)C -,半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最大值是A .2B . 83C .2+D . 2二、填空题(本题共16分,每小题4分)9.如图,⊙O 是△ABC 的外接圆,若∠OCB =40°,则∠A= °.10.将抛物线2y x =先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式是 .11.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4.以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转α角(0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点的对应点分别记为E ,F ,EF 与AB 的交点为G ,此时α等于 °,△DEG 的面积为 . 12.已知二次函数212y x x =-+,(1)它的最大值为 ;(2)若存在实数m , n 使得当自变量x 的取值范围是m ≤x ≤n 时,函数值y 的取值范围恰好是3m ≤y ≤3n ,则m= ,n= .三、解答题(本题共30分,每小题5分)13.计算:2cos302sin 45︒︒-︒.14.如图,网格中每个小正方形的边长均为1,且点A ,B ,C ,P 均为格点.(1) 在网格中作图:以点P 为位似中心,将△ABC 的各边长放大为原来的两倍,A ,B ,C 的对应点分别为A 1 ,B 1 ,C 1;(2) 若点A 的坐标为(1,1),点B 的坐标为(3,2),则(1)中点C 1的坐标为 .15.已知抛物线245y x x =+-.(1)直接写出它与x 轴、y 轴的交点的坐标;(2)用配方法将245y x x =+-化成2()y a x h k =-+的形式.16.如图,三角形纸片ABC 中,∠BCA =90°,∠A =30°,AB =6,在AC 上取一点 E ,沿BE 将该纸片折叠,使AB 的一部分与BC 重合,点A 与BC 延长线上的点D 重合,求DE 的长.17.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示).设矩形的一边AB 的长为x 米(要求AB <AD ),矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(2)要想使花圃的面积最大,AB 边的长应为多少米?18.如图,在Rt △ABC 中,90C ∠=︒,AB 的垂直平分线与BC ,AB 的交点分别为D ,E .(1)若AD =10,4sin5ADC ∠=,求AC 的长和tan B 的值; (2)若AD=1,ADC ∠=α,参考(1)的计算过程直接写出tan2α的值(用sin α和cos α的值表示).四、解答题(本题共20分,每小题5分)19.如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x 轴的正方向连续滚动,即先以顶点A为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标;(2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.20.已知函数2y x bx c =++(x ≥ 0),满足当x =1时,1y =-,且当x = 0与x =4时的函数值相等.(1) 求函数2y x bx c =++(x ≥ 0)的解析式并画出它的图象(不要求列表);(2) 若()f x 表示自变量x 相对应的函数值,且2 (0),() 2 (0),x bx c x f x x ⎧++≥=⎨-<⎩又已知关于x 的方程()f x x k =+有三个不相等的实数根,请利用图象直接写出实数k 的取值范围.21.已知:如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线与⊙O 的交点为D ,DE ⊥AC ,与AC 的延长线交于点E .(1)求证:直线DE 是⊙O 的切线;(2)若OE 与AD 交于点F ,4cos 5BAC ∠=,求DF AF的值.22.阅读下列材料:题目:已知实数a ,x 满足a >2且x >2,试判断ax 与a x +的大小关系,并加以说明.思路:可用“求差法”比较两个数的大小,列出ax 与a x +的差()y ax a x =-+再说明y 的符号即可.现给出如下利用函数解决问题的方法:简解:可将y 的代数式整理成(1)y a x a =--,要判断y 的符号可借助函数(1)y a x a =--的图象和性质解决. 参考以上解题思路解决以下问题:已知a ,b ,c 都是非负数,a <5,且 2220a a b c ---=,2230a b c +-+=.(1)分别用含a 的代数式表示4b ,4c ;(2)说明a ,b ,c 之间的大小关系.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知抛物线2(2)2y kx k x =+--(其中0k >).(1)求该抛物线与x 轴的交点及顶点的坐标(可以用含k 的代数式表示);(2)若记该抛物线顶点的坐标为(,)P m n ,直接写出n 的最小值;(3)将该抛物线先向右平移12个单位长度,再向上平移1k个单位长度,随着k 的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).24.已知:⊙O 是△ABC 的外接圆,点M 为⊙O 上一点.(1)如图,若△ABC 为等边三角形,BM =1,CM =2,求AM 的长;(3) 若△ABC 为等腰直角三角形,∠BAC =90︒,BM a =,CM b =(其中b a >),直接写出AM 的长(用含有a ,b 的代数式表示).25. 已知:在如图1所示的平面直角坐标系xOy 中,A ,C 两点的坐标分别为(2,3)A ,(,3)C n -(其中n >0),点B在x 轴的正半轴上.动点P 从点O 出发,在四边形OABC 的边上依次沿O —A —B —C 的顺序向点C 移动,当点P 与点C 重合时停止运动.设点P 移动的路径的长为l ,△POC 的面积为S ,S 与l 的函数关系的图象如图2所示,其中四边形ODEF 是等腰梯形.(1)结合以上信息及图2填空:图2中的m = ;(2)求B ,C 两点的坐标及图2中OF 的长;(3)在图1中,当动点P 恰为经过O ,B 两点的抛物线W 的顶点时,① 求此抛物线W 的解析式;② 若点Q 在直线1y =-上方的抛物线W 上,坐标平面内另有一点R ,满足以B ,P ,Q ,R 四点为顶点的四边形是菱形,求点Q 的坐标.。
2011-2012学年北京市西城区初二下学期期末数学试卷(含答案)

北京市西城区(北区)2011–2012学年度第二学期抽样测试八年级数学试卷 2012.7(时间100分钟,满分100分)一、精心选一选(本题共30分,每小题3分) 1.函数y 中,自变量x 的取值范围是( C ).A . 3<xB . 3≠xC . x ≥3D .3>x2.下列各组数中,以它们为边长的线段能构成直角三角形的是(D ).A .2,4,5B .6,8,11C .5,12,12D . 1,13.若反比例函数ky x=的图象位于第二、四象限,则k 的取值范围是( A ). A . 0k < B . 0k > C . k ≤0 D .k ≥04.如图,在□ABCD 中,AE ⊥CD 于点E ,∠B =65°, 则∠DAE 等于(B ).A .15°B .25°C .35°D .65°5.用配方法解方程2220x x --=,下列变形正确的是(C ).A .2(1)2x -=B .2(2)2x -=C .2(1)3x -= D .2(2)3x -=6.在四边形ABCD 中,对角线AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是( B ).A .∠ABC =90°B .AC ⊥BD C .AB =CD D .AB ∥CD7.某施工队挖一条240米的渠道,开工后,每天比原计划多挖20米,结果提前2天完成任务.若设原计划每天挖x 米,则所列方程正确的是( A ).A .240240220x x -=+ B .240240202x x -=+ C .240240220x x -=- D .240240202x x-=- 8.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的EABCDAB CDF周长为(D ).A.8 B.10 C.12 D.169.如图,在梯形ABCD中,AD∥BC,AB=CD,AD=2,BC=6,∠B=60°,则AB的长为( B ).A.3 B.4 C.5 D.610.如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数2510k kyx-+=(0x>)的图象上.则k的值为().A.2B.6C.2或3D.1-或6二、细心填一填(本题共18分,每小题3分)112(5)0y-=,则2012)(yx+的值为12.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),这2000度电能够使用的天数为y(单位:天),则y与x的函数关系式为____________________.(不要求写出自变量x的取值范围)13.如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=6,点D是AB的中点,则∠ACD=_________°.14.如图,以菱形AOBC的顶点O为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=5,点C的坐标为(4,0),则点A的坐标为___________.15.已知1x=是关于x的方程02=++nmxx的一个根,则222m mn n++的值为___________.16.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,对角线AC,BD交于点O,且∠BOC=90°.若AD+BC=12,则AC的长为___________.AB CDOAB CD第16题图三、认真算一算(本题共16分,第17题8分,第18题8分) 17.计算:(1; (2. 解: 解:18.解方程:(1)2310x x -+=; (2)(3)(26)0x x x +-+=. 解: 解:四、解答题(本题共18分,每小题6分)19.某中学开展“头脑风暴”知识竞赛活动,八年级1班和2班各选出5名选手参加初赛,两个班的选手的初赛成绩(单位:分)分别是: 1班 85 80 75 85 100 2班 80 100 85 80 80 (1)根据所给信息将下面的表格补充完整;(2)根据问题(1)中的数据,判断哪个班的初赛成绩较为稳定,并说明理由. 答:第13题图20.已知:如图,在□ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.证明:(1)(2)FAB CDE21.已知:关于x 的一元二次方程2(21)20x m x m +++=. (1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明:(2)解:五、解答题(本题共18分,每小题6分)22.已知:△ABC 是一张等腰直角三角形纸板,∠B =90°,AB =BC =1. (1)要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在△ABC 的边上.小林设计出了一种剪法,如图1所示.请你再设计出一种不同于图1的剪法,并在图2中画出来. (2)若按照小林设计的图1所示的剪法来进行裁剪,记图1为第一次裁剪,得到1个正方形,将它的面积记为1S1S =___________;在余下的2的剪法进行第二次裁剪(如图3),得到2个新的正方形,次所得2个正方形的面积的和.记为2S ,则2S =___________;在余下的4个三角形中再按照小林设计的的剪法进行第三次裁剪(如图4),得到4个新的正方此次所得4个正方形的面积的和.记为3S ;按照同样的方法继续操作下去……,第n 次裁剪得到_________个新的正方形,它们的面积的和.n S =______________.EA B CDCC图423.已知:如图,直线b kx y +=与x 轴交于点A ,且与双曲线my x=交于点B (4,2)和点C (,4n -).(1)求直线b kx y +=和双曲线my x=的解析式; (2)根据图象写出关于x 的不等式mkx b x+<的解集;(3)点D 在直线b kx y +=上,设点D 的纵坐标为t (0t >).过点D 作平行于x 轴的直线交双曲线m y x=于点E .若△ADE 的面积为27,请直接写出....所有满足条件的t 的值. 解:(1)(2)(3)24.已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A 在x轴的正半轴上运动,顶点D在y轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.(1)当OA=OD时,点D的坐标为______________,∠POA=__________°;(2)当OA<OD时,求证:OP平分∠DOA;(3)设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是________________.(2)证明:(3)答:在点A,D运动的过程中,d的取值范围是__________________________.北京市西城区(北区)2011 — 2012学年度第二学期抽样测试八年级数学参考答案及评分标准2012.7二、细心填一填(本题共18分,每小题3分) 11.1; 12.2000y x=; 13.60;14.(2,1); 15.1; 16.. 三、认真算一算(本题共16分,第17题8分,第18题8分)17.(1= ----2分= -----------3分-----------------------4分(2=3+ ------5分=32+ --------------7分=5. -------------------8分18.(1)解:1a =,3b =-,1c =.224(3)4115b ac ∆=-=--⨯⨯=. ----1分2b x a-±=----------2分==.即132x +=,232x -=. ------------4分 (2)解:因式分解,得 (3)(2)0x x +-=. -------6分于是得 30x +=或20x -=. 解得 13x =-,22x =. -----------------8分四、解答题(本题共18分,每小题6分) 19.解:(1)---4分阅卷说明:每空1分.(2)答:2班的初赛成绩较为稳定.因为1班与2班初赛的平均成绩相同,而2班初赛成绩的方差较小,所以2班的初赛成绩较为稳定. -------6分20.证明:(1)如图1. ∵四边形ABCD 是平行四边形,∴AB ∥DC 即 AB ∥DF . -----1分 ∴∠1=∠2.∵点E 是BC 的中点,∴BE =CE .在△ABE 和△FCE 中,∠1=∠2, ∠3=∠4, BE =CE ,∴△ABE ≌△FCE . ----------------3分 (2)∵△ABE ≌△FCE ,∴AB =FC . ∵AB ∥FC ,∴四边形ABFC 是平行四边形. -------------4分图14321E D CBAF∵四边形ABCD 是平行四边形, ∴AD =BC . ∵AF =AD , ∴AF =BC .∴四边形ABFC 是矩形. -----------------6分阅卷说明:其他正确解法相应给分. 21.证明:(1)2(21)412m m ∆=+-⨯⨯ 2441m m =-+2(21)m =-. ---------1分∵2(21)m -≥0,即∆≥0,∴无论m 为何值,此方程总有两个实数根. ---2分解:(2)因式分解,得 (2)(1)0x m x ++=.于是得 20x m +=或10x +=.解得 12x m =-,21x =-. ----------------4分∵10-<,而06x <<,∴2x m =-,即 026m <-<. ∴30m -<<. -----------------5分 ∵m 为整数,∴1m =-或2-. ---------------6分五、解答题(本题共18分,每小题6分) 22.解:(1)如图2; -------------1分(2)14,18,12n -,112n +. ----------6分 阅卷说明:前三个空每空1分,第四个空2分.23.解:(1)∵双曲线my x=经过点B (4,2), ∴24m=, 8m =. 图2CBA∴双曲线的解析式为8y x =. -----------1分 ∵点C (,4n -)在双曲线8y x=上,∴84n-=, 2n =-.∵直线b kx y +=经过点B (4,2),C (2,4--),则2442.k b k b =+⎧⎨-=-+⎩, 解得12.k b =⎧⎨=-⎩,∴直线的解析式为2y x =-. ----------2分(2)2x <-或04x <<; ----------------4分阅卷说明:两个答案各1分.(3)3t =1. --------------------6分 阅卷说明:两个答案各1分..24.解:(1)(0,,45; ------------------------2分阅卷说明:每空1分.证明:(2)过点P 作PM ⊥x 轴于点M ,PN ⊥y(如图3)∵四边形ABCD 是正方形, ∴PD =P A ,∠DP A =90°.∵PM ⊥x 轴于点M ,PN ⊥y 轴于点∴∠PMO =∠PNO =∠PND =90°. ∵∠NOM =90°,∴四边形NOMP 中,∠NPM =90°. ∴∠DP A =∠NPM .∵∠1=∠DP A -∠NP A ,∠2=∠NPM -∠NP A , ∴∠1=∠2. ----------3分 在△DPN 和△APM 中,∠PND =∠PMA , ∠1=∠2, PD =P A ,∴△DPN ≌△APM .∴PN =PM . -----4分∴OP 平分∠DOA . ---------5分(3)2d <≤. -----------6分北京市西城区(北区)2011–2012学年度第二学期抽样测试八年级数学附加题试卷 2012.7一、填空题(本题6分)25.已知a 是方程2520x x +-=的一个根,则代数式22107a a +-的值为___________;代数式32634a a a +++的值为___________.二、解答题(本题共14分,每小题7分)26.已知:如图,平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,3).将△OCA 沿直线CA 翻折,得到△DCA ,且DA 交CB 于点E . (1)求证:EC =EA ;(2)求点E 的坐标;(3)连接DB ,请直接写出....四边形DCAB 的周长和面积. (1)证明:(2)解:(3)答:四边形DCAB 的周长为_____________,面积为_____________.27.已知:△ABC 的两条高BD ,CE 交于点F ,点M ,N 分别是AF ,BC 的中点,连接ED ,MN .(1)在图1中证明MN 垂直平分ED ; (2)若∠EBD =∠DCE =45°(如图2),判断以M ,E ,N ,D 为顶点的四边形的形状,并证明你的结论. (1)证明:(2)判断:___________________________________________. 证明:MA BC DEFNM FE DC B A图1 图2北京市西城区(北区)2011 - 2012学年度第二学期抽样测试八年级数学附加题参考答案及评分标准2012.7一、填空题(本题6分)1.3-,6. 阅卷说明:每空3分.二、解答题(本题共14分,每小题7分)2.证明:(1)如图1.∵△OCA 沿直线CA 翻折得到△∴△OCA ≌△DCA . ∴∠1=∠2.∵四边形OABC 是矩形, ∴OA ∥CB . ∴∠1=∠3. ∴∠2=∠3.∴EC =EA . -------------------------------------------2分解:(2)设CE = AE =x .∵点A ,C 的坐标分别为(4,0),(0,3), ∴OA =4,OC =3.∵四边形OABC 是矩形,∴CB =OA =4,AB =OC =3,∠B =90°.在Rt △EBA 中,222EA EB BA =+, ∴222(4)3x x =-+.解得 258x =. -------------------------4分 ∴点E 的坐标为(25,38). ------------------------5分 阅卷说明:其他正确解法相应给分.(3)625,19225.--------------------------------7分阅卷说明:每空1分.3.(1)证明:连接EM,EN,DM,DN.(如图2)∵BD,CE是△ABC的高,∴BD⊥AC,CE⊥AB.∴∠BDA=∠BDC=∠CEB=∠CEA=90°.∵在Rt△AEF中,M是AF的中点,∴EM=12 AF.同理,DM=12AF,EN=12BC,DN=12BC.∴EM=DM,------------------1分EN=DN.---------------------2分∴点M,N在ED的垂直平分线上.∴MN垂直平分ED.------------------3分(2)判断:四边形MEND是正方形.--------------------------4分证明:连接EM,EN,DM,DN.(如图3)∵∠EBD=∠DCE=45°,而∠BDA=∠CDF=90°,∴∠BAD=∠ABD=45°,∠DFC=∠DCF=45°.∴AD=BD,DF=DC.在△ADF和△BDC中,AD=BD,∠ADF=∠BDC,DF=DC,∴△ADF≌△BDC.-----------------5分∴AF=BC,∠1=∠2.∵由(1)知DM=12AF=AM,DN=12BC=BN,∴DM=DN,∠1=∠3,∠2=∠4.∴∠3=∠4.∵由(1)知EM=DM,EN=DN,∴DM=DN=EM=EN.∴四边形MEND是菱形.--------------6分∵∠3+∠MDF=∠ADF=90°,∴∠4+∠MDF=∠NDM=90°.4312AB CDEFM图3AEB CDMF图2∴四边形MEND是正方形.--------------------7分阅卷说明:其他正确解法相应给分.。
北京市西城区2012年7月高一数学期末试卷

北京市西城区(北区)2011 — 2012学年度第二学期学业测试高一数学 2012.7试卷满分:150分 考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知等差数列5,7,9,11,,则下列哪个数是这个数列中的项 ( ) A. 3B. 6C. 10D. 15 2.在某一项篮球赛事中,甲、乙两名运动员都参加了5场比赛,他们各场比赛得分的情况如茎叶图所示,则甲得分的中位数...和乙得分的平均数...分别为( ) A. 18,14B. 18,12C. 16,14D. 16,123.已知0αβ<<<π,则αβ-的取值范围是 ( ) A. (,)-ππB. (,)-π0C. (,0)2π-D. (0,)π4.若非零实数,,a b c 满足a b c >>,则一定成立的不等式是( ) A. ac bc >B. ab ac >C. a c b c ->-D.111a b c<< 5.由直线10x y +-=,10x y -+=和10y +=所围成的三角形区域(包括边界)用不等式组可表示为( )A. 10,10,1.x y x y y +-≤⎧⎪-+≤⎨⎪≥-⎩B. 10,10,1.x y x y y +-≥⎧⎪-+≤⎨⎪≥-⎩C. 10,10,1.x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩D. 10,10,1.x y x y y +-≥⎧⎪-+≥⎨⎪≤-⎩6.已知变量b a ,已被赋值,要交换b a ,的值,应采用下面哪种算法( ) A. b a =,a b = B. c a =,a b =,b c = C.c a =,a b =,a c = D.a c =,b a =,c b =7.在ABC ∆中,,a b c 分别是角,,A B C 的对边,若2cos b c A =,则ABC ∆一定是 ( ) A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形8.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( ) A. 至少有一个黑球与都是黑球B. 至少有一个黑球与至少有一个红球C. 恰好有一个黑球与恰好有两个黑球D. 至少有一个黑球与都是红球9.若等比数列{}n a 满足116n n n a a +=,则{}n a 的公比为( ) A. 4B. 6C. 8D. 1610. 已知函数2()f x x =,定义数列{}n a 如下:1()n n a f a +=,*n ∈N .若给定1a 的值,使得到的无穷数列{}n a 满足:对任意正整数n ,均有1n n a a +>,则1a 的取值范围是( )A. (,1)(1,)-∞-+∞B. (,0)(1,)-∞+∞C. (1,)+∞D. (1,0)-二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上.11. 某单位有职工800人,其中青年职工400人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本. 若样本中青年职工的人数为8,则样本容量为_______. 12. 设n S 是等差数列{}n a 的前n 项和,若562a a +=,则10S =_______.13. 执行右图所示的程序框图,若1M =,则输出的S =______; 若输出的14S =,则整数=M _______. 14. 函数41y x x =+-(1)x >的最小值是________; 此时x =_________. 15. 已知正方形ABCD .(1)在,,,A B C D 四点中任取两点连线,则余下的两点在此直线异侧的概率是______; (2)向正方形ABCD 内任投一点P ,则PAB ∆的面积大于正方形ABCD 面积四分之一的概率是_______.16. 已知当实数,x y 满足12211x y x y x y +≤⎧⎪-⎨⎪-⎩≥-≤时,1ax by +≤恒成立. 给出以下命题:①点(,)P x y 所形成的平面区域的面积等于3; ②22x y +的最大值等于2;③以,a b 为坐标的点(,)Q a b 所形成的平面区域的面积等于4.5; ④a b +的最大值等于2,最小值等于1-. 其中,所有正确命题的序号是 .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,已知C 为锐角,且2sin a c A =. (Ⅰ)求角C 的大小;(Ⅱ)若1c =,且ABC ∆的面积为4,求,a b 的值.18.(本小题满分13分)在参加某次社会实践的学生中随机选取40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中,(Ⅰ)求a 的值及成绩在区间[80,90)内的学生人数;(Ⅱ)从成绩小于60分的学生中随机选2名学生,求最多有1名学生成绩在区间[50,60)内的概率.19.(本小题满分14分)设等差数列{}n a 的前n 项和为n S ,已知84a =,1314a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求n S 的最小值及相应的n 的值;(Ⅲ)在公比为q 的等比数列{}n b 中,28b a =,12313b b b a ++=,求4734n q q q q +++++.20.(本小题满分14分)已知函数2()(1)f x kx k x =++.(Ⅰ)当1k =时,解不等式()0f x <;(Ⅱ)当0k ≠时,二次函数()f x 的对称轴在直线1x =的左侧,求k 的取值范围;(Ⅲ)解关于x 的不等式()0f x <.21.(本小题满分13分)在ABC ∆中,4AB =,3AC =,60A =. (Ⅰ)求ABC ∆的面积;(Ⅱ)设点,D E 分别是AB 、AC 边上的点,记AD x =,DE y =. 若ADE ∆的面积总保持是ABC ∆面积的一半,求y 关于x 的函数解析式及y 的最小值.22.(本小题满分13分)已知数列{}n a 是各项均为正数有穷数列,数列{}n b 满足12k kkb a a a =+++(1,2,,k n =).(Ⅰ)若数列{}n b 的通项公式n b n =,求数列{}n a 的通项公式;(Ⅱ)(ⅰ)若数列{}n a 为递增数列,试判断数列{}n b 是否为递增数列?如果是,请加以证明;如果不是,说明理由.(ⅱ)若数列{}n b 为递增数列,试判断数列{}n a 是否为递增数列?如果是,请加以证明;如果不是,说明理由.(Ⅲ)设数列{}n C 、{}n D 满足:2221122()()()n n n C a b a b a b =-+-++-, 22212()()()n n n n n D a b a b a b =-+-++-,求证:n n C D ≤.ABC D E北京市西城区(北区)2011 — 2012学年度第二学期学业测试高一数学参考答案及评分标准 2012.7一、选择题:本大题共10小题,每小题4分,共40分.1. D2. A3. B4. C5. C6. D7. C8. C9. A 10. A 二、填空题:本大题共6小题,每小题5分,共30分.11. 16 12. 10 13. 2,3 14. 5,3 15.13,1216. ②③④ 注:一题两空的试题,第一空2分,第二空3分;16题选出错误选项即得0分. 漏选正确选项得2分,全部选出正确选项得5分.三、解答题:本大题共3小题,共36分.17. 解:(Ⅰ)由2sin a c A =及正弦定理得,sin 2sin sin A C A =,………………3分因为sin 0A ≠,所以1sin 2C =, 因为C 为锐角,所以30C =o. …………………5分 (Ⅱ)因为1,30.c C ==o由面积公式得1sin 302ab =o …………………7分即ab =…………① …………………8分 由余弦定理得222cos301a b ab +-=o, …………………9分所以221a b +=, 即224a b +=,…………② …………………10分联立①、②得224,a b ab ⎧+=⎪⎨=⎪⎩ …………………11分解得1,a b ==或1a b ==. …………………13分18. 解:(Ⅰ)因为各组的频率之和为1,所以成绩在区间[60,70)的频率为1(0.00520.0100.0150.030)100.35-⨯+++⨯=, …………………3分所以0.035a =. …………………4分 由已知,成绩在区间[80,90)的频率为0.15,所以,40名学生中成绩在区间[80,90)的学生人数为400.156⨯=(人).…………………6分(Ⅱ)设A 表示事件“在成绩小于60分的学生中随机选两名学生,最多有一名学生成绩在区间[50,60)内”,由已知,成绩在区间[50,60)内的学生有4人, 记这四个人分别为,,,a b c d ,成绩在区间[40,50]内的学生有2人, …………………8分 记这两个人分别为,e f , 则选取学生的所有可能结果为:(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a c a d a e a f b c b d b e b f (,),(,),(,)c d c e c f , (,),(,),(,)d e d f e f .基本事件数为15. …………………10分事件“最多一人成绩在区间[50,60)之间”的可能结果为:(,),(,),(,),(,),a e a f b e b f (,),(,),c e c f (,),(,),(,)d e d f e f .基本事件数为9, …………………12分 所以9()0.615P A ==. …………………13分 19. 解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由已知可得174a d +=,11214a d +=, …………………2分 解得2d =,110a =-. …………………4分 所以102(1)212n a n n =-+-=-. …………………5分 (Ⅱ)令0n a ≤,即2120n -≤,解得6n ≤, …………………7分所以,当1,2,3,4,5n =时,0n a <;60a =;7,8,n =时0n a >.所以,当5n =或6n =时,n S 最小, …………………8分561555()(102)3022S S a a ==+=⨯--=-. …………………9分 (Ⅲ)依题意,14b q =,211114b b q b q ++=,即14b q =,1410b q +=,消去1b ,得22520q q -+=, 解得2q =或12q =, …………………11分 当1q ≠时,3647343(1)1n n q q q q q qq ++-++++=-. …………………12分 当2q =时,4734362(21)7n n q q q q ++++++=-; …………………13分当12q =时,47343641(1)72n n q q q q ++++++=-. …………………14分 20. 解:(Ⅰ)当1k =时,不等式为220x x +<, …………………2分即(2)0x x +<,解得20x -<<,所以不等式的解集为{20}x x -<<. …………………4分 (Ⅱ)依题意,112k k+-<, …………………6分 整理的2(31)0k k +>, …………………7分解得13k <-或0k >.所以k 的取值范围是1(,)(0,)3-∞-+∞. …………………8分(Ⅲ)当0k =时,不等式的解集为{0}x x <; …………………9分当0k >时,1()0k x x k ++<,解得10k x k +-<<; …………………10分 当0k <时,1()0k x x k++>, 若10k k +=,即1k =-时,0x ≠; …………………11分 若10k k +->,即10k -<<时,0x <或1k x k +>-; …………………13分 若10k k +-<,即1k <-时,1k x k+<-或0x >. …………………14分 综上, 当0k >时,不等式的解集为1{0}k x x k+-<<; 当0k =时,不等式的解集为{0}x x <;当10k -<<时,不等式的解集为1{0,}k x x x k+<>-或; 当1k =-时,不等式的解集为{0}x x ≠; 当1k <-时,不等式的解集为1{,0}k x x x k+<->或.21.解:(Ⅰ)因为1sin 2ABC S bc A ∆=, 所以143sin 60332ABC S ∆=⨯⨯⨯=…………………3分 (Ⅱ)设AE m =,则1sin 602ADE S xm ∆=,所以133sin 602xm =,6xm =,……① ……6分AD Em xy在ABC ∆中,2222cos60y x m xm =+-,即222y x m xm =+-,……② …………………9分 由①②消去m ,得222366y x x =+-,所以y =, …………………10分 依题意[2,4]x ∈, …………………11分y =≥当且仅当2236x x=,即x ==”成立. …………………12分所以y …………………13分22. (Ⅰ)解:设数列{}n a 的前n 项和为n S ,由已知n n nb S =,即2n S n =,当1n =时,111a S ==; …………………1分当2n ≥时,221(121n n n a S S n n n =-=-=---).综上,21n a n =-. …………………3分(Ⅱ)解:(ⅰ)由已知,1211211k kk k a a a a a a b b k k++++++++-=-+12112()(1)()(1)k k k a a a k a a a k k ++++-++++=+112()(1)k k ka a a a k k +-+++=+. …………………5分因为数列{}n a 为单调递增数列,所以121k k a a a a +>>>>,所以112()0k k ka a a a +-+++>,所以10k k b b +->,即1k k b b +>,1,2,3,,1k n =-.即数列{}n b 是单调递增数列. …………………6分 (ⅱ)当{}n b 为1,5,6时,{}n a 中的三项为1,9,8.所以,若数列{}n b 为单调递增数列,数列{}n a 不一定为单调递增数列.…………………8分(Ⅲ)证明:n n D C -221()()n n n a b a b =-++-2211()()n n a b a b -----2211()()n n n a b a b -=-++-221111()()n n a b a b -------. 由12k k kb a a a =+++,可知11(1)k k k a k b kb ++=+-,11a b =, ……………10分利用上式,将n n D C -表达式展开,将i a 用n b {}中的项替换,得n nD C -2222212311223135(23)(1)242(1)n n n n b b b n b n b bb b b n b b --=++++-+------22212231()2()(1)()0n n b b b b n b b -=-+-++--≥.所以n n C D . …………………13分。
北京市西城区2023-2024学年八年级下学期期末数学试题

北京市西城区2023-2024学年八年级下学期期末数学试题一、单选题1.下列各式中,是最简二次根式的是( )A B C D 2.以下列各组数为三角形的三边长,能构成直角三角形的是( )A .1,1,1B .1,2C .3,4,6D .2,3,3.下列计算中,正确的是( )A B .5= C D 6 4.如图,在ABC V 中,D ,E 分别是AB ,AC 的中点,FD AB ⊥交CB 的延长线于点F .若3AF =,7CF =,则DE 的长为( )A .2B .3C .3.5D .45.某校艺术节歌唱比赛中,有15位评委对选手的表现打分,某位选手所得15个分数组成一组数据.根据评分规则,去掉这组数据中的一个最高分和一个最低分,剩余13个分数作为一组新数据.下列统计量中,新数据与原数据相比一定不变的是( )A .平均数B .众数C .方差D .中位数 6.在平面直角坐标系xOy 中,一次函数4y kx =+的图象经过点P ,且y 随x 的增大而增大,则点P 的坐标可以是( )A .()3,0B .()1,2--C .()2,3D .()1,6- 7.矩形纸片两邻边的长分别为a ,b (a b <),连接它的一条对角线,用四张这样的矩形纸片按如图所示的方式拼成正方形ABCD ,其边长为a b +.图中正方形ABCD ,正方形EFGH 和正方形MNPQ 的面积之和为( )A .2222a b +B .2223a b +C .2233a b +D .2244a b +8.如图1,在ABC V 中,90A ∠=︒,3AB =,4AC =,P 是边BC 上的一个动点,过点P 分别作PD AB ⊥于点D ,PE AC ⊥于点E ,连接DE .如图2所示的图象中,912,55M ⎛⎫ ⎪⎝⎭是该图象的最低点.下列四组变量中,y 与x 之间的对应关系可以用图2所示图象表示的是( )A .点P 与B 的距离为x ,点P 与C 的距离为yB .点P 与B 的距离为x ,点D 与E 的距离为yC .点P 与D 的距离为x ,点P 与E 的距离为yD .点P 与D 的距离为x ,点D 与E 的距离为y二、填空题9x 的取值范围是.10.在平面直角坐标系xOy 中,一次函数y kx b =+的图象由函数3y x =的图象平移得到,且经过点()0,1-,该一次函数的表达式为.11.在ABCD Y 中,160A C ︒∠+∠=,则B ∠=︒.12.用一个a 的值,说明命题a ”是假命题,这个值可以是=a .13.如图,平行四边形ABCD 的对角线AC BD ,相交于点O ,BD CD ⊥,6AC =,4BD =,则AB 的长为.14.一次数学实践活动中,小组的综合成绩由小组自评、组间互评和教师评价三部分组成,各部分成绩均按百分制计,然后再按小组自评占30%、组间互评占30%、教师评价占40%,计算小组的综合成绩,甲、乙两个小组各部分的成绩如下表所示,则组的综合成绩更高(填“甲”或“乙”).15.如图,在平面直角坐标系xOy中,点(A,AB y⊥轴于点B,以AB为边作菱形ABCD,若点C在x轴上,则点D的坐标为.16.小华从家出发沿笔直的马路匀速步行去图书馆听讲座,几分钟后,爸爸发现小华忘带图书馆的出入卡,于是从家出发沿相同路线匀速跑步去追小华,爸爸追上小华后以原速度沿原路回家.小华拿到出入卡后以原速度的1.2倍快步赶往图书馆,并在从家出发20min时到达图书馆(小华被爸爸追上时交流的时间忽略不计).在整个过程中,小华与爸爸之间的距离y与小华离家的时间x的对应关系如图所示.(1)小华从家出发min 时,爸追上小华;(2)图书馆离小华家m .三、解答题17.计算:(2)()()11.18.如图,在平面直角坐标系xOy 中,直线l 与x 轴,y 轴分别交于点A ,B .点C 在第一象限,且四边形OACB 是矩形.(1)使用直尺和圆规,按照下面的作法补全图形(保留作图痕迹);作法:以点A 为圆心,OB 的长为半径画弧,再以点B 为圆心,OA 的长为半径画弧,两弧在第一象限相交于点C ,连接AC ,BC ,则四边形OACB 是矩形.(2)根据(1)中的作法,完成下面的证明:证明:∵AC OB =, OA =,∴四边形OACB 是平行四边形.( )(填推理的依据)∵90BOA ∠=︒,∴四边形OACB 是矩形,( )(填推理的依据)(3)若直线l 的表达式为122y x =-+,直接写出矩形OACB 的面积和直线OC 的表达式. 19.如图,在ABCD Y 中,FA AB ⊥交CD 于点E ,交BC 的延长线于点F ,且CF BC =,连接AC DF ,.(1)求证:四边形ACFD 是菱形;(2)若5AB =,132DF =,求四边形ACFD 的面积. 20.在平面直角坐标系xOy 中,点()1,A m -在直线1l :31y x =--上,直线2l :y kx b =+经过点A ,且与x 轴交于点()2,0B -.(1)求m 的值及直线2l 的表达式;(2)点()1,C n y 在直线1l 上,CD x ⊥轴交直线2l 于点D ,点D 的纵坐标为2y .若124y y <<,直接写出n 的取值范围.21.某果园收获了一批苹果,有2000个苹果作为大果装入包装盒进行销售.设苹果的果径为mm x ,其中A 款包装盒中的苹果果径要求是8085x ≤<,B 款包装盒中的苹果果径要求是8590x ≤<.从这2000个苹果中障机抽取20个,测量它们的果径(单位:mm ),所得数据整理如下:80 81 82 82 83 84 84 85 86 8687 87 87 89 90 91 92 92 94 98(1)这20个苹果的果径的众数是 ,中位数是 ;(2)如果一个包装盒中苹果果径的方差越小,那么认为该包装盒中的苹果大小越均匀.从抽取的苹果中分别选出6个装入两个包装盒,其果径如下表所示.其中,包装盒 中的苹果大小更均匀(填“1”或“2”);(3)请估计这2000个苹果中,符合A 款包装盒要求的苹果有多少个?22.我国古代数学著作《算法统宗》中有这样一个问题:平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.良工高士素好奇,算出索长有几?(1步5=尺) 提取信息秋千静止时,踏板离地面1尺高;将秋千的踏板向前推动2步(即10尺)时,踏板就和推秋千的人一样高,同为5尺.秋千的绳索长是多少?画示意图假设秋千的绳索长在运动过程中始终保持不变.如图,O 是秋千的固定点,点A 是秋千静止时路板的位置,点B 是向前推动10尺(水平距离)后踏板的位置.直线l 是地面,OA ⊥于点C ,BD l ⊥于点D .解决问题(1)图中AC = 尺,BD = 尺,CD = 尺;(2)求秋千的绳索长.23.对于函数2y x m =+(m 为常数),小明用特殊到一般的方法,探究了它的图象及部分性质.请将小明的探究过程补充完整,并解决问题.(1)当0m =时,函数为2y x =;当7m =时,函数为27y x =+.用描点法画出了这两个函数的图象,如图所示.观察函数图象可知: 函数2y x =的图象关于 对称; 对于函数27y x =+,当x = 时,3y =;(2)当4m =-时,函数为24y x =-.①在图中画出函数24y x =-的图象;②对于函数24y x =-,当13x <<时,y 的取值范围是 ;(3)结合函数2y x =,27y x =+和24y x =-的图象,可知函数2y x m =+(0m ≠)的图象可由函数2y x =的图象平移得到,它们具有类似的性质.①若0m >,写出由函数2y x =的图象得到函数2y x m =+的图象的平移方式; ②若点()1,t y 和()21,t y +都在函数2y x m =+的图象上,且12y y >,直接写出t 的取值范围(用含m 的式子表示).24.在正方形ABCD 中,E 是边BC 上的一个动点(不与点B ,C 重合),连接AE ,P 为点B 关于直线AE 的对称点.(1)连接AP ,作射线DP 交射线AE 于点F ,依题意补全图1.①若BAE α∠=,求ADP Ð的大小(用含α的式子表示);②用等式表示线段AF ,PF 和PD 之间的数量关系,并证明;(2)已知2AB =,连接PC ,若PC A E ∥,M ,N 是正方形ABCD 的对角线BD 上的两个动点,且BN BM =EM ,AN ,直接写出EM AN +的最小值.25.对于一些二次根式,我们可以用数形结合的方法进行研究.=可以看作平面直角坐标系xOy 中,动点(),0A x 与定点()13,1B 或()23,1B -之间的距离(如图).请参考上面的方法解决下列问题:(1)xOy 中,动点(),0A x 与定点C 之间的距离,则点C 的坐标可以是 (写出一个即可);(2)若d ,直接写出d 的最大值.26.在平面直角坐标系xOy 中,对于线段a ,给出如下定义:直线1l :12y x b =+经过线段a 的一个端点,直线2l :23y x b =-+经过线段a 的另一个端点.若直线1l 与2l 交于点P ,且点P 不在线段a 上,则称点P 为线段a 的“双线关联点”.(1)如图,线段a 的两个端点分别为()0,1-和()0,4,则在点()11,1P ,()21,1P -,()31,2P -中,线段a 的“双线关联点”是 ;(2)()1,A m y ,()24,B m y +是直线34y x =上的两个动点.①点P 是线段AB 的“双线关联点”,且点P 的纵坐标为4,求点P 的横坐标; ②正方形CDEF 的四个顶点的坐标分别为(),C t t 、(),D t t -、()3,E t t -、()3,F t t ,其中0t >,当点A ,B 在直线上运动时,不断产生线段AB 的“双线关联点”,若所有线段AB 的“双线关联点”中,恰有两个点在正方形CDEF 上,直接写出t 的取值范围.。
北京市西城区2011-2012学年第一学期期末(数学)北区word版

北京市西城区2011-2012学年第一学期期末(数学)北区一、选择题(32分,每题4分)1. 抛物线1)1(2+-=x y 的顶点坐标为 A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2.若相交两圆的半径分别为4和7,则它们的圆心距可能是 A.2 B. 3 C.6 D.113.在RT △ABC 中,∠C=90 º,若BC=1,AB=5则tanA 的值为A. 55 B. 552 C.21 D.24.如图,在O Θ中,直径AB CD 弦⊥于E ,连接BD ,若2300==∠BD D ,,则AE 的长为 A.2 B.3 C.4 D.55.若正六边形的边长等于4,则它的面积等于A. 348B. 324C. 312D. 346.如图,以D 为位似中心,作△ABC 的一个位似三角形111C B A , C B A ,,的对应点分别 为111C B A ,DA DA 与1的比值为k ,若两个三角形的顶点及点D 均在如图所示的格点上,则k 的值和点1C 的坐标分别为A.2,(2,8)B.4,(2,8)C. 2,(2,4)D. 2,(4,4)7.如图,抛物线c bx axy ++=2经过点(-1,0),对称轴为x=1,则下列结论中正确的是A.a>0B.当x>1时,y 随x 的增大而增大C.c<0D.x=3是一元二次方程02=++c bx ax的一个根8.如图,在平面直角坐标系xoy 中,A(2,0),B(0,2), C Θ上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最大值是 A. 2 B.38 C. 222+D. 222-二、填空题(16分,每题4分)9.如图O Θ是△ABC 的外接圆,若=∠=∠A OCB ,则04010.将抛物线2x y =先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式11.如图,在RT △ABC 中,4,30,900==∠=∠AB B ACB ,以斜边AB 的中点D 为旋转中点,把△ABC 按逆时针方向旋转α角(0<α<1200)当点A 的对应点与点C 重合时,B,C 两点的对应点分别记为E,F ,EF 与AB 的交点为G ,此时α等于 ,△DEG 的面积是 12.已知二次函数x xy +-=221,(1)它的最大值为 (2)若存在实数m ,n 使得当自变量x 的取值范围是n x m ≤≤时,函数值y 的取值范围恰好是n y m 33≤≤,则m= n= 三、解答题(本题30分,每题5分) 13.计算:0245sin260tan 330cos -+14.已知关于x 的方程03222=-+-k x x 有两个不相等的实数根 (1)求k 的取值范围 (2)若k 为符合条件的最大整数,求此方程的根15.已知抛物线542-+=x x y(1)直接写出它与x 轴、y 轴的交点的坐标 (2)用配方法将542-+=x x y 化成k h x a y +-=2)(的形式16.已知:如图,在菱形ABCD 中,E 为BC 边上一点,B AED ∠=∠ (1)求证:DEA ABE ∆∆∽; (2)若AB=4,求DE AE ⋅的值17.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示),设矩形的一边AB 的长为x 米(要求AB<AD ),矩形ABCD 的面积为S 平方米(1)求S 与x 之间的函数关系式,并直接写出自变量x 的取值范围 (2)要想使花圃的面积最大,AB 边的长应为多少米?18.如图,在RT △ABC 中,090=∠C ,AB 的垂直平分线与BC 、AB 的交点分别为D,E(1)若54sin 10=∠=ADC AD ,,求AC 的长和βtan 的值(2)若AD=1,α=∠ADC ,参考(1)的计算过程直接写出2tan α的值四、解答题(20分,每题5分)19.如图所示,在平面直角坐标系xoy 中,正方形PABC 的边长为1,将其沿x 轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转900得到第二个正方形,再以顶点D 为旋转中心将第二个正方向顺时针旋转900得到第三个正方形,依次方法继续滚动下去得到第四个正方形,…第n 的正方形,设滚动过程中的点P 的坐标 为(x ,y )(1) 画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标(2) 画出点P(x,y)运动的曲线(0)4≤≤x ,并直接写出该曲线与x 轴所围成区域的面积20.已知函数)0(2≥++=x c bx x y ,满足当x=1时,y=-1,且当x=0时与x=4时的函数值相等 (1)求函数)0(2≥++=x c bx x y 的解析式并画出它的图像(2)若f (x )表示自变量x 相对应的函数值,且⎩⎨⎧<-≥++=)0(2)0()(2x x c bx xx f 又已知关于x 的方程k x x f +=)(有三个不相等的实数根,请利用图像直接写出实数k 的取值范围21.已知:如图,AB 是O Θ的直径,BAC ∠的平分线与O Θ的交点为D ,AC DE ⊥,与AC 的延长线交于点E (1)求证:直线DE 是O Θ的切线(2)若OE 与AD 交于点F ,AFDF BAC 求,54cos =∠的值22.阅读下列材料题目:已知实数a ,x 满足a>2且x>2,试判断ax 与a+x 的大小关系,并加以说明思路:可用:求差法,比较两个数的大小,先列出ax 与a+x 的差)(x a ax y --=,再说明y 的符号即可 现给出如下利用函数解决问题的方法:简解:可将y 的代数式整理成a x a y --=)1(。
2011-2012学年北京市西城区初三数学第一学期期末数学试题(南区)(含答案)

北京市西城区2011—2012学年度第一学期期末试卷(南区)九年级数学 2012.1考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
3.在答题纸上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线2(1)1y x =-+的顶点坐标为A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)--2.若相交两圆的半径分别为4和7,则它们的圆心距可能是A .2B .3C . 6D .113.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5tan A 的值为A 5B 25C .12D .24. 如图,在⊙O 中,直径AB ⊥弦CD 于E ,连接BD ,若∠D =30°, BD =2,则AE 的长为 A .2 B .3 C .4 D .55.下列图形中,中心对称图形有A .4个B .3个C .2个D .1个6.抛掷一枚质地均匀的正方体骰子,出现大于3点的概率为 A .21 B .31 C .41 D .617.如图,抛物线2y ax bx c =++经过点(-1,0),对称轴为x =1,则下列结论中正确的是A .0>aB .当1>x 时,y 随x 的增大而增大C .0<cD .3x =是一元二次方程20ax bx c ++=的一个根8.如图,在平面直角坐标系xOy 中,(2,0)A ,(0,2)B ,⊙C 的圆心为点(1,0)C -,半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最大值是 A .2 B . 83C .2+D . 2-二、填空题(本题共16分,每小题4分)9.如图,⊙O 是△ABC 的外接圆,若∠OCB =40°,则∠A= °.10.将抛物线2y x =先向下平移1个单位长度后,再向右平移1个单位长度,所得抛物线的解析式是 .11.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4.以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转 α角(0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点的对应点分别记为E ,F ,EF 与AB 的交点为G ,此时 α等于 ° ,△DEG 的面积为 .12.已知二次函数212y x x =-+,(1)它的最大值为 ;(2)若存在实数m , n 使得当自变量x 的取值范围是m ≤x ≤n 时,函数值y 的取值范围恰好是3m ≤y ≤3n ,则m= ,n= .13.计算:2cos30602sin 45︒+︒-︒.14.如图,网格中每个小正方形的边长均为1,且点A ,B ,C ,P 均为格点.(1) 在网格中作图:以点P 为位似中心,将△ABC 的各边长放大为原来的两倍,A ,B ,C 的对应点分别为A 1 ,B 1 ,C 1;(2) 若点A 的坐标为(1,1),点B 的坐标为(3,2),则(1)中点C 1的坐标为 .15.已知抛物线245y x x =+-.(1)直接写出它与x 轴、y 轴的交点的坐标;(2)用配方法将245y x x =+-化成2()y a x h k =-+的形式.16.如图,三角形纸片ABC 中,∠BCA =90°,∠A =30°,AB =6, 在AC 上取一点 E ,沿BE 将该纸片折叠,使AB 的一部分 与BC 重合,点A 与BC 延长线上的点D 重合,求DE 的长.17.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为36米的篱笆恰好围成(如图所示). 设矩形的一边AB 的长为x 米(要求AB <AD ),矩形 ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出自变量x 的取值范围; (2)要想使花圃的面积最大,AB 边的长应为多少米?18.如图,在Rt △ABC 中,90C ∠=︒,AB 的垂直平分线与BC ,AB 的交点分别为D ,E . (1)若AD =10,4sin 5ADC ∠=,求AC 的长和tan B 的值;(2)若AD=1,ADC ∠=α,参考(1)的计算过程直接写 出tan 2α的值(用sin α和cos α的值表示).19.如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x 轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标; (2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.20.已知函数2y x bx c =++(x ≥ 0),满足当x =1时,1y =-,且当x = 0与x =4时的函数值相等. (1) 求函数2y x bx c =++(x ≥ 0)的解析式并 画出它的图象(不要求列表);(2)若()f x 表示自变量x 相对应的函数值,且2 (0),() 2 (0),x bx c x f x x ⎧++≥=⎨-<⎩ 又已知关于x 的 方程()f x x k =+有三个不相等的实数根,请利用图象直接写出实数k 的取值范围.21.已知:如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线与⊙O 的交点为D ,DE ⊥AC ,与AC 的延长线交于 点E .(1)求证:直线DE 是⊙O 的切线; (2)若OE 与AD 交于点F ,4cos 5BAC ∠=,求DF AF 的值.22.阅读下列材料:题目:已知实数a ,x 满足a >2且x >2,试判断ax 与a x +的大小关系,并加以说明. 思路:可用“求差法”比较两个数的大小,列出ax 与a x +的差()y ax a x =-+再说明y 的符号即可.现给出如下利用函数解决问题的方法:简解:可将y 的代数式整理成(1)y a x a =--,要判断y 的符号可借助函数(1)y a x a =--的图象和性质解决.参考以上解题思路解决以下问题:已知a ,b ,c 都是非负数,a <5,且 2220a a b c ---=,2230a b c +-+=. (1)分别用含a 的代数式表示4b ,4c ; (2)说明a ,b ,c 之间的大小关系.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知抛物线2(2)2y kx k x =+--(其中0k >).(1)求该抛物线与x 轴的交点及顶点的坐标(可以用含k 的代数式表示); (2)若记该抛物线顶点的坐标为(,)P m n ,直接写出n 的最小值; (3)将该抛物线先向右平移12个单位长度,再向上平移1k个单位长度,随着k 的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).24.已知:⊙O 是△ABC 的外接圆,点M 为⊙O 上一点.(1)如图,若△ABC 为等边三角形,BM =1,CM =2, 求AM 的长;(2) 若△ABC 为等腰直角三角形,∠BAC =90︒,BM a =,CM b =(其中b a >),直接写出AM 的长(用含有a ,b 的代数式表示).25. 已知:在如图1所示的平面直角坐标系xOy 中,A ,C 两点的坐标分别为(2,3)A ,(,3)C n -(其中n >0),点B 在x 轴的正半轴上.动点P 从点O 出发,在四边形OABC 的边上依次沿O —A —B —C 的顺序向点C 移动,当点P 与点C 重合时停止运动.设点P 移动的路径的长为l ,△POC 的面积为S ,S 与l 的函数关系的图象如图2所示,其中四边形ODEF 是等腰梯形.(1)结合以上信息及图2填空:图2中的m = ; (2)求B ,C 两点的坐标及图2中OF 的长;(3)在图1中,当动点P 恰为经过O ,B 两点的抛物线W 的顶点时, ① 求此抛物线W 的解析式;② 若点Q 在直线1y =-上方的抛物线W 上,坐标平面内另有一点R ,满足以B ,P ,Q ,R 四点为顶点的四边形是菱形,求点Q 的坐标.北京市西城区2011 — 2012学年度第一学期期末试卷(南区)九年级数学参考答案及评分标准2012.1 一、选择题(本题共32分,每小题4分)阅卷说明:第10题写成2(1)1y x=--不扣分;第11题每空各2分;第12题第(1)问2分, 第(2)问每空各1分.三、解答题(本题共30分,每小题5分)13.解:原式= 222⨯…………………………………………………3分= 22+.……………………………………………………………………5分14.解:(1)…………………………………………3分(2)点C1的坐标为(2,8). ……………………………………………………5分图115.解:(1)抛物线与x 轴的交点的坐标为(5,0) (1,0)-和. …………………………2分抛物线与y 轴的交点的坐标为(05)-,. …………………………………3分 (2)245y x x =+-2(44)9x x =++-…………………………………………………………4分2(2)9x =+-. …………………………………………………………5分 16.解: 在RtΔACB 中,∠ACB =90°,AB =6, ∠A =30°,(如图2) ∴ 362121=⨯==AB BC . ………………………1分 ∵ 沿BE 将ΔABC 折叠后,点A 与BC 延长线上的点D∴ BD=AB=6,∠D =∠A =30°.……………………3分∴CD=BD -BC =6-3=3. ……………………………4分在RtΔDCE 中,∠DCE =90°,CD =3, ∠D =30°,∴3223330cos ===CD DE . ………………………………………………5分17.解:(1)∵ 四边形ABCD 是矩形,AB 的长为x 米, ∴ CD=AB=x (米).∵ 矩形除AD 边外的三边总长为36米,∴ 362BC x =-(米).………………………………………………………1分 ∴ 2(362)236S x x x x =-=-+. ……………………………………………3分 自变量x 的取值范围是012x <<. …………………………………………4分 ( 说明:由0<x <36-2x 可得012x <<.)(2)∵222362(9)162S x x x =-+=--+,且9x =在012x <<的范围内 ,∴ 当9x =时,S 取最大值.即AB 边的长为9米时,花圃的面积最大.…………………………………5分18.解:(1)在Rt △ACD 中,90C ∠=︒, AD =10,4sin 5ADC ∠=,(如图3) ∴ 4sin 1085AC AD ADC =⋅∠=⨯=.……1分3cos 1065CD AD ADC =⋅∠=⨯=. ∵ DE 垂直平分AB ,∴ 10BD AD ==.……………………………2分 ∴ 16BC CD BD =+=. ……………………3分 在Rt △ABC 中,90C ∠=︒,∴ 81tan 162AC B BC ===.……………………………………………………4分 (2)sin tan 21cos ααα=+.(写成1cos sin αα-也可) ……………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)第三个和第四个正方形的位置 如图4所示.……………………2分 第三个正方形中的点P 的坐标为 (3,1). …………………………3分(2)点(,)P x y 运动的曲线(0≤x ≤4)如图4所示. …………………………4分它与x 轴所围成区域的面积等于1π+. ……………………………………5分20.解:(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩解得 4b =-,2c =.…………………………………………………………2分 ∴ 所求的函数解析式为242y x x =-+(x ≥0). …………………………3分 它的函数图象如图5所示.……………………………………………………4分(2)k 的取值范围是22k -<≤.(如图6)……………………………………………5分 21.(1)证明:连接OD .(如图7) ∵ AD 平分∠BAC ,∴ ∠1=∠2.…………………………………………………………………1分 ∵ OA =OD , ∴ ∠1=∠3. ∴ ∠2=∠3.∴ OD ∥AE .∵ DE ⊥AC , ∴ ∠AED =90°.∴ 18090ODE AED ∠=︒-∠=︒.∴ DE ⊥OD . ……………………………2分 ∵ OD 是⊙O 的半径,∴ 直线DE 是⊙O 的切线. ………………………………………………3分(2)解:作OG ⊥AE 于点G .(如图7) ∴ ∠OGE =90°.∴ ∠ODE =∠DEG =∠OGE =90°. ∴ 四边形OGED 是矩形.∴ OD =GE .……………………………………………………………………4分 在Rt △OAG 中, ∠OGA =90°,4cos 5BAC ∠=,设AG =4k ,则OA =5k . ∴ GE =OD =5k . ∴ AE =AG +GE =9k . ∵ OD ∥GE , ∴ △ODF ∽△EAF . ∴59DF OD AF AE ==.……………………………………………………………5分 22.解:(1)∵ 2220a a b c ---=,2230a b c +-+=,∴ ⎪⎩⎪⎨⎧+=--=+.322,222a b c a a c b消去b 并整理,得243c a =+.………………………1分消去c 并整理,得2423b a a =--. ………………2分(2)∵ ()()()411332422--=+-=--=a a a a a b , 将4b 看成a 的函数,由函数24(1)4b a =--的性质结合它的图象(如图8所示),以及a ,b 均为非负数得a ≥3.又 ∵ a <5,∴ 3≤a <5.……………………………………………………………………3分∵ 224()63(3)12b a a a a -=--=--,将4()b a -看成a 的函数,由函数24()(3)12b a a -=--的性质结合它的图象(如图9所示)可知,当3≤a <5时,4()0b a -<.∴ b <a . ……………………………………………4分∵ 24()43(1)(3)c a a a a a -=-+=--,a ≥3,∴ 4()c a -≥0.∴ c ≥a .∴ b <a ≤c . ………………………………………5分阅卷说明:“b <a ,b <c ,a ≤c ”三者中,先得出其中任何一个结论即可得到第4分,全写对得到5分.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)令0y =,得方程 2(2)20kx k x +--=.整理,得 (1)(2)0x kx +-=.解得 11x =-,22x k= . ∴ 该抛物线与x 轴的交点坐标为(1,0)-,2(,0)k. ………………………2分 抛物线2(2)2y kx k x =+--的顶点坐标为2244(,)24k k k k k-++-. ………3分 (2)|n |的最小值为 2 . …………………………………………………………4分 (3)平移后抛物线的顶点坐标为214(,)4k k k k+-.…………………………………5分由1,14x k k y ⎧=⎪⎪⎨⎪=--⎪⎩可得 114y x =-- . ∴ 所求新函数的解析式为114y x=--. …………………………………7分 24.解:(1)因AB =AC 且∠BAC=60°,故将△ABM 绕点A 逆时针旋转60︒得△ACN ,则△ABM ≌△ACN ,(如图10)………………………………………………1分∴ ∠BAM =∠CAN ,∠ABM =∠ACN ,AM =AN ,BM =CN .∵ 四边形ABMC 内接于⊙O ,∴ ∠ABM +∠ACM =180︒.∴ ∠ACN +∠ACM =180︒.∴ M ,C ,N 三点共线.……………………2分∵ ∠BAM =∠CAN ,∴ ∠BAM +∠MAC =∠CAN +∠MAC =60︒, 即∠MAN =60︒. ………………………………………………………………3分∵ AM =AN ,∴ △AMN 是等边三角形.……………………………………………………4分 ∴ AM =MN =MC +CN =MC +BM =2+1=3. ……………………………………5分(2)AM)b a -)b a +.……………………………………………7分 25.解:(1)图2中的m1分(2)∵ 图11(原题图2)中四边形ODEF 是等腰梯形,点D 的坐标为(,12)D m ,∴ 12E D y y ==,此时原题图1中的点P 运动到与点B 重合,∴ 1131222BOC C S OB y OB ∆=⨯⨯=⨯⨯=. 解得 8OB =,点B 的坐标为(8,0). ……………………………………2分此时作AM ⊥OB 于点M ,CN ⊥OB 于点N .(如图12).∵ 点C 的坐标为(,3)C n -,∴ 点C 在直线3y =-上.又由图11(原题图2)中四边形ODEF 是等腰梯形可知图12中的点C 在过点O 与AB 平行的直线l 上,∴ 点C 是直线3y =-与直线l 的交点,且ABM CON ∠=∠.又∵ 3A C y y ==,即AM= CN ,可得△ABM ≌△CON .∴ ON=BM=6,点C 的坐标为(6,3)C -.……………………………………3分 ∵ 图12中AB ==∴ 图11中DE =,2D OF x DE =+= …………………4分(3)①当点P 恰为经过O ,B 两点的抛物线W 的顶点时,作PG ⊥OB 于点G .(如图13)∵ O ,B 两点的坐标分别为(0,0)O ,(8,0)B ,∴ 由抛物线的对称性可知P 点的横坐标为4,即OG=BG=4.由3tan 6AM PG ABM BM BG∠===可得PG=2. ∴ 点P 的坐标为(4,2)P .………………5分设抛物线W 的解析式为(8)y ax x =-(a ≠0).∵ 抛物线过点(4,2)P ,∴ 4(48)2a -=. 解得 18a =-. ∴ 抛物线W 的解析式为218y x x =-+.…………………………………6分 ②如图14.i )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的边时,∵ 点Q 在直线1y =-上方的抛物线W 上, 点P 为抛物线W 的顶点,结合抛物线的对称性可知点Q 只有一种情况,点Q 与原点重合,其坐标为1(0,0)Q .……………………………………………………………………7分 ii )当BP 为以B ,P ,Q ,R 四点为顶点的菱形的对角线时,可知BP 的中点的坐标为(6,1),BP 的中垂线的解析式为211y x =-.∴ 2Q 点的横坐标是方程212118x x x -+=-的解.将该方程整理得28880x x +-=.解得4x =-± 由点Q 在直线1y =-上方的抛物线W 上,结合图14可知2Q 点的横坐标为4.∴ 点2Q 的坐标是219)Q . …………………………8分综上所述,符合题意的点Q 的坐标是1(0,0)Q ,219)Q .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区(北区)2011–2012学年度第二学期抽样测试
八年级数学试卷
(时间100分钟,满分100分)
题号 一 二 三 四 五 总分 得分
一、精心选一选(本题共30分,每小题3分) 1.函数3y x =
-中,自变量x 的取值范围是( C )
. A . 3<x B . 3≠x C . x ≥3 D .3>x
2.下列各组数中,以它们为边长的线段能构成直角三角形的是(D ).
A .2,4,5
B .6,8,11
C .5,12,12
D . 1,1,2 3.若反比例函数k
y x
=
的图象位于第二、四象限,则k 的取值范围是( A ). A . 0k < B . 0k > C . k ≤0 D .k ≥0
4.如图,在□ABCD 中,AE ⊥CD 于点E ,∠B =65°, 则∠DAE 等于(B ).
A .15°
B .25°
C .35°
D .65°
5.用配方法解方程2
220x x --=,下列变形正确的是(C ).
A .2
(1)2x -= B .2
(2)2x -= C .2
(1)3x -= D .2
(2)3x -= 6.在四边形ABCD 中,对角线AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是( B ).
A .∠ABC =90°
B .A
C ⊥B
D C .AB =CD D .AB ∥CD
7.某施工队挖一条240米的渠道,开工后,每天比原计划多挖20米,结果提前2天完成任务.若设原计划每天挖x 米,则所列方程正确的是( A ).
A .
240240220x x -=+ B .240240
202x x -=+ C .
240240220x x -=- D .240240
202x x
-=- 8.如图,在△ABC 中,AB =6,AC =10,点D ,E ,F 分别是AB ,BC ,AC 的中点,则四边形ADEF 的 周长为( D ).
A .8
B .10
C .12
D .16
E
A
B
C
D
A B
C
D
E
F
9.如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AD =2, BC =6,∠B =60°,则AB 的长为( B ).
A .3
B .4
C .5
D . 6
10.如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在
反比例函数2510k k y x
-+=(0x >)的图象上.若点B 的坐标为(4,4--),
则k 的值为( ).
A . 2
B . 6
C . 2或3
D .1-或6
二、细心填一填(本题共18分,每小题3分) 11.若24(5)0x y ++-=,则2012
)
(y x +的值为______1______.
12.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x (单位:
度),这2000度电能够使用的天数为y (单位:天),则y 与x 的函数关系式为____________________.(不要求写出自变量x 的取值范围)
13.如图,在Rt △ABC 中,∠ACB =90°,AC =3,AB =6,点D 是AB 的中点,则
∠ACD =_________°.
14.如图,以菱形AOBC 的顶点O 为原点,对角线OC 所在直线为x 轴建立平面直角
坐标系,若OB =5,点C 的坐标为(4,0),则点A 的坐标为___________. 15.已知1x =是关于x 的方程02
=++n mx x 的一个根,则2
2
2m mn n ++的值为
___________.
16.如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,对角线AC ,BD 交于点O ,且∠
BOC =90°.若AD +BC =12,则AC 的长为___________.
A B
C
D
B
C
D
A
y
x
O
A
B
C
D
A
B
C
O
x
y
O
A
B C
D
第13题图 第14题图 第16题图
三、认真算一算(本题共16分,第17题8分,第18题8分) 17.计算:
(1)2427(653)+-+; (2)182(75)(75)÷++-. 解: 解:
18.解方程:
(1)2
310x x -+=; (2)(3)(26)0x x x +-+=. 解: 解:
四、解答题(本题共18分,每小题6分)
19.某中学开展“头脑风暴”知识竞赛活动,八年级1班和2班各选出5名选手参
加初赛,两个班的选手的初赛成绩(单位:分)分别是: 1班 85 80 75 85 100 2班 80 100 85 80 80 (1)根据所给信息将下面的表格补充完整;
(2)根据问题(1)中的数据,判断哪个班的初赛成绩较为稳定,并说明理由. 答:
平均数 中位数 众数 方差 1班初赛成绩 85 70 2班初赛成绩
85
80
20.已知:如图,在□ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.
(1)求证:△ABE≌△FCE;
(2)若AF=AD,求证:四边形ABFC是矩形.
证明:(1)
(2)
F
A
B C
D
E
21.已知:关于x 的一元二次方程2(21)20x m x m +++=. (1)求证:无论m 为何值,此方程总有两个实数根;
(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明:
(2)解:。