2015年1月6月浙江省普通高中学业水平考试标准数学
【精校】2015年普通高等学校招生全国统一考试(浙江卷)数学理

2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1)B. (0,2]C. (1,2)D. [1,2]解析:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),答案:C.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A. 8cm3B.12cm3C.D.解析:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.答案:C3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0解析:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0. 答案:B4.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC. ∃n0∈N*,f(n0)∉N*且f(n0)>n0D. ∃n0∈N*,f(n0)∉N*或f(n0)>n解析:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,答案:D5.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.解析:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,答案:A6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立解析:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card(A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,答案:A7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|解析:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.答案:D(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,8.(5分)所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α解析:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在OE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,答案:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是. 解析:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.答案:2;y=±x(2015•浙江)已知函数f(x)=,则f(f(﹣3))= ,10.(6分)f(x)的最小值是.解析:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,f(x)=lg(x2+1)<lg2无最小值,故f(x)的最小值是.答案:0;.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.解析:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)答案:π;[kπ+,kπ+](k∈Z)12.(4分)(2015•浙江)若a=log43,则2a+2﹣a= .解析:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.答案:13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是 .解析:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.答案:14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.解析:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.答案:315.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .解析:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2答案:1;2;2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.解析:(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=. (2)由=×=3,可得c,即可得出b.答案:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b= c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.解析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.答案:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.解析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.答案:(1)由已知可得f(1)=1+a+b,f(-1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).解析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.答案:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点横坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).解析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.答案:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
【2015浙江学考

(Ⅱ)由题意得 l 不垂直两坐标轴,故设 l 的方程为 y=k(x+1)(k≠0)
于是直线
l
与直线
x=-
1 2
交点
Q
的纵坐标为
yQ
=
k 2
设 A(x1,y1),B(x2,y2),显然 x1,x2≠1,
所以直线
F2A
的方程为
y
=
y1 (x x1 −1
−1)
故直线
F2A
与直线
x=-
1 2
交点
P
的纵坐标为
∵g(x)=
sin2x+
sin(2x+
2
)=
sin2x+cos2x=
2 sin(2x + ) 4
∴当
x
=
k
+
8
,
k∈Z 时,函数 g(x)的最大值为
2
24.解: (Ⅰ)因为椭圆的长轴长 2a=2 2 ,焦距 2c=2.
又由椭圆的定义得 |AF1|+|AF2|=2a
所以△AF1F2 的周长为|AF1|+|AF2|+|F1F2|=2 2 +2
+
1 −x −1
=-(
ax
+
x
1 +
1
+
x
1 −1
)=-f(x)
又因为 f(x)的定义域为{x∈R|x≠-1 且 x≠1}
所以函数 f(x)为奇函数。
(Ⅱ)证明:任取 x1,x2∈(0,1),设 x1<x2,则
f(x1)-f(x2)=a(x1-x2)+
x2 − x1 + x2 − x1 (x1 −1)(x2 −1) (x1 +1)(x2 +1)
2015-2016学年浙江省普通高中高二(上)学业水平测试数学试卷及答案

2015-2016学年浙江省普通高中高二(上)学业水平测试数学试卷一、选择题(本大题共18小题,每小题3分,共54分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.(3分)函数f(x)=3的定义域为()A.(﹣∞,0)B.[0,+∞)C.[2,+∞)D.(﹣∞,2)2.(3分)下列数列中,构成等比数列的是()A.2,3,4,5 B.1,﹣2,﹣4,8 C.0,1,2,4 D.16,﹣8,4,﹣2 3.(3分)任给△ABC,设角A,B,C所对的边分别为a,b,c,则下列等式成立的是()A.c2=a2+b2+2abcosC B.c2=a2+b2﹣2abcosCC.c2=a2+b2+2absinC D.c2=a2+b2﹣2absinC4.(3分)如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为()A. B.C.D.5.(3分)要得到余弦曲线y=cosx,只需将正弦曲线y=sinx向左平移()A.个单位B.个单位C.个单位D.个单位6.(3分)在平面直角坐标系中,过点(0,1)且倾斜角为45°的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)已知平面向量=(1,x),=(y,1).若∥,则实数x,y一定满足()A.xy﹣1=0 B.xy+1=0 C.x﹣y=0 D.x+y=08.(3分)已知{a n}(n∈N*)是以1为首项,2为公差的等差数列.设S n是{a n}的前n项和,且S n=25,则n=()A.3 B.4 C.5 D.69.(3分)设抛物线y2=2px(p>0)的焦点为F.若F到直线y=x的距离为,则p=()A.2 B.4 C.2 D.410.(3分)在空间直角坐标系Oxyz中,若y轴上点M到两点P(1,0,2),Q (1,﹣3,1)的距离相等,则点M的坐标为()A.(0,1,0)B.(0,﹣1,0)C.(0,0,3)D.(0,0,﹣3)11.(3分)若实数x,y满足,则y的最大值为()A.B.1 C.D.12.(3分)设a>0,且a≠1,则“a>1”是“log a<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件13.(3分)如图,在正方体ABCD﹣A1B1C1D1中,M为棱D1C1的中点.设AM与平面BB1D1D的交点为O,则()A.三点D1,O,B共线,且OB=2OD1B.三点D1,O,B不共线,且OB=2OD1C.三点D1,O,B共线,且OB=OD1D.三点D1,O,B不共线,且OB=OD114.(3分)设正实数a,b满足a+λb=2(其中λ为正常数).若ab的最大值为3,则λ=()A.3 B.C.D.15.(3分)在空间中,设l,m为两条不同直线,α,β为两个不同的平面,则下列命题正确的是()A.若l⊂α,m不平行于l,则m不平行于αB.若l⊂α,m⊂β,且α,β不平行,则l,m不平行C.若l⊂α,m不垂直于l,则m不垂直于αD.若l⊂α,m⊂β,l不垂直于m,则α,β不垂直16.(3分)设a,b,c∈R,下列命题正确的是()A.若|a|<|b|,则|a+c|<|b+c|B.若|a|<|b|,则|a﹣c|<|b﹣c|C.若|a|<|b﹣c|,则|a|<|b|﹣|c|D.若|a|<|b﹣c|,则|a|﹣|c|<|b| 17.(3分)已知F1,F2分别是双曲线﹣=1(a,b>0)的左、右焦点,l1,l2为双曲线的两条渐近线.设过点M(b,0)且平行于l1的直线交l2于点P.若PF1⊥PF2,则该双曲线的离心率为()A.B.C.D.18.(3分)如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是()A.(,) B.(,]C.(,]D.(,)二、填空题(本大题共4小题,每空3分,共15分)19.(6分)设,为平面向量.若=(1,0),=(3,4),则||=,•=.20.(3分)设全集U={2,3,4},集合A={2,3},则A的补集∁U A=.21.(3分)在数列{a n}(n∈N*)中,设a1=a2=1,a3=2.若数列{}是等差数列,则a6=.22.(3分)已知函数f(x)=,g(x)=ax+1,其中a>0.若f(x)与g(x)的图象有两个不同的交点,则a的取值范围是.三、解答题(本大题共3小题,共31分)23.(10分)已知函数f(x)=2sinxcosx,x∈R.(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)求函数g(x)=f(x)+f(x+)的最大值.24.(10分)设F1,F2分别是椭圆C:+y2=1的左、右焦点,过F1且斜率不为零的动直线l与椭圆C交于A,B两点.(Ⅰ)求△AF1F2的周长;(Ⅱ)若存在直线l,使得直线F2A,AB,F2B与直线x=﹣分别交于P,Q,R 三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.25.(11分)已知函数f(x)=ax++,a∈R.(Ⅰ)判断函数f(x)的奇偶性,并说明理由;(Ⅱ)当a<2时,证明:函数f(x)在(0,1)上单调递减;(Ⅲ)若对任意的x∈(0,1)∪(1,+∞),不等式(x﹣1)[f(x)﹣]≥0恒成立,求a的取值范围.2015-2016学年浙江省普通高中高二(上)学业水平测试数学试卷参考答案与试题解析一、选择题(本大题共18小题,每小题3分,共54分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.(3分)函数f(x)=3的定义域为()A.(﹣∞,0)B.[0,+∞)C.[2,+∞)D.(﹣∞,2)【解答】解:要使函数f(x)=3有意义,可得x﹣2≥0,解得x≥2.函数的定义域为:[2,+∞).故选:C.2.(3分)下列数列中,构成等比数列的是()A.2,3,4,5 B.1,﹣2,﹣4,8 C.0,1,2,4 D.16,﹣8,4,﹣2【解答】解:由等比数列的定义以及性质可知,A,B,C都不是等比数列.故选:D.3.(3分)任给△ABC,设角A,B,C所对的边分别为a,b,c,则下列等式成立的是()A.c2=a2+b2+2abcosC B.c2=a2+b2﹣2abcosCC.c2=a2+b2+2absinC D.c2=a2+b2﹣2absinC【解答】解:式子c2=a2+b2﹣2abcosC符合余弦定理,正确;故选:B.4.(3分)如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为()A. B.C.D.【解答】解:简单组合体由一个圆锥和一个圆柱组成,左侧是圆锥,右侧是圆柱,俯视图为:三角形与矩形组成,故选:D.5.(3分)要得到余弦曲线y=cosx,只需将正弦曲线y=sinx向左平移()A.个单位B.个单位C.个单位D.个单位【解答】解:∵cosx=sin(x﹣)∴余弦函数y=cosx的图象可看作正弦y=sinx图象向左平移个单位得到.故选:A6.(3分)在平面直角坐标系中,过点(0,1)且倾斜角为45°的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:过点(0,1)且倾斜角为45°的直线为y﹣1=x,即x﹣y+1=0,当x=0时,y=1,当y=0时,x=﹣1,所以直线x﹣y+1=0过第一,二,三象限,不过第四象限,故选:D.7.(3分)已知平面向量=(1,x),=(y,1).若∥,则实数x,y一定满足()A.xy﹣1=0 B.xy+1=0 C.x﹣y=0 D.x+y=0【解答】解:平面向量=(1,x),=(y,1).若∥,则xy=1.即xy﹣1=0.故选:A.8.(3分)已知{a n}(n∈N*)是以1为首项,2为公差的等差数列.设S n是{a n}的前n项和,且S n=25,则n=()A.3 B.4 C.5 D.6【解答】解:S n=25=n+,化为n2=25,解得n=5.故选:C.9.(3分)设抛物线y2=2px(p>0)的焦点为F.若F到直线y=x的距离为,则p=()A.2 B.4 C.2 D.4【解答】解:抛物线y2=2px(p>0)的焦点为F(,0).F到直线y=x的距离为,可得:=,解得p=4.故选:B.10.(3分)在空间直角坐标系Oxyz中,若y轴上点M到两点P(1,0,2),Q (1,﹣3,1)的距离相等,则点M的坐标为()A.(0,1,0)B.(0,﹣1,0)C.(0,0,3)D.(0,0,﹣3)【解答】解:根据题意,设点M(0,y,0),∵|MP|=|MQ|,∴=,即y2+5=y2+6y+11,∴y=﹣1,∴点M(0,﹣1,0).故选:B.11.(3分)若实数x,y满足,则y的最大值为()A.B.1 C.D.【解答】解:做出直线y=x,y=x与圆(x﹣1)2+y2=1的图象,得出不等式组对应的可行域,如图阴影部分所示,根据题意得:y的最大值为1,故选:B.12.(3分)设a>0,且a≠1,则“a>1”是“log a<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵log a<1=log a a,当a>1时,函数是一个增函数,不等式成立,当0<a<1时,函数是一个减函数,根据函数的单调性有a<,综上可知a的取值是(0,)∪(1,+∞),故“a>1”是“log a<1”的充分不必要条件,故选:A.13.(3分)如图,在正方体ABCD﹣A1B1C1D1中,M为棱D1C1的中点.设AM与平面BB1D1D的交点为O,则()A.三点D1,O,B共线,且OB=2OD1B.三点D1,O,B不共线,且OB=2OD1C.三点D1,O,B共线,且OB=OD1D.三点D1,O,B不共线,且OB=OD1【解答】解:【解法一】如图1,连接AD1,BC1,利用公理2可直接证得,并且由D1M∥AB且D1M=AB,∴OD1=BO,∴D1,O,B三点共线,且OB=2OD1.【解法二】以正方体ABCD﹣A1B1C1D1的顶点D为坐标原点,DA所在的直线为x 轴,DC所在的直线为y轴,DD1所在的直线为z轴建立空间直角坐标系,如图所示,设正方体的棱长为1,则A(1,0,0),B(1,1,0),D1(0,0,1),M(0,,1);设点O(x,x,z),∴=(x﹣1,x,z),=(﹣1,,1);又与共线,∴=λ,∴(x﹣1,x,z)=(﹣λ,λ,λ),即,解得,∴点O(,,);∴=(﹣,﹣,),又=(﹣1,﹣1,1),∴=,∴D1,O,B三点共线,且OB=2OD1.故选:A.14.(3分)设正实数a,b满足a+λb=2(其中λ为正常数).若ab的最大值为3,则λ=()A.3 B.C.D.【解答】解:设正实数a,b满足a+λb=2(其中λ为正常数)若ab的最大值为3,则2≤2,当ab=3时:=1,解得:λ=,故选:D.15.(3分)在空间中,设l,m为两条不同直线,α,β为两个不同的平面,则下列命题正确的是()A.若l⊂α,m不平行于l,则m不平行于αB.若l⊂α,m⊂β,且α,β不平行,则l,m不平行C.若l⊂α,m不垂直于l,则m不垂直于αD.若l⊂α,m⊂β,l不垂直于m,则α,β不垂直【解答】解:若l⊂α,m不平行于l,则m⊂α,m平行于α,m与α相交都有可能,故不正确;若l⊂α,m⊂β,且α,β不平行,则l,m可以与交线平行,故不正确;若l⊂α,m不垂直于l,则m不垂直于α,利用反证法可得正确;若l⊂α,m⊂β,l不垂直于m,α,β垂直时也成立,故不正确.故选:C.16.(3分)设a,b,c∈R,下列命题正确的是()A.若|a|<|b|,则|a+c|<|b+c|B.若|a|<|b|,则|a﹣c|<|b﹣c|C.若|a|<|b﹣c|,则|a|<|b|﹣|c|D.若|a|<|b﹣c|,则|a|﹣|c|<|b|【解答】解:根据不等式的基本性质,对各选项考察如下:对于A选项:若|a|<|b|,不一定有|a+c|<|b+c|成立,如a=﹣2,b=3,c=﹣1,此时|a+c|>|b+c|,故A不正确;对于B选项:若|a|<|b|,不一定有|a﹣c|<|b﹣c|成立,如a=﹣2,b=3,c=1,此时|a﹣c|>|b﹣c|,故B不正确;对于C选项:若|a|<|b﹣c|,不一定有|a|<|b|﹣|c|,如a=2,b=2,c=﹣3,此时|a|>|b|﹣|c|,故C不正确;对于D选项:若|a|<|b﹣c|,则必有|a|﹣|c|<|b|成立,因为,|a|<|b﹣c|≤|b|+|c|,所以,|a|﹣|c|<|b|,故D正确.故答案为:D.17.(3分)已知F1,F2分别是双曲线﹣=1(a,b>0)的左、右焦点,l1,l2为双曲线的两条渐近线.设过点M(b,0)且平行于l1的直线交l2于点P.若PF1⊥PF2,则该双曲线的离心率为()A.B.C.D.【解答】解:根据题意可得F1(﹣c,0)、F2(c,0),双曲线的渐近线为:y=x,直线PM的方程为:y=﹣(x﹣b),联立,可得x=,∴P(,)∴=(+c,),=(﹣c,)∵PF1⊥PF2,∴•=0,∴(+c,)•(﹣c,)=0∴=0∴b2=4a2,∴c2=5a2,∴e==,故选:B.18.(3分)如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是()A.(,) B.(,]C.(,]D.(,)【解答】解:可设菱形的边长为1,则BE=CF=,BD=1;线段AD,BD的中点分别为E,F;∴,=;∴===;∴=;由图看出;∴;∴;即异面直线BE与CF所成角的取值范围是.故选:C.二、填空题(本大题共4小题,每空3分,共15分)19.(6分)设,为平面向量.若=(1,0),=(3,4),则||=1,•= 3.【解答】解:||==1,•=1×3+0×4=3.故答案1,3.20.(3分)设全集U={2,3,4},集合A={2,3},则A的补集∁U A={4} .【解答】解:∵全集U={2,3,4},集合A={2,3},∴∁U A={4},故答案为:{4}21.(3分)在数列{a n}(n∈N*)中,设a1=a2=1,a3=2.若数列{}是等差数列,则a6=120.【解答】解:∵数列{}是等差数列,∴公差d=.则.则,….累积得:,∴a6=120.故答案为:120.22.(3分)已知函数f(x)=,g(x)=ax+1,其中a>0.若f(x)与g(x)的图象有两个不同的交点,则a的取值范围是(0,1).【解答】解:f(x)=,(1)若a<0,作出f(x)和g(x)的图象如图,显然f(x)与g(x)只有一个交点.(2)若a=0,作出f(x)和g(x)的图象如图,显然f(x)与g(x)只有一个交点.(3)若a>1,作出f(x)和g(x)的图象如图,显然f(x)与g(x)只有一个交点.(4)若0<a<1,作出f(x)和g(x)的图象如图,显然f(x)与g(x)有两个交点.(5)若a=1,作出f(x)和g(x)的图象如图,显然f(x)与g(x)只有一个交点.综上,a的取值范围是(0,1).故答案为(0,1).三、解答题(本大题共3小题,共31分)23.(10分)已知函数f(x)=2sinxcosx,x∈R.(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)求函数g(x)=f(x)+f(x+)的最大值.【解答】解:(Ⅰ)由题意得f()=2sin cos=1,(Ⅱ)∵f(x)=sin2x,∴函数f(x)的最小正周期为T==π,(Ⅲ)∵g(x)=sin2x+sin(2x+)=sin2x+cos2x=sin(2x+),∴当x=k,k∈Z时,函数g(x)的最大值为.24.(10分)设F1,F2分别是椭圆C:+y2=1的左、右焦点,过F1且斜率不为零的动直线l与椭圆C交于A,B两点.(Ⅰ)求△AF1F2的周长;(Ⅱ)若存在直线l,使得直线F2A,AB,F2B与直线x=﹣分别交于P,Q,R 三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.【解答】解:(Ⅰ)因为椭圆的长轴长2a=2,焦距2c=2.又由椭圆的定义得|AF1|+|AF2|=2a所以△AF1F2的周长为|AF1|+|AF2|+|F1F2|=2+2(Ⅱ)由题意得l不垂直两坐标轴,故设l的方程为y=k(x+1)(k≠0)于是直线l与直线x=﹣交点Q的纵坐标为y Q=设A(x1,y1),B(x2,y2),显然x1,x2≠1,所以直线F2A的方程为y=(x﹣1)故直线F2A与直线x=﹣交点P的纵坐标为y P=同理,点R的纵坐标为y R=因为P,Q,R到x轴的距离依次成等比数列,所以|y P|•|y R|=|y Q|2即|×|=整理得9|x1x2+(x1+x2)+1|=|x1x2﹣(x1+x2)+1|.(*)联立y=k(x+1)与椭圆方程,消去y得(1+2k2)x2+4k2x+2k2﹣2=0所以x1+x2=,x1x2=代入(*)化简得|8k2﹣1|=9解得k=±经检验,直线l的方程为y═±(x+1).25.(11分)已知函数f(x)=ax++,a∈R.(Ⅰ)判断函数f(x)的奇偶性,并说明理由;(Ⅱ)当a<2时,证明:函数f(x)在(0,1)上单调递减;(Ⅲ)若对任意的x∈(0,1)∪(1,+∞),不等式(x﹣1)[f(x)﹣]≥0恒成立,求a的取值范围.【解答】(Ⅰ)解:∵f(﹣x)=﹣ax=﹣(ax++)=﹣f(x),又∵f(x)的定义域为{x∈R|x≠﹣1且x≠1},∴函数f(x)为奇函数;(Ⅱ)证明:任取x1,x2∈(0,1),设x1<x2,则f(x1)﹣f(x2)=a(x1﹣x2)+==.∵0<x1<x2<1,∴2(x1x2+1)>2,0<(x12﹣1)(x22﹣1)<1,∴>2>a,∴a﹣<0.又∵x1﹣x2<0,∴f(x1)>f(x2).∴函数f(x)在(0,1)上单调递减;(Ⅲ)解:∵(x﹣1)[f(x)﹣]=(x﹣1)[ax]==.∴不等式(x﹣1)[f(x)﹣]≥0恒成立化为不等式ax2(x2﹣1)+2≥0对任意的x∈(0,1)∪(1,+∞)恒成立.令函数g(t)=at2﹣at+2,其中t=x2,t>0且t≠1.①当a<0时,抛物线y=g(t)开口向下,不合题意;②当a=0时,g(t)=2>0恒成立,∴a=0符合题意;③当a>0时,∵g(t)=a(t﹣)2﹣+2.∴只需﹣+2≥0,即0<a≤8.综上,a的取值范围是0≤a≤8.。
2015年普通高等学校招生全国统一考试数学理试题精品解析(浙江卷)

2015年高考浙江卷理数试题解析(精编版)(解析版)一.选择题:本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项是符合要求的.1. 已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =ð( )A.[0,1)B.(0,2]C.(1,2)D.[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.38cmB. 312cmC.3323cmD.3403cm【答案】C.3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则() A.140,0a d dS >> B. 140,0a d dS << C. 140,0a d dS >< D. 140,0a d dS <>4.命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是() A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >5. 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A. 11BF AF --B. 2211BF AF -- C. 11BF AF ++ D. 2211BF AF ++6.设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.存在函数()f x 满足,对任意x R ∈都有( )A.(sin2)sin f x x =B. 2(sin 2)f x x x =+C. 2(1)1f x x +=+D. 2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A.A DB α'∠≤B.A DB α'∠≥C.A CB α'∠≤D.A CB α'∠≤二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.双曲线2212xy-=的焦距是,渐近线方程是.10.已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 .11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .12.若4log 3a =,则22a a -+=. 【答案】334. 【解析】13.如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .13.若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .15.已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x =,0y =,b =.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.17.(本题满分15分) 如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11BC 的中点.(1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.18.(本题满分15分)已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值.(1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值.19.(本题满分15分)已知椭圆2212xy+=上两个不同的点A,B关于直线12y mx=+对称.(1)求实数m的取值范围;(2)求AOB∆面积的最大值(O为坐标原点).20.(本题满分15分) 已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N ) (1)证明:112n n a a +≤≤(n ∈*N );(2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).1 1 1玉—-—::::2a ,:-I a : 从而可得 1玉a :-1三上(n e/),即可得证2(n + 1) n +2试题解析:(1)由题怠得,a .. a .• = I _1 -. -a : ::::O , 即a ,:-I ::, a .. , a .. _ <一,由a ,:=(I -a 2:-1)a ,:-l 1 得a ,,=(l -a ,,_1)(1-a ,,_)· · ·(1-a 1)芍>0, 由O <a ,,C:::-得2a . a . I 一=·.: =—e [l ,2)a . •即1::::一"-0::2,(2)由题怠得a •. ·=a • -a 气!..习a ,:-I a ,: -a ,: I -a ,:1 1 a , a . S ,: = a 1 -a ,:-I (D , 由一--—=�和1竺一"--0::2得a ,:-I a ,: a ,:-Ia ,:-I 1 1 1玉—-—::::2'a :-I a ,: I I :三—--::::2因此1 红习三上(哇_\''@,由(j)@得2(n + 1) n +2 ) a 习令1S 1玉-"-0::2(n + 2) n 2(n + 1)【考点定位】数列与不等式结合综合题【名师点皓】本题主要考查了数列的递推公式,不等式的证明等知识点,屁于较难题,第一小间易证,利用条件中的递推公式作等价变形,即可得到—= -=—,再结合已知条件即可得证,第二小a , 习a ,, 1 a ,, 间具有较强的技巧性,首先根据递推公式将$转化为只与a ,,-1有关的表达式,再结合已知条件得到a ,,-1的取值范围即可得证,此次数列自汉伯$年之后作为解答题压轴题重出江湖,笾是一个不大不小的怜门(之前浙江各地的模考解答题压轴题基本都是以二次函数为背崇的函数综合题),由千数列综合题常与不等式,函数的毅值,归纳猫想,分类讨论等数学思想相结合,技巧性比较强,鸯要平时一定蚕的训练与积累,在后续复习时应子以关注。
2015年(1月、6月)浙江省普通高中学业水平考试标准-语文

2015年(1月、6月)浙江省普通高中学业水平考试标准语文浙江省教育考试院编制Ⅰ.考试性质与对象浙江省普通高中学业水平考试是在教育部指导下,由省级教育行政部门组织实施的全面衡量普通高中学生学业水平的考试。
其主要功能是引导普通高中全面贯彻党的教育方针,落实必修课程教学要求,检测高中学生的学业水平,监测、评价和反馈高中教学质量。
考试成绩是高中生毕业的基本依据,也是高校招生录取和用人单位招聘的重要参考依据。
高中语文学业水平考试是依据《普通高中语文课程标准(实验)》和《浙江省普通高中学科教学指导意见·语文》(2012版)(以下简称《指导意见》)为依据的全省统一的语文课程学业水平考试。
高中语文学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。
考试的对象是在本省中小学学生电子学籍系统中注册获得普通高中学籍的且修完语文必修课程的所有在校学生。
Ⅱ.考核目标、要求与等第(一)考核目标普通高中语文学业水平考试坚持语文学科工具性和人文性的统一,从知识和能力、过程和方法、情感态度和价值观三个维度对学生语文素养进行全面考查,在此基础上,着重考查考生掌握和应用高中语文基础知识的能力和阅读、写作方面的能力。
(二)考核要求普通高中语文学业水平考试考查的语文能力可分为识记、理解、分析综合、鉴赏评价和表达应用五种,并表现为五个层级。
A.识记指识别和记忆,是最基本的能力层级。
B.理解指领会并能作简单的解释,是在识记基础上高一级的能力层级。
C.分析综合指分解剖析和归纳整理,是在识记和理解的基础上进一步提高了的能力层级。
D.鉴赏评价指对阅读材料的鉴别、赏析和评说,是以识记、理解、分析综合为基础,在阅读方面发展了的能力层级。
E.表达应用指对语文知识和能力的运用,是以识记、理解、分析综合为基础,在表达方面发展了的能力层级。
对A、B、C、D、E五个能力层级均可有难易不同的考查。
(三)考核等第普通高中语文学业水平考试成绩分为A(优秀)、B(良好)、C(及格)、E(不及格)四个等第,A、B、C三个等第标准如下:A等能系统掌握考核范围内的基本语文知识,具有良好的语文素养,语文学科能力强。
2015年高考浙江理科数学试题及答案解析

2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( ) (A )[0,1) (B )(0,2] (C )(1,2) (D )[1,2] 【答案】C【解析】(][),02,P =-∞+∞,()0,2R P =,()()1,2R P Q ∴=,故选C .【点评】此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键. (2)【2015年浙江,理2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )(A )38cm (B )312cm (C )332cm 3 (D )340cm 3【答案】C【解析】图像为正四棱锥与正方体的组合体,由俯视图知:正方体棱长为2,正四棱锥底面边长2,高为2,所以该几何体的体积3213222233V =+⨯⨯=,故选C .【点评】本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力. (3)【2015年浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则( )(A )10,0n a d dS >> (B )10,0n a d dS << (C )10,0n a d dS >< (D )10,0n a d dS <>【答案】B【解析】因为245,,a a a 成等比数列,所以()()()211134a d a d a d +=++,化简得2150a d d =-<,()224114646140dS d a d a d d d =+=+=-<,故选B .【点评】本题考查了等差数列和等比数列的性质,考查了等差数列的前n 项和,是基础题. (4)【2015年浙江,理4】命题“**,()n N f n N ∀∈∈ 且()f n n ≤的否定形式是( )(A )**,()n N f n N ∀∈∈且()f n n > (B )**,()n N f n N ∀∈∈或()f n n >(C )**00,()n N f n N ∃∈∈且00()f n n > (D )**00,()n N f n N ∃∈∈或00()f n n > 【答案】D【解析】全称命题:p x M ∀∈,()p x 的否定是0:p x M ⌝∃∈,()0p x ⌝,所以命题的否定为:*0n N ∃∈,()*0f n N ∉或()00f n n >,故选D .【点评】本题主要考查含有量词的命题的否定,比较基础. (5)【2015年浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则n a 与ACF ∆的面积之比是( ) (A )11BF AF --(B )2211BF AF --(C )11BF AF ++(D )2211BF AF ++【答案】A【解析】如图所示,抛物线的准线DE 的方程为1x =-,又由抛物线定义知BF BD =,AF AE =,11BM BD BF ∴=-=-,11AN AE AF =-=-,11BCF ACF BMBF S BC S AC AN AF ∆∆-∴===-,故选A . 【点评】本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.(6)【2015年浙江,理6】设,A B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数( )命题①:对任意有限集,A B ,“A B ≠”是“(,)0d A B >”的充分必要条件;命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+.(A )命题①和命题②都成立 (B )命题①和命题②都不成立 (C )命题①成立,命题②不成立 (D )命题①不成立,命题②成立 【答案】A【解析】由题意,()()()(),20d A B card A card B card A B =+-≥,命题①:()()(),0A B card AB card AB d A B =⇔=⇔=,(),0A B d A B ∴≠⇔>,命题①成立.命题②:由维恩图易知命题②成立,下面给出严格证明:()()(),,,d A C d A B d B C ≤+()()()()()()()()()222card A card C card A C card A card B card AB card B cardC card BC ⇔+-≤+-++-()()()()card A C card A B card B C card B ⇔≥+-()()()()card AC card AC B card A B C card B ⇔≥--⎡⎤⎣⎦,因为()0card A C ≥且()()()0card A C B card ABC card B --≤⎡⎤⎣⎦,故命题②成立,故选A .【点评】本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.(7)【2015年浙江,理7】存在函数()f x 满足,对任意x R ∈都有( )(A )(sin 2)sin f x x = (B )2(sin 2)f x x x =+ (C )2(1)1f x x +=+ (D )2(2)1f x x x +=+ 【答案】D【解析】选项A :当4x π=时,()212f =;当54x π=时,()212f =-; 选项B :当4x π=时,()21164f ππ=+;当54x π=时,()22551164f ππ=+; 选项C :当1x =-时,()20f =;当1x =时,()22f =;或()21f x +为偶函数,然而1y x =+并不是偶函数;选项D :()()222111f x x f x x +=+-=+,令1t x =+得()21f t t -=,0t ≥,再令21t m -=,则1t m =+,()1f m m =+,故函数()1f x x =+可以满足要求,故选D .【点评】本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.(8)【2015年浙江,理8】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )(A )A DB α'∠≤ (B )A DB α'∠≥ (C )A CB α'∠≤ (D )A CB α'∠≤ 【答案】B【解析】解法一:考查特殊值,用排除法,若CA CB ≠,则当απ=时,A CB π'∠<,排除D ,当0α=时, 0A CB '∠>,0A DB '∠>,排除A ,C ,故选B . 解法二:①当AC BC =时,A DB α'∠=; ②当AC BC ≠时,如图,点A '投影在AE 上,A OE α'=∠,连接AA ',易得ADA AOA ''∠<∠,A DB A OE ''∴∠>∠,即A DB α'∠>. 综上所述,A DB α'∠≥,故选B .【点评】本题考查空间角的大小比较,注意解题方法的积累,属于中档题.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(9)【2015年浙江,理9】双曲线2212x y -=的焦距是 ,渐近线方程是 .【答案】23;22y x =±【解析】2a =,1b =,焦距223c a b =+=,∴焦距为23,渐近线22b y x x a =±=±.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.(10)【2015年浙江,理10】已知函数221,1()2lg(1),1x x f x x x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 . 【答案】0;223-【解析】()()((3))log1011230f f f f -===+-=;当1x ≥时,()23223f x x x=+-≥-(当2x =时取最小值)当2x =时取最小值,当1x <时,()()2log 1log10f x x =+≥=,2230-<,()f x ∴的最小值为223-.【点评】本题主要考查了分段函数的函数值的求解,属于基础试题. (11)【2015年浙江,理11】函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .【答案】π;37,,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】()21cos 2123sin sin cos 1sin 21sin 222242x f x x x x x x π-⎛⎫=++=++=-+ ⎪⎝⎭,所以最小正周期T π=; 单调递减区间:3222242k x k πππππ+≤-≤+,化简得3788k x k ππππ+≤≤+, ∴单调递减区间:37,,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.【点评】本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题. (12)【2015年浙江,理12】若2log 3a =,则22a a -+= . 【答案】433【解析】由2log 3a =可知43a =,即23a =,所以14322333a a -+=+=. 【点评】本题考查对数的运算性质,是基础的计算题. (13)【2015年浙江,理13】如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 __.【答案】78【解析】取ND 的中点E ,因为//ME AN ,则EMC ∠为异面直线AN ,CM 所成的角.22AN =,2ME NE ∴==,22MC =,又EN NC ⊥,223EC EN NC ∴=+=,2837cos 82222EMC +-∴∠==⨯⨯.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力. (14)【2015年浙江,理14】若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .【答案】3【解析】221x y +≤,630x y ∴-->,即6363x y x y --=--,如图,直线220x y +-=将直线221x y +=分成了两部分:①在阴影区域内的(),x y 满足220x y +-≥,即2222x y x y +-=+-, 此时()()2263226324x y x y x y x y x y +-+--=+-+--=-+,利用线性规划可知在34,55A ⎛⎫⎪⎝⎭处取得最小值3;②在阴影区域外的(),x y 满足220x y +-≤,即()2222x y x y +-=-+-, 此时()()22632263834x y x y x y x y x y +-+--=-+-+--=--,利用线性规划可知在34,55A ⎛⎫⎪⎝⎭处取得最小值3.综上,当35x =,45y =时,2263x y x y +-+--的最小值为3.【点评】本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.(15)【2015年浙江,理15】已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = . 【答案】01x =,02y =,22b ==. 【解析】121212121cos ,cos ,2e e e e e e e e ⋅===,12,3e e π∴=,不妨设113,,022e ⎛⎫= ⎪ ⎪⎝⎭,()21,0,0e =,(),,b m n t =,则由题意知113222b e m n ⋅=+=,252b e m ⋅==,解得52m =,32n =,53,,22b t ⎛⎫∴= ⎪ ⎪⎝⎭, ()125133,,2222b xe ye x y x t ⎛⎫-+=--- ⎪ ⎪⎝⎭,()22221251332222b xe ye x y x t ⎛⎫⎛⎫∴-+=--+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭()22222243457224y x xy y x y t x y t -⎛⎫=++--++=++-+ ⎪⎝⎭,由题意,当1e x x ==,2e y y ==时,()22243224y x y t -⎛⎫++-+ ⎪⎝⎭取到最小值1,此时21t =,故2225382222b t ⎛⎫⎛⎫=++== ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程.(16)【2015年浙江,理16】(本小题满分14分)在()nf n n ≤中,内角**,()n N f n N ∀∈∉所对边分别为**,()n N f n N ∀∈∉.已知4A π=,22212b ac -=-. (Ⅰ)求tan C 的值;(Ⅱ)若()nf n n ≤的面积为7,求b 的值.解:(Ⅰ)由22212b a c -=及正弦定理得2211sin sin 22B C -=,故2cos2sin B C -=.又由4A π=,即34B C π+=, 得cos2sin22sin cos B C C C -==,解得tan 2C =.(Ⅱ)由tan 2C =得25sin 5C =,5cos 5C =,又()sin sin sin 4B A C C π⎛⎫=+=+ ⎪⎝⎭,故310sin 10B =,由正弦定理得223c b =,又4A π=,1sin 32bc A =,故62bc =,故3b =.【点评】本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.(17)【2015年浙江,理17】(本小题满分15分)如图,在三棱柱111ABC A B C -中,090BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(Ⅰ)证明:1A D ⊥平面1A BC ;(Ⅱ)求二面角11A BD B --的平面角的余弦值. 解:解法一:(Ⅰ)设E 为BC 的中点,连1,A E AE .由题1A E ⊥平面ABC ,故1A E AE ⊥.因AB AC =,故AE BC ⊥, 从而AE ⊥平面1A BC .由,D E 分别11,B C BC 的中点,得1//DE B B 且1DE B B =, 从而1//DE A A ,且1DE A A =,所以1A AED 为平行四边形,故1//A D AE .又AE ⊥平面1A BC , 故1A D ⊥平面1A BC .(Ⅱ)作1A F BD ⊥于F ,连1B F ,由题2AE EB ==,01190A EA A EB ∠=∠=,得114A B A A ==.由11A D B D =,11A B B B =,得11A DB B DB ∆≅∆.由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠ 为二面角11A BD B --的平面角.由12A D =,14A B =,0190DA B ∠=,得32BD =,1143A F B F ==,由余弦定理得111cos 8A FB =-.解法二:(Ⅰ)如图,以BC 中点为原点O ,CB 方向为x 轴正方向,OA 为y 轴正方向,1OA 为z 轴正方向,建立空间直角坐标系.2BC =,22AC =,221114AO AA AO =+=,易知 ()10,0,14A ,()2,0,0B,()2,0,0C -,()0,2,0A ,()0,2,14D -,()12,2,14B -, ()10,2,0A D =-,()2,2,14BD =--,()12,0,0B D =-,()22,0,0BC =-, ()10,0,14OA =,110A D OA ∴⋅=,11A D OA ∴⊥,又10A D BC ⋅=,1A D BC ∴⊥,又1OA BC O =,1A D ∴⊥平面1A BC .(Ⅱ)设平面1A BD 的法向量为()1111,,n x y z =,知11120n A D y ⋅=-=,111122140n BD x y z ⋅=--+=,则取()17,0,1n =,设平面1B BD 的法向量为()2222,,n x y z =,则2122222140n B D x y z ⋅=--+=,2220n BD x ⋅=-=,则取()20,7,1n =,12121211cos ,82222n n n n n n ⋅∴===⨯⋅,又知该二面角为钝角,所以其平面角的余弦值为18-.【点评】本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题. (18)【2015年浙江,理18】(本小题满分15分)已知函数()()2,f x x ax b a b R =++∈,记(),M a b 是()||f x 在区间[]1,1-上的最大值.(Ⅰ)证明:当||2a ≥时,(),2M a b ≥;(Ⅱ)当,a b 满足(),2M a b ≤,求||||a b +的最大值.解:(Ⅰ)由()2224a a f x x b ⎛⎫=++- ⎪⎝⎭,得对称轴为直线2a x =-,由||2a ≥,得||12a -≥,故()f x 在[]1,1-上单调,因此()()(){},max |1|,|1|M a b f f =-.当2a ≥时,()()1124f f a --=≥,故()()4|1||1|f f ≤+-,()(){}max |1|,|1|2f f ∴-≥,即(),2M a b ≥;当2a ≤-时,()()1124f f a --=-≥,故()()4|1||1|f f ≤-+,()(){}max |1|,|1|2f f ∴-≥,即(),2M a b ≥.综上,当||2a ≥时,(),2M a b ≥.(Ⅱ)由(),2M a b ≤得()|1||1|2a b f ++=≤,()|1||1|2a b f -+=-≤,故||3a b +≤,||3a b -≤,由()()||0||||||0a b ab a b a b ab ⎧+≥⎪+=⎨-<⎪⎩,得||||3a b +≤.当2a =,1b =-时,||||3a b +=,且2|21|x x +-在[]1,1-的最大值为2,即()2,12M -=,故||||a b +的最大值为3.【点评】本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解(),M a b 是()f x 在区间[]1,1-上的最大值,以及利用三角不等式变形.(19)【2015年浙江,理19】(本小题满分15分)已知椭圆2212x y +=上两个不同的点,A B 关于直线12y mx =+对称. (Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB ∆面积的最大值(O 为坐标原点). 解:(Ⅰ)由题知0m ≠,可设直线AB :1y x b m=-+,代入椭圆方程并整理得()()222224210m x mbx m b +-+-=. 因直线AB 与椭圆2212x y +=有两个不同的交点,故()2222820m m m b ∆=+-> ①.将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程12y mx =+得2222m b m +=-②.由①②得m <m > (Ⅱ)令2130,2t m ⎛⎫=∈ ⎪⎝⎭,则||AB =,且O 到AB的距离为1t d +=,故AOB ∆的面积()1||2S t AB d =⋅≤,当且仅当12t =时,等号成立,故AOB ∆. 【点评】本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.(20)【2015年浙江,理20】(本小题满分15分)已知数列{}n a 满足112a =且()21n n n a a a n N ++=-∈,数列{}2n a 的前n 项和为n S ,证明:(Ⅰ)()112n n an N a ++≤≤∈;(Ⅱ)()()()112221n S n N n n n +≤≤∈++. 解:(Ⅰ)由题210n n n a a a +-=-≤,即1n n a a +≤,故12n a ≤. 由()111n n n a a a --=-得()()()12111110n n n a a a a a --=--->,故102n a <≤,从而(]111,21n n n a a a +=∈-,即112n n a a +≤≤. (Ⅱ)由题21n n n a a a +=-,故11n n S a a +=- ①.由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n na a +≤-≤,故11112n n n a a +≤-≤,因此()()111212n a n N n n ++≤≤∈++ ②, 由①②得()()()112221n S n N n n n +≤≤∈++. 【点评】本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
2015年普通高等学校招生全国统一考试(浙江卷)理数

2015年普通高等学校招生全国统一考试(浙江卷)理数本卷满分150分,考试时间120分钟.参考公式:球的表面积公式S=4πR2球的体积公式V=πR3其中R表示球的半径柱体的体积公式V=Sh其中S表示柱体的底面积,h表示柱体的高锥体的体积公式V=Sh其中S表示锥体的底面积,h表示锥体的高台体的体积公式V=h(S1++S2)其中S1,S2分别表示台体的上、下底面积,h表示台体的高第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1)B.(0,2]C.(1,2)D.[1,2]2.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm3B.12 cm3C. cm3D. cm33.已知{a n}是等差数列,公差d不为零,前n项和是S n.若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.命题“∀n∈N*, f(n)∈N*且f(n)≤n”的否定形式是( )A.∀n∈N*, f(n)∉N*且f(n)>nB.∀n∈N*, f(n)∉N*或f(n)>nC.∃n0∈N*, f(n0)∉N*且f(n0)>n0D.∃n0∈N*, f(n0)∉N*或f(n0)>n05.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( )A.||-||-B.||-||-C.||||D.||||6.设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A中元素的个数.命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C).()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.存在函数f(x)满足:对于任意x∈R都有( )A.f(sin 2x)=sin xB.f(sin 2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A'CD,所成二面角A'-CD-B的平面角为α,则( )A.∠A'DB≤αB.∠A'DB≥αC.∠A'CB≤αD.∠A'CB≥α第Ⅱ卷(非选择题,共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.双曲线-y2=1的焦距是,渐近线方程是.10.已知函数f(x)=-,,(),,则f(f(-3))= ,f(x)的最小值是.11.函数f(x)=sin2x+sin xcos x+1的最小正周期是,单调递减区间是.12.若a=log43,则2a+2-a= .13.如图,在三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.若实数x,y满足x2+y2≤1,则|2x+y-2|+|6-x-3y|的最小值是.15.已知e1,e2是空间单位向量,e1·e2=.若空间向量b满足b·e1=2,b·e2=,且对于任意x,y∈R,|b-(xe1+ye2)|≥|b-(x0e1+y0e2)|=1(x0,y0∈R),则x0= ,y0= ,|b|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=,b2-a2=c2.(Ⅰ)求tan C的值;(Ⅱ)若△ABC的面积为3,求b的值.17.(本题满分15分)如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(Ⅰ)证明:A1D⊥平面A1BC;(Ⅱ)求二面角A1-BD-B1的平面角的余弦值.18.(本题满分15分)已知函数f(x)=x 2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值. (Ⅰ)证明:当|a|≥2时,M(a,b)≥2;(Ⅱ)当a,b 满足M(a,b)≤2时,求|a|+|b|的最大值.19.(本题满分15分)已知椭圆 +y 2=1上两个不同的点A,B 关于直线y=mx+对称.(Ⅰ)求实数m 的取值范围;(Ⅱ)求△AOB 面积的最大值(O 为坐标原点).20.(本题满分15分)已知数列{a n }满足a 1=且a n+1=a n -(n∈N *).(Ⅰ)证明:1≤≤2(n∈N *);(Ⅱ)设数列{}的前n 项和为S n ,证明:( )≤≤( )(n∈N *).答案一、选择题1.C ∵P={x|x≥2或x≤0},∴∁R P={x|0<x<2},∴(∁R P)∩Q=(1,2).2.C 该几何体是由棱长为2的正方体和底面边长为2,高为2的正四棱锥组合而成的几何体.故其体积为V=2×2×2+×2×2×2= cm3.3.B 由=a3a8,得(a1+2d)(a1+7d)=(a1+3d)2,整理得d(5d+3a1)=0,又d≠0,∴a1=-d,则a1d=-d2<0,又∵S4=4a1+6d=-d,∴dS4=-d2<0,故选B.4.D “f(n)∈N*且f(n)≤n”的否定为“f(n)∉N*或f(n)>n”,全称命题的否定为特称命题,故选D.5.A 过A,B点分别作y轴的垂线,垂足分别为M,N,则|AM|=|AF|-1,|BN|=|BF|-1.可知△△=·||·||··||·||·=||||=||||=||-||-,故选A.6.A 对于命题①,若A≠B,则card(A∪B)>card(A∩B),从而有d(A,B)>0,即充分性成立.反之,若d(A,B)>0,则card(A∪B)>card(A∩B),可得A≠B,即必要性成立,故①正确.对于命题②,作韦恩图如图.其中m,n,p,q,a,b,c分别为相应部位元素个数,且均为非负整数.则card(A∪B)=a+b+m+n+p+q,card(A∩B)=m+q,∴d(A,B)=a+b+n+p.同理,d(B,C)=(b+c+m+n+p+q)-(p+q)=b+c+m+n,d(A,C)=(a+c+m+n+p+q)-(n+q)=a+c+m+p,∴d(A,B)+d(B,C)=a+2b+c+m+2n+p.∴d(A,B)+d(B,C)-d(A,C)=2b+2n≥0,即d(A,C)≤d(A,B)+d(B,C).故②正确.故选A.7.D 对于A,令x=0,得f(0)=0;令x=,得f(0)=1,这与函数的定义不符,故A错.在B中,令x=0,得f(0)=0;令x=,得f(0)=+,与函数的定义不符,故B错.在C中,令x=1,得f(2)=2;令x=-1,得f(2)=0,与函数的定义不符,故C错.在D中,变形为f(|x+1|2-1)=|x+1|,令|x+1|2-1=t,得t≥-1,|x+1|=,从而有f(t)=,显然这个函数关系在定义域(-1,+∞)上是成立的,选D. 8.B 若CD⊥AB,则∠A'DB为二面角A'-CD-B的平面角,即∠A'DB=α.若CD与AB不垂直,在△ABC中,过A作CD的垂线交线段CD或CD的延长线于点O,交BC于E,连结A'O,则∠A'OE为二面角A'-CD-B的平面角,即∠A'OE=α,∵AO=A'O,∴∠A'AO=.又A'D=AD,∴∠A'AD=∠A'DB.而∠A'AO是直线A'A与平面ABC所成的角,由线面角的性质知∠A'AO<∠A'AD,则有α<∠A'DB.综合有∠A'DB≥α,故选B.二、填空题9.答案2;y=±x解析双曲线-y2=1中,a=,b=1,∴2c=2=2.其渐近线方程为y=±x,即y=±x,也就是y=±x.10.答案0;2-3解析∵-3<1,∴f(-3)=lg[(-3)2+1]=lg 10=1,∴f(f(-3))=f(1)=1+-3=0.当x≥1时,f(x)=x+-3≥2-3(当且仅当x=时,取“=”);当x<1时,x2+1≥1,∴f(x)=lg(x2+1)≥0.又∵2-3<0,∴f(x)min=2-3.11.答案π;,(k∈Z)解析f(x)=sin2x+sin xcos x+1=-+sin 2x+1=(sin 2x-cos 2x)+=sin-+.易知最小正周期T==π.当+2kπ≤2x-≤+2kπ(k∈Z),即+kπ≤x≤+kπ(k∈Z)时,f(x)单调递减,所以f(x)的单调递减区间为,(k∈Z).12.答案解析∵a=log 43=log2,∴2a+2-a=+-=+=.13.答案解析连结DN,取DN的中点H,连结HM,由N、M、H均为中点,知|cos∠HMC|即为所求.因为AB=AC=BD=CD=3,AD=BC=2,又M,N为AD,BC的中点,所以CM⊥AD,AN⊥BC,所以CM=-=2,AN=-=2,MH=AN=,HC==,则=.故异面直线AN,CM所成角的余弦值为.cos∠HMC=-·14.答案 3解析∵x2+y2≤1,∴6-x-3y>0,令t=|2x+y-2|+|6-x-3y|,当2x+y-2≥0时,t=x-2y+4.点(x,y)可取区域Ⅰ内的点(含边界).通过作图可知,当直线t=x-2y+4过点A,时,t取最小值,∴t min=-+4=3.当2x+y-2<0时,t=8-3x-4y,点(x,y)可取区域Ⅱ内的点(不含线段AB).通过作图可知,此时t>8-3×-4×=3.综上,t min=3,即|2x+y-2|+|6-x-3y|的最小值是3.15.答案1;2;2解析∵e 1,e2是单位向量,e1·e2=,∴cos<e1,e2>=,又∵0°≤<e1,e2>≤180°,∴<e1,e2>=60°.不妨把e1,e2放到空间直角坐标系O-xyz的平面xOy中,设e1=(1,0,0),则e2=,,,再设=b=(m,n,r),由b·e1=2,b·e2=,得m=2,n=,则b=(2,,r).而xe1+ye2是平面xOy上任一向量,由|b-(xe1+ye2)|≥1知点B(2,,r)到平面xOy的距离为1,故可得r=1.则b=(2,,1),∴|b|=2.又由|b-(xe1+ye2)|≥|b-(x0e1+y0e2)|=1知x0e1+y0e2=(2,,0),解得x0=1,y0=2.三、解答题16.解析(Ⅰ)由b2-a2=c2及正弦定理得sin2B-=sin2C,所以-cos 2B=sin2C.又由A=,即B+C=π,得-cos 2B=sin 2C=2sin Ccos C,解得tan C=2.(Ⅱ)由tan C=2,C∈(0,π)得sin C=,cos C=.又因为sin B=sin(A+C)=sin,所以sin B=.由正弦定理得c=b,又因为A=,bcsin A=3,所以bc=6,故b=3.评析本题主要考查三角函数及其变换、正弦定理等基础知识,同时考查运算求解能力.17.解析(Ⅰ)设E为BC的中点,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以A1AED为平行四边形.故A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(Ⅱ)解法一:作A1F⊥BD且A1F∩BD=F,连结B1F.由AE=EB=,∠A1EA=∠A1EB=90°,得A1B=A1A=4.由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等.由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1-BD-B1的平面角.由A1D=,A1B=4,∠DA1B=90°,得BD=3,A1F=B1F=,由余弦定理得cos∠A1FB1=-.解法二:以CB的中点E为原点,分别以射线EA,EB为x,y轴的正半轴,建立空间直角坐标系E-xyz,如图所示.由题意知各点坐标如下:A1(0,0,),B(0,,0),D(-,0,),B1(-,,).因此=(0,,-),=(-,-,),=(0,,0).设平面A1BD的法向量为m=(x1,y1,z1),平面B1BD的法向量为n=(x2,y2,z2).由·,·,即-,--,可取m=(0,,1).由·,·,即,--,可取n=(,0,1).于是|cos<m,n>|=|·|||·||=.由题意可知,所求二面角的平面角是钝角,故二面角A1-BD-B1的平面角的余弦值为-.评析本题主要考查空间点、线、面的位置关系,二面角等基础知识,同时考查空间想象能力和运算求解能力.18.解析(Ⅰ)由f(x)=+b-,得对称轴为直线x=-.由|a|≥2,得-≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,得max{f(1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(Ⅱ)由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3,由|a|+|b|=||,,|-|,,得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2,即M(2,-1)=2.所以|a|+|b|的最大值为3.评析本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识,同时考查推理论证能力,分析问题和解决问题的能力.19.解析(Ⅰ)由题意知m≠0,可设直线AB的方程为y=-x+b.由,-,消去y,得x2-x+b2-1=0.因为直线y=-x+b与椭圆+y2=1有两个不同的交点,所以Δ=-2b2+2+>0, ①将AB中点M,代入直线方程y=mx+,解得b=-. ②由①②得m<-或m>.(Ⅱ)令t=∈-,∪,,则|AB|=·-,且O到直线AB的距离为d=.设△AOB的面积为S(t),所以S(t)=|AB|·d=--≤.当且仅当t2=时,等号成立.故△AOB面积的最大值为.评析本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.20.解析(Ⅰ)由题意得a n+1-a n=-≤0,即a n+1≤a n,故a n≤.由a n=(1-a n-1)a n-1得a n=(1-a n-1)(1-a n-2)…(1-a1)a1>0.由0<a n≤得=-=-∈[1,2],即1≤≤2.(Ⅱ)由题意得=a n-a n+1,所以S n=a1-a n+1. ①由-=和1≤≤2得1≤-≤2,所以n≤-≤2n,因此()≤a n+1≤(n∈N*). ②由①②得()≤≤()(n∈N*).评析本题主要考查数列的递推公式与单调性、不等式性质等基础知识,同时考查推理论证能力,分析问题和解决问题的能力.。
2015年浙江省高考数学试卷及答案(文科)完整版.doc

绝密★考试结束前2015年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式 台体的体积公式11221()3V h S S S S =++其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =I ( ) A .[)3,4 B .(]2,3 C .()1,2- D .(]1,3- 2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .83cm B .123cmC .3233cm D .4033cm3、设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4、设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m5、函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 7、如图,斜线段AB 与平面α所成的角为60o ,B 为斜足,平面α上的动点P 满足30∠PAB =o ,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支 8、设实数a ,b ,t 满足1sin a b t +==( )A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin 2b唯一确定 D .若t 确定,则2a a +唯一确定二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9、计算:22log 2= ,24log 3log 32+= . 10、已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .11、函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 .12、已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .13、已知1e r ,2e r 是平面单位向量,且1212e e ⋅=r r .若平面向量b r 满足121b e b e ⋅=⋅=r r r r ,则b =r.14、已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .15、椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值; (2)若B ,34a π==,求ABC ∆的面积.17.(本题满分15分)已知数列{}n a 和{}n b 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈L .(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .18.(本题满分15分)如图,在三棱锥111ABC A B C -中,011ABC=90=AC2,AA 4,A ?=,AB 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明: 11D A BC A ⊥平面; (2)求直线1A B 和平面11B C B C 所成的角的正弦值.19.(本题满分15分)如图,已知抛物线211C 4x :y=,圆222C (y 1)1x +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点, 且与抛物线的对称轴不平行,则该直线 与抛物线相切,称该公共点为切点.20.(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.2015年普通高等学校招生全国统一考试(浙江卷)数学(文科)参考答案一、 选择题1. A2.C3.D4.A5.D6.B7.C8.B二、 填空题9.1,332- 10.2,13- 11.32,2π- 12.1;2662-- 13.23314.15 15.22三、解答题16. 【答案】(1)25;(2)9(1)利用两角和与差的正切公式,得到tan 13A =,利用同角三角函数基本函数关系式得到结论; (2)利用正弦原理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积 试题解析:(1)由tan 12,tan ,43A A π⎛⎫+==⎪⎝⎭得所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++(2) 由tan 13A =可得,sin 10310;cos 1010A A ==. 3,,4a B π==由正弦定理知:b=35又()25sin sin sin cos ,5C A B A B =+==所以S ∆ABC =11sin 22ab C =×3×35×255=9 17. 【答案】(1)2;n n n a b n==;(2)1*(1)22()n n T n n N +=-+∈(1)由112,2,n n a a a +==得2.nn a =当n=1时,121,b b =-故22b = 当n 2≥时,11,n n n b b b n+=-整理得11,n n b n b n ++=所以n b n =(2)由(1)知,2nn n a b n =g所以23n 222322n T n =+++⋅⋅⋅+g gg ()4231n 222222122n n T n n +=+++⋅⋅⋅+-+g g g g所以()1n 122n T n +=-+18. 【答案】(1)略;(2)78(1)设E 为BC 中点,由题意得1A E ⊥平面ABC,所以1.A E AE ⊥ 因为,AB AC =所以AE BC ⊥ 所以AE ⊥平面1A BC由D,E 分别为11.B C BC 的中点,得1//,DE BB 从而DE//1AA 且DE=A 1A 所以1AA DE 是平行四边形,所以1//A D AE 因为AE ⊥平面1,A BC 所以1A D ⊥平面1A BC(2)作1A F DE⊥,垂足为F ,连结BF.因为AE ⊥平面1A BC,所以1BC A E⊥. 因为BC AE ⊥,所以BC ⊥平面1AA DE.所以11,BC A F A F ⊥⊥平面11BB C C.所以1A BF∠为直线1A B与平面11BB C C所成角的平面角.由2,90AB AC CAB ==∠=o,得2EA EB ==.由AE ⊥平面1A BC,得1114,14A A A B A E ===.由1114,2,90DE BB DA EA DA E ====∠=o,得172A F =.所以17sin 8A BF ∠=19. 【答案】(1)222222(2,),(,)11t t A t t B t t ++;(2)32t(1)由题意可知,直线PA 的斜率存在,故可设直线PA 的方程为().y k x t =-所以()214y k x t y x =-=⎧⎨⎩消去y,整理得:2440x kx kt -+=因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =.所以2x t =,即点2(2,)A t t . 设圆2C 的圆心为(0,1)D ,点B 的坐标为00(,)x y ,由题意知,点B,O 关于直线PD 对称,故有00001220y x t x t y ⎧=-+⎪⎨⎪-=⎩,解得2002222,11t t x y t t ==++.即点22222(,)11t t B t t ++. (2)由(1)知,21AP t t =+,直线AP 的方程为20tx y t --=, 所以点B 到直线PA 的距离为221t d t =+.所以PAB ∆的面积为3122t S AP d =⋅=.20. 【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,945]--(1) 当214a b =+时,()21,2a f x x ⎛⎫=++ ⎪⎝⎭故其对称轴为2a x =- 当2a ≤-时,()()2124a g a f a ==++ 当-2<a 2≤时,g ()12a a f ⎛⎫=-= ⎪⎝⎭当a >2时,g ()()2124a a f a =-=-+ 综上所述,222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩(2)设s,t 为方程()0f x =的解,且-11t ≤≤,则{s t ast b+=-=由于021b a ≤-≤,因此()2121122t ts t t t --≤≤-≤≤++ 当01t ≤≤时,2222.22t t t b t t --≤≤++ 由于222032t t --≤≤+和21294 5.32t t t t--≤≤-+ 所以29453b -≤≤- 当-122220,22t t t t b t t --≤≤≤≤++ 由于2222t t --≤+<0和232t t t --≤+<0,所以-3b ≤<0.综上可知,b 的取值范围 是3,945⎡⎤--⎣⎦高考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年(1月、6月)浙江省普通高中学业水平考试标准数学浙江省教育考试院编制考试性质与对象浙江省普通高中学业水平考试是在教育部指导下,由省级教育行政部门组织实施的全面衡量普通高中学生学业水平的考试。
其主要功能是引导普通高中全面贯彻党的教育方针,落实必修课程教学要求,检测高中学生的学业水平,监测、评价和反馈高中教学质量。
考试成绩是高中生毕业的基本依据,也是高校招生录取和用人单位招聘的重要参考依据。
根据《浙江省普通高中学业水平考试实施方案》规定,普通高中数学学业水平考试是以《普通高中数学课程标准(实验)》(下文简称为《课程标准》)和《浙江省普通高中新课程实验数学学科教学指导意见》(下文简称为《教学指导意见》)为依据,是全面衡量普通高中学生学业水平的考试。
高中数学学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。
考试的对象是在本省中小学学生电子学籍系统中注册获得普通高中学籍的且修完必修课程的所有在校学生。
考试目标与要求(一)考试目标普通高中数学学业水平考试是全面考察和评估我省普通高中学生的数学学业水平是否达到《课程标准》所规定的课程基本要求和所必须具备的数学素养的检测考试。
考试成绩是浙江省普通高中学生毕业的基本依据之一,也是高校招生录取和用人单位招聘的重要参考依据。
(二)考试要求根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。
突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。
关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。
充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平,全面检测学生的数学素养。
1.知识要求知识是指《教学指导意见》所规定的必修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。
对知识的要求依次分为四个层次,从低到高依次为:了解、理解、掌握、综合应用。
分别用字母a,b,c,d来表示。
其中含义如下:(1)了解:要求对所列知识的含义有初步的、感性的认识,能记住和识别数学符号、图形、定义、定理、公式、法则等有关内容,并能按照一定的程序和步骤模仿,进行直接应用。
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。
(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,有利用所学知识解决简单问题的能力。
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。
(3)掌握:在对知识理解的基础上,通过练习形成技能,在新的问题情境中,能运用所学知识按基本的模式与常规的方法解决问题。
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明、研究、讨论、运用、解决问题等。
(4)综合运用:掌握知识的内在联系与基本属性,能熟练运用有关知识和基本数学思想方法,综合解决较复杂的数学问题和实际问题。
这一层次所涉及的主要行为动词有:熟练掌握、综合解决问题。
2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。
(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。
(2)抽象概括能力:抽象概括能力就是从具体、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或做出新的判断。
(3)推理论证能力:中学数学的推理论证能力是指根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的推理能力。
(4)运算求解能力:能根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。
(5)数据处理能力:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断。
(6)应用意识:能综合应用所学数学知识、思想方法来解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明。
主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。
(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。
3.个性品质要求个性品质是指学生个体的情感、态度和价值观。
提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美好意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
(三)学业水平根据《课程标准》和《教学指导意见》的要求,数学学业水平考试将考生学业成绩分为优秀、良好、及格、不及格四个等第,依次用A、B、C、E表示。
及格和及格以上的各等第标准如下:C—及格达到数学水平考试及格的考生,应掌握《教学指导意见》规定的普通高中数学必修内容中最基本、最常规的知识和最基本的技能,具有初步的思维能力、运算能力和空间想象能力,初步掌握最基本的数学思想方法,会运用学过的知识按基本的模式和常规的方法解答含较少概念的数学问题,如会解答相当于教科书练习题和习题中的基础题水平的试题。
具体要求如下:(1)能理解基本数学概念,并能判断一些简单命题的真假;对一些较常见的简单数学问题,能通过分析、归纳等方法进行判断,并能依据基本的逻辑规则作简单的推理、论证和用数学语言准确表述。
(2)会运用公式、法则解题。
如进行简单的符号运算、函数运算、向量运算和数据处理,会对基本的全球多项式、指数式、对数式、三角关系式等进行恒等变形;会计算较常见的空间图形中的长度、角度、面积和体积等。
(3)会分析常规位置的一些基本图形中基本元素之间的数量与位置关系;对一些用文字表述的基本图形或一些常见的基本的客观事物,能正确想象其空间形状与位置关系,并能画出图形。
(4)能掌握配方法、待定系数法、综合法等,会初步运用等价转换、数形结合等思想方法解题。
B—良好达到数学水平考试良好的考生,应掌握《教学指导意见》规定的普通高中数学必修内容中的基本基础知识和基本技能,并初步掌握其内在联系;具有一定的思维能力、运算能力和空间想象能力;较灵活地运用所学知识和技能,按基本的模式和常规的方法解答含多个概念的数学问题;掌握基本的数学思想方法。
具体要求如下:(1)对一些新情景下的数学问题,能通过分析、综合、归纳、演绎、类比等方法进行判断和猜测,并能用一定的逻辑规则进行推理、论证和用数学语言准确地表述。
(2)能较熟练地运用公式、法则解题。
如进行简单的符号运算、函数运算、向量运算和数据、图表的分析和处理;对多项式、指数式、对数式、三角关系式等能正确地进行若干步恒等变形;较熟练地计算空间图形中的长度、角度、面积和体积,并会选择合理的方法完成相应的运算。
(3)能正确分析基本图形中基本元素之间的数量与位置关系,对用文字表述的基本图形或基本的客观事物,能正确想象其空间形状与位置关系,并能画出图形。
(4)能较好地掌握配方法、待定系数法、分析法和综合法,会用反证法,能运用等价转换、数形结合等思想方法解题。
A—优秀达到数学水平考试优秀的考生,应掌握《教学指导意见》规定的普通高中数学必修内容,能系统地掌握其内在联系,并能融会贯通;具有较强的思维能力、运算能力、空间想象能力和实践能力;掌握基本的数学思想方法,能综合运用所学的数学知识和方法;灵活地解决较复杂的数学问题和实际问题;会从数学的角度发现和提出问题;进行初步的探索和研究。
具体要求如下:(1)对较复杂的数学问题和相关学科、生产、生活中的问题,能正确理解题意,灵活地运用分析、综合、归纳、演绎、类比等方法进行判断和猜测,确定合理的解题模式,并能正确运用逻辑规则进行推理、论证和用数学语言准确、清晰地表述。
对未给出结论或结论不确定的问题,能经过抽象和概括分析,猜想、讨论得出结论,并加以证明。
(2)能灵活熟练地运用公式、法则解题。
如进行简单的符号运算、函数运算、向量运算和数据、图表的分析和处理;对多项式、指数式、对数式、三角关系式等能正确、迅速地进行若干步恒等变形;能灵活计算空间图形中的长度、角度、面积和体积等,并能熟练运用多种方法,合理简单地完成相应的运算,有检验并修正运算结果的能力。
(3)能熟练分析基本图形中基本元素之间的数量与位置关系,通过分析比较,能选择适当的方式准确地进行文字或符号语言与图形之间的转换,并能排除非本质属性的干扰,正确识别经过平移、对称、伸缩等位置变换后的基本图形。
(4)能熟练掌握配方法、待定系数法、分析法、综合法、反证法等方法,能自觉运用等价转换、分类讨论、数形结合等思想方法分析和解决问题。
考试内容根据《教学指导意见》所规定教学内容和教学要求,确定数学学业水平考试的内容为必修课程的五个模块,具体的考试单元、知识条目和考试的层级要求如表。
必修1第二章基本初等函数第三章函数的应用必修2第二章点、直线、平面之间的位置关系第三章直线与方程第四章圆的方程必修4第二章平面向量第三章三角恒等变换必修5第二章数列第三章不等式选修2-1第一章常用逻辑用语第二章圆锥曲线与方程第二章空间向量与立体几何考试形式与试题结构一、考试形式数学学业水平考试采用闭卷、笔答形式。
考试时间为110分钟。
试卷满分为100分。
二、试卷结构数学学业水平考试卷的结构如下:1.考试内容分布《教学指导意见》所规定必修课程内容。
2.考试要求分布了解:约占10%;理解:约占40%;掌握:约占40%;综合运用:约占10%3.试题类型分布选择题:约占60%;填空题:约占10%;解答题:约占30%4.试题难度分布容易题:约占70%稍难题:约占20%较难题:约占10%参考试卷 (此卷仅作参考)选择题部分一、选择题(共25小题,1-15每小题2分,16-25每小题3分,共60分。