希望工程及行程问题
北师大版数学七年级上册《一元一次方程应用题分类》(4)

北师大版数学七年级上册--《一元一次方程应用题分类》一、形积问题1、有一块棱长为4厘米的正方体铜块,要将它熔化后铸成长4厘米、宽2厘米的长方体铜块,铸成后的铜块的高是多少厘米(不计损耗)?2、一个长方形的周长为36厘米,若长减少4厘米,宽增加2厘米,长方形就变成正方形,求正方形的边长。
3、把一块长宽高分别为5cm、3cm、3cm的长方体铁块,浸入半径为4cm的圆柱体玻璃杯中(盛有水,铁块被水完全淹没)水面将增高多少?(不外溢)二、打折销售问题1.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,?结果每件仍获利15元,这种服装每件的成本为多少元?2、某商品的进价为700元,为了参加市场竞争,商店按标价的九折再让利40元销售,此时仍可获利10%,此商品的标价为多少元?13、一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?4、五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了几折优惠?5、新华书店准备将一套图书打折出售,如果按定价的6折出售将赔60元,若按定价出售则赚20元,试问这套图书的进价是多少?6、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?7、某服装店出售某种服装,已知售价比进价高20%以上才能出售,为了获得更多利润,该店老板以高出进价80%的价格标价,若你想买下标价360元的这种服装,最多降价多少元,该店老板还会出售?三、希望工程问题(调配问题)1、某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?2、甲、乙两个水池共蓄水50吨,甲池用去5吨,乙池又注入8吨水后,甲池的水比乙池的水少3吨,问原来甲、乙两个水池各有多少吨水?3、某工厂第一车间人数比第二车间人数的少30人,如果从第二车间调10人到第一车间,那么第一车间的人数就是第二车间人数的,求原来每个车间的人数?4、甲班有54人,乙班有48人,要使甲班人数是乙班人数的2倍,则应从乙班调往甲班多少人?四、行程问题(一)相遇问题和追及问题1、已知A、B两地相距100千米,甲以16千米/小时的速度从A地出发,乙以9千米/小时的速度从B地出发。
七年级上册数学列方程解应用题希望工程类问题及延伸同步讲义

列方程解应用题——“义演”类问题及延伸【知识要点】1.“希望工程”义演类问题2.比例分配问题3.浓度问题4.和、差、倍、分问题5.盈亏问题6.调配问题7. 分段收费问题【典型例题】1. “希望工程”义演类问题例1. 某市地方剧团因为“希望工程”募捐组织了一场义演,共卖了800张票,成人票一张9元,学生票一张6元,共筹到票款6240元,问成人票与学生票各售出多少张?例 2. 某文艺团体为“希望工程”募捐,组织一义演,若售出的票为1000张,其中成人票每张8元,学生票每张5元,问能否筹得票款6930元,为什么?例3.有一只船,载重800t,容积是795m3,现在装运铁和棉花两种物质,铁每吨体积是0.3m3,棉花每吨体积4m3,钢铁和棉花各装多少吨才能充分利用船舱的载重量和容积?针对性训练:1.把1400元奖金分给22名获奖者,一等奖每人得200元,二等奖每人得50元,求一等奖与二等奖的得奖人数.2.一个大人一顿能吃4个面包,4个幼儿一顿只吃一个面包,现在有大人和幼儿共100人,一顿刚好吃光100个面包,那么这100人中大人、幼儿各有多少人?2. 比例分配问题例4.某洗衣机厂今年计划生产洗衣机2550台,其中I型、II型、III型三种洗衣机的数量比为1:2:14,这三种洗衣机各计划生产多少台?例5.一个三角形三条边长的比是2:4:5,最长的一条边比最短的一条边长6厘米,求这个三角形的周长.针对性练习:1.某套书分上、中、下三册,印上册用了全部印刷时间的40%,印中册用了全部印刷时间的36%,印下册用了24天.印完全套书共用了多少天?2.光明中学初中一年级一、二、三班,向希望学校共捐书385本,一班与二班捐书的本数之比为4:3,一班与三班捐书的本数之比为6:7,那么二班捐书多少本?3.浓度问题例6.有浓度为98%的盐水溶液8千克,加入浓度为20%的盐水溶液多少千克,可配制成浓度为60%的盐水溶液?针对性练习:1. 把浓度为40%的盐水与浓度为10%的盐水混合,配成浓度为20%的盐水120克,需要40%的盐水和10%的盐水各多少克?2.在浓度为x%的盐水中加入一定重量的水,则变成浓度为20%的新溶液,在此新溶液中再加入与前次所加入的水重量相等的盐,溶液浓度变成30%,求x的值.3.今有若干4%的盐水,蒸发了一些水分以后变成了10%的盐水,再加进300克4%的盐水,混合后变为6.4%的盐水,问最初的盐水是多少克?4. 和、差、倍、分问题例7.(甘肃中考)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数一半,如果在六月份内,团体票每张16元出售,共计划在六月份内售出全部剩余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?例8.牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?针对性练习:1.甲、乙两车间共有120人,其中甲车间的人数比乙车间的人数的4倍少5人,求甲、乙两个车间各有多少人?2.初一年级甲、乙两个班共有100人,其中参加数学活动小组的有42人,已知甲班学生有31参加数学活动小组,乙班学生有21参加数学活动小组,求各班学生的人数.3.甲、乙、丙、丁四位同学共集邮370枚.如果给甲补充10枚,给乙减少20枚,给丙的张数扩大2倍,给丁的张数缩小2倍,四个人的邮票数正好相等,那么甲原来有多少枚?4.传说数学家丢番图的墓碑文是一道数学题,上面刻着:“他的童年占去一生的61,接着121是少年时期,又过了71的时光,他结婚了,5年以后,上帝赐给他一个儿子,可是儿子命运不济,只活到父亲岁数的一半,就匆匆离去.4年后,他的父亲也因过分悲伤而离开了人世.”问丢番图活了多少岁?5.一桶汽油连桶共重96千克,第一次用去汽油的一半,第二次用去剩下的一半,第三次又用去剩下的一半,最后剩下的油连桶重19千克,则原有汽油多少千克?5. 盈亏问题例9. 某校组织初一师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数.(2)已知租用45座的客车日租金为每辆车250元,60座的客车日租金为每辆300元,问租用哪种客车更合算?针对性练习:1.用库存化肥给麦田追肥,如果每亩施肥6千克,库存缺少200千克,如果每亩施肥5千克,库存还剩下300千克,问:有多少亩麦田?库存化肥有多少千克?2.将一批梧桐树苗栽在马路的两旁,若每隔3米栽一棵,则剩下6棵树苗;若每隔2.5米栽一棵,则还缺154棵树苗.求这条马路的长及这批树苗的棵数.6.调配问题例10. 某地抗洪救灾中,在甲处有146名战士,在乙处有78名战士,现从别处调来160名战士支援救灾,要使甲处的人数是乙处人数的3倍,则应调往甲、乙两处各多少名战士?针对性练习:1.甲仓库存粮32吨,乙仓库存粮57吨,现甲仓库每天又存粮4吨;乙仓库每天又存粮9吨,问几天后乙仓总存粮数是甲仓总存粮数的2倍.2.甲队原有车160辆,乙队原有车80辆,现从甲队调部分车辆支援乙队, 若调动后两队的车辆数相同,则从甲队调了多少辆车到乙队?7. 分段收费问题例11. 为鼓励节约用水,某地按以下规定收取每月水费,如果每月每户用水不超过20t,那么每吨水费按1.2元收费,如果每月每户用水超过20t,那么超过部分按每吨2元收费,若某用户五月份的水费平均每吨1.5元,问该用户应交水费多少元?针对性练习:1.黄帝故里的门票价格规定如下表:都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少元钱?(2)两班各有多少名学生?2.针对居民用水浪费现象,某市制定居民用水标准规定三口之家楼房,每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费22元,请你通过列方程求出该市三口之家楼房的标准用水量为多少立方米?。
小学分类应用题及答案

小学分类应用题及答案典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
数量关系式:数量之和÷数量的个数=算术平均数。
例1:一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地。
求这辆车的平均速度。
例2一个织布工人,在七月份织布4774 米,照这样计算,织布6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。
例3 修一条水渠,原计划每天修800 米,6 天修完。
实际 4 天修完,每天修了多少米?练习提高1.食堂运来600千克大米,已经吃了4天,每天吃50千克。
剩下的5天吃完,平均每天吃多少千克?(南京市建邺区).3箱橘子比3筐苹果少24千克。
平均每箱橘子重20千克,每筐苹果重多少千克?(浙江台州市市区)3在绿化祖国采集树种的活动中,某校四年级5个班级,每班采集树种20千克,五年级3个班共采集60千克,平均每班采集树种多少千克?(上海市)4大桥乡修一条长2100米的水渠,已修了5天,平均每天修240米。
余下的任务要在3天内完成,平均每天应修多少米?(南京市秦淮区)5小明到商店买了3个小型足球付出20元,找回1.85元,每个足球多少元?(银川市实验小学)6.某班有4个小队,每个小队有12名少先队员,在“希望工程”捐款活动中,共捐款240元。
平均每个少先队员捐款多少元?(上海市(2)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
例某加工厂甲班和乙班共有工人94 人,因工作需要临时从乙班调46 人到甲班工作,这时乙班比甲班人数少12 人,求原来甲班和乙班各有多少人?(3)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。
例:汽车运输场有大小货车115 辆,大货车比小货车的 5 倍多7 辆,运输场有大货车和小汽车各有多少辆?(4)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
列一元一次方程解应用题的几种常见题型及其特点

列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是初一数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。
因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。
(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。
问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
一元二次方程的实际应用题

一元二次方程的实际应用题(一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)。
4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
北师大版七年级数学一元一次方程应用“希望工程”义演与追赶小明

一元一次方程应用“希望工程”义演与追赶小明【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点进阶:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点进阶:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.要点四、工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.【典型例题】类型一、“希望工程”义演(分配问题)例1.用白铁皮做罐头盒,每张铁皮可制盒身15个,或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?举一反三:【变式】某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m3或运土3 m3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?类型二、行程问题1.车过桥问题例2.某桥长1200m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s,而整个火车在桥上的时间是30s,求火车的长度和速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?2.相遇问题(相向问题)例3.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A、B两地间的路程.举一反三:【变式】甲、乙两辆汽车分别从A、B两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A站34km,已知甲车的速度是70km/h,乙车的速度是52km/h,求A、B两站间的距离.3.追及问题(同向问题)例4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度.4.航行问题(顺逆流问题)例5.盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B地,然后溯江而上到C地下船,共乘船4小时.已知A、C两地相距10千米,船在静水中的速度为7.5千米/时,求A、B两地间的距离.例6.甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?举一反三:【变式】两人沿着边长为90m的正方形行走,按A→B→C→D→A…方向,甲从A以65m/min的速度,乙从B以72m/min的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?类型三、工程问题例7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?举一反三:【变式】一件工作,甲单独做15小时完成,乙单独做10小时完成,甲先单独做9小时,后因甲有其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?一、选择题1. 某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程( )A .22+x=2×26B .22+x=2(26﹣x )C .2(22+x )=26﹣xD .22=2(26﹣x )2.甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组剩下的人数恰比乙组人数的一半多2个,设乙组原有x 人,则可列方程( ).A .1222x x =+ B .12(8)22x x =++ C.12822x x -=+ D .128(8)22x x -=++3.甲乙两地相距180千米,已知轮船在静水中的航速是a 千米/小时,水流速度是10千米/小时,若轮船从甲地顺流航行3小时到达乙地后立刻逆流返航,则逆流行驶1小时后离乙地的距离是( ).A .40千米B .50千米C .60千米D .140千米4.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是( ).A .60秒B .30秒C .40秒D .50秒5.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m +10=43m -1; ②4314010+=+n n ; ③4314010-=-n n ; ④40m +10=43m +1,其中正确的是( ).A .①②B .②④C .②③D .③④6.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程的最大值是( ).A .11B .8C .7D .5二、填空题7.浙江万马篮球队主力队员再一次比赛中22投14中得28分,除了三个三分球全中外,他还中了 个两分球和 个一分球.8.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a = 度.9.一轮船往返与A 、B 两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是________千米/时.10.某城市与省会城市相距390千米,客车与轿车分别从该城市和省会城市同时出发,相向而行.已知客车每小时行80千米,轿车每小时行100千米,问经过 小时后,客车与轿车相距30千米.11.某项工作甲单独做4天完成,乙单独做6天完成,若甲先干一天,然后,甲、乙合作完成此项工作,若设甲一共做了x 天,乙工作的天数为________,由此可列出方程________________.12. 9人14天完成了一件工作的53,而剩下的工作要在4天内完成,则需增加的人数是__________.三、解答题13.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?14.一件工作,甲单独做15小时完成,乙单独做10小时完成,甲先单独做9小时,后因甲有其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?15. 已知甲乙两人在一个200米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A 、C 两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置. (2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一段跑道上? 乙甲D C B A。
五年级行程问题

五年级行程问题
背景
五年级学生拟定了一次学校行程,但还有一些争议和问题需要解决。
本文档将概述这些问题,并提供一些解决策略。
问题一:行程安排
行程安排方面存在一些争议。
有些学生希望增加娱乐活动的时间,而其他学生则希望增加参观历史景点的时间。
如何平衡两者之间的需求是一个需要解决的问题。
解决策略一
我们可以通过增加娱乐活动和参观历史景点的时间来平衡学生们的需求。
在安排行程时,我们可以合理地分配时间,确保每个活动都得到一定的时间。
问题二:交通安排
行程中的交通安排也是一个问题。
有些家长担心交通工具的安全性,希望提供更安全的交通方式,而另一些家长则对费用产生担忧。
解决策略二
为了解决这个问题,我们可以选择使用安全可靠的交通工具,并寻找价格合理的选择。
我们可以与交通公司协商,寻求折扣或特殊优惠。
问题三:费用分配
行程所需的费用也引发了争议。
有些家长认为费用过高,而其他家长则认为费用合理。
解决策略三
为了解决费用分配的问题,我们可以考虑提供不同的付款计划,以使费用更容易承担。
此外,我们还可以寻找其他资金来源,如赞
助商赞助或组织募捐活动。
结论
通过平衡行程安排、解决交通安排问题和合理分配费用,我们
可以解决五年级学生行程中存在的问题。
这样能够满足学生、家长
和学校的需求,并确保行程的顺利进行。
请在接下来的讨论中考虑上述建议,并提出任何其他的解决策略。
我们将共同努力,以达成一个最佳的行程安排。
希望工程活动方案范本(二篇)

希望工程活动方案范本一、活动背景希望工程是由团中央发起的旨在资助困难学生完成学业和帮助农村贫困地区改善基础办学条件的一项青少年公益事业。
为响应市、县团委、市、县少工委的号召,秉着服务他人完善自我的原则,特在我校开展此次希望工程一元捐活动,在___月学雷锋活动的浪潮下,全体同学通过微捐助的方式汇集资金,以帮助困难学生完成学业。
同时,通过活动的开展,在全体学生中倡导微公益的理念,进而在学校营造全民公益、人人公益的文化氛围。
二、活动目的1、响应省级、市级以及县团__关于希望工程一元捐的号召,动员全体同学行动起来。
2、提高我校学生参与公益活动的积极性,树立良好的社会形象。
3、给同学们提供一个传递爱心的平台。
4、让学习雷锋的浪潮一直持续下去,帮助在校学生建立正确的世界观,价值观。
三、活动时间—___月___日四、活动内容1、宣传动员。
各班利用___月___日的班会课对活动进行宣传、动员。
2、集中募捐:按照自愿的原则,各班在本班范围内进行募捐(捐款标准为一元钱一人,多捐不限。
)由各班团支部书记收好募捐款,择日利用大课间时间举行集中募捐仪式。
3、资金汇缴。
集中劝募结束后,团委书记及时将捐款汇至县团委。
五、活动要求全体学生要统一思想、提高认识,正确认识到希望工程一元捐活动并不是纸上谈兵,而是切切实实用自己的行动去帮助需要帮助的人。
各班要高度重视、认真___,积极动员,广泛参与,使此次活动能圆满完成。
活动中表现较好的班级在班级考核中给予适当加分。
希望工程活动方案范本(二)一、项目背景与目标希望工程是中国著名的公益组织,致力于助力贫困地区的孩子接受教育和改善生活条件。
____年,我们将继续深化希望工程的发展,以更加丰富多样的活动方案,为更多的贫困儿童带去温暖和希望。
我们的目标是通过教育,帮助贫困儿童改变命运,促进社会公平与进步。
二、活动方案1. 教育援助项目教育是打破贫困的关键,我们将继续以教育援助为核心,为贫困地区的孩子提供各种教育支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
希望工程及行程问题、教育储蓄【本讲教育信息】一、教学内容希望工程及行程问题、教育储蓄1、利用一元一次方程解决工程中的数量关系.2、利用一元一次方程解决行程问题.3、利用一元一次方程解决生活中的储蓄问题.二、教学目标1、理解本金、利率、利息、本息和的定义及其之间的关系.2、通过分析行程中的速度、时间与路程中的数量关系建立方程解决问题.3、理解工作效率、工作量、工作时间的定义及其之间的关系.4、借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,提高分析问题、解决问题的能力,进一步体会方程模型的作用.三、知识要点分析1、储蓄中的方程(这是重点)①本金:顾客存入银行的钱.②利息:银行付给顾客的酬金.③本息和:本金与利息的和.④期数:存入的时间.⑤利率:每个期数内的利息与本金的比.⑥计算公式:利息=本金×利率×期数.2、行程中的等量关系(这是重难点)行程类应用题基本关系:路程=速度×时间.相遇问题:甲、乙相向而行,则甲走的路程+乙走的路程=总路程.追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离.环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的.②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度.3、工程中的数量关系工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1. 其中,工作效率=工作总量÷工作时间.【典型例题】考点一:教育储蓄的方程例1、某人将人民币若干元以一年定期的方式存入银行,年利率为1.98%,到期时银行向他支付的款是20396元. 那么此人当时存入人民币多少元?方法与规律:弄清基本量和基本关系是正确解题的关键.例2、某人将手中的甲、乙两种股票卖出,甲种股票的卖价是1200元,赢利20%,乙种股票的卖价也是1200元,但亏损20%,该人此次交易的结果是赢利还是亏损?例3、为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补. 企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?获得的政府补贴分别是17160万元、34320万元、13520万元.方法与规律:本题来源于生活,贴近生活,学生易于接受,主要是找出题目的已知量与未知量的关系,并通过等量关系列出方程.考点二:行程中的方程例4、A 、B 两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行驶72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行驶48km ,两车相遇后,各车仍按原速度原方向继续行驶,那么相遇以后两车相距100km 时,甲车从出发开始共行驶了多少小时?方法与规律:甲、乙相向而行,则甲走的路程+乙走的路程=总路程.例5、甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒钟跑6米,甲的速度是乙的113倍.(1)如果甲、乙两人在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?考点三:希望工程问题例6、某市居民生活用电基本价格为每度0.40元,若每月用电超过规定用电量,超出部分按基本电价的70%收费.(1)某户居民1月份用电84度,共交费30.72元,求规定用电量;(2)若该户居民2月份电费每度平均为0.36元,求该户居民2月份用电多少度,应交电费多少元?方法与规律:应用问题是近几年的新题型. 随着社会主义市场经济体制的日益完善和计算产品的成本、利润、价格控制、投资收益、储蓄利息等市场经济问题的不断出现,还有许多与经济有关的一些增值、贬值、盈利、亏本等问题需要用到数学知识,而把这些问题转化成数学问题,用数学方法来解决是今后数学学习中的一个重要的任务.例7、小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏。
假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦0.5元.(1)设照明时间是x 小时,请用含x 的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费)(2)小刚想在这两种灯中选购一盏,当照明时间是多少时,使用两种灯的费用一样多;【思路分析】利用题目中的数量关系,先表示出一盏节能灯和一盏白炽灯的费用,利用费用相等这个等量关系列出方程求解.【本讲涉及的数学思想和方法】本讲主要讲述利用一元一次方程解决一些实际应用问题,解决问题时要求能够熟练地掌握题目的已知量和未知量,以及已知量与未知量的关系,并能够通过题意找出有关未知量的等量关系,并掌握列方程解应用题的一般步骤:(1)弄清楚题意和题目中的数量关系,用字母(如x )表示题目中的一个未知数;(2)找出能够表示应用题全部含义的一个等量关系;(3)根据这个等量关系列出所需要的代数式,从而列出方程;(4)解这个方程,求未知数的值;(5)写出答案(包括单位名称).预习导学案(第六章 第1-2节 认识100万及科学记数法)一、预习前知1、借助自己熟悉的事物,从不同角度对100万进行感受,发展数感.2、借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.二、预习导学探究与反思探究任务1:估测“100万有多大”的方法.【反思】一页语文教科书大约有500字,则100万字会有这样的多少页?探究任务2:科学记数法.【反思】对于a ×10n 的形式中的a 与n 的要求?三、牛刀小试1、小明现有540元钱,欲购3角钱一支的铅笔,则一共可购_____________支.2、100张100元的新版人民币大约0. 9厘米厚,则100万元这样的人民币叠在一起的厚度约为____________米.3、一页语文教科书约700个字,则一本共有300页的书共有__________万字.4、将数12000用科学记数法表示正确的为( )A. 3102.1⨯B. 4102.1⨯C. 41012.0⨯D. 31012.0⨯5、1立方米的水中含有水分子3. 34亿个,试用科学记数法表示_____________.【模拟试题】(答题时间:60分钟)一、选择题1. 小明存入一个3年期的教育储蓄(3年期的年利率为2.7%),3 年后共取到10810元,则他开始存入( )A. 9000元B. 10000元C. 10100元D. 10500元﹡2. 甲队有32人,乙队有28人,若要使甲队人数是乙队人数的2倍,那么需要从乙队抽调( )人到甲队.A. 8B. 9C. 10D. 11﹡3. 将一笔资金按一年定期存入银行,设年利率为2.25%,到期支取本息和7157.5元,则这笔资金是( )A. 6000元B. 6500元C. 7000元D. 7100元﹡4. 甲、乙二人去买东西,他们所带钱数的比是7:6,甲花去50元,乙花去60元,则二人余下的钱数比为3:2,求二人余下的钱数分别是( )A. 140元,120元B. 60元,40元;C. 80元,80元D. 90元,60元5. 小华按一年期把3000元钱存入银行,年利率为1.25%,到期支取时,实得利息( )A. 30元B. 37.5元C. 40元D. 42.5元﹡6. 学校到县城有28千米,除公共汽车以外,还需步行一段路程,公共汽车的速度为36千米/时,步行的速度为4千米/时,全程共需1小时,则步行所用时间是( ) A. 61小时 B. 小时51 C. 小时41 D. 小时31﹡7. 甲、乙两人骑自行车同时从相距65km 的两地相向而行,2小时后相遇,若甲比乙每小时多骑2.5km ,则乙的速度为( )A. 12.5km/hB. 15km/hC. 17.5km/hD. 20km/h﹡8. 甲以5km/h 的速度先走16分钟,乙以13km/h 的速度追甲, 则乙追上甲需要的时间为( )小时.A. 10B. 6C. 16D. 8013﹡9. 某种电脑价格六月份下降了10%,七月份上升了20%,则七月底的价格与原价相比( )A. 不增也不减B. 增加8%C. 减少了9%D. 减少了1%﹡10. 某商场根据市场信息,对商场中现有的两台不同型号空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则要亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A. 即不获利也不亏本B. 可获利1%C. 要亏本2%D. 要亏本1%二、沉着冷静耐心填﹡11. 张叔叔买年利率为3.0%的6年期国库券,如果他想6年后得到23600元,则现在张叔叔需买这种国库券_____元.﹡12. 小王上高一时他妈妈为他买了1万元3年期教育储蓄,年利率2.7%,则三年后小王在银行可取到______元.﹡13. 一批零件按计划生产需15天完成,实行承包后,调动了工人的生产积极性,每天可多生产30个零件,因此提前3天完成任务,求原计划每天生产多少个零件?解法一:设原计划每天生产x个零件,根据题意,可得方程:____________.解法二:设实际每天生产x个零件,根据题意,可得方程:___________.不论哪种方法,都可求得原计划每天生产零件_______个.﹡14. 在一次“人与自然”知识竞赛中,竞赛试题共25道,每道题给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对了______道题.﹡15. 甲、乙两人都从A地出发到B地,甲先走了5千米后乙再出发,甲的速度是4千米/时,乙的速度是5千米/时,如果A、B两地相距x千米,那么甲走的时间是______时,乙走的时间是________时,假如两人同时到达B地,那么可列方程_________.﹡16. 某人计划开车用3小时从甲地到乙地,因为每小时比原计划多行驶16千米,结果用了2.5小时就到达了乙地,甲、乙两地相距____________千米.﹡17. 甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑了1秒后追乙,__________秒便可追上. ﹡18. 在双线铁路上,有两列火车,均为250m长,它们都以45km/h的速度相对行驶,那么两车司机相遇后到最后一节车尾相离,一共需_______秒钟.三、神机妙算用心做19. 甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两粮仓存粮数之比是1:2,乙丙两粮仓存粮数之比是1:2.5,求甲、乙、丙各存粮多少吨?**20. 某企业存入银行甲、乙两种不同性质用途的存款共20万元,甲种存款的年利率为5.5%,乙种存款的年利率为4.5%,该企业一年可获得利息收入9500元,求甲、乙两种存款各是多少元?**21. 甲、乙两个人同时从A地前往相距为2512km的B地,甲骑自行车、乙步行,甲的速度比乙的速度的2倍快2km/h,甲先到达B地后,立即由B地返回,在途中遇乙,这时距他们出发时间为3小时,求这两个人的速度.**22. 有一个只允许单向通过的窄道口,通常,每分钟可通过9人,一天,王老师到达通道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36人等待通过(假定先到先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到学校.(1)此时,若绕道而行,要15分钟到达学校,以节省时间考虑,王老师应选择绕道去学校还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3 人通过道口),结果王老师比拥挤的情况提前了6分钟通过道口,问维持秩序的时间是多少?。