数学九年级下人教新课标第二十六章《二次函数》测试题C
(必考题)初中数学九年级数学下册第二单元《二次函数》检测卷(答案解析)

一、选择题1.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根2.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 23.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .4.如图,抛物线与x 轴交于()2,0A -,()4,0B 两点,点()P m n ,从点A 出发,沿抛物线向点B 匀速运动,到达点B 停止,设运动时间为t 秒,当3t =和9t =时,n 的值相等.有下列结论:①6t =时,n 的值最大;②10t =时,点P 停止运动;③当5t =和7t =时,n 的值不相等;④4t =时,0m =.其中正确的是( )A .①④B .②④C .①③D .②③5.抛物线221y x =--的顶点坐标是( ) A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)6.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( ) A .2B .4C .-4D .7.当函数21(1)23a y a x x +=-++ 是二次函数时,a 的取值为( )A .1a =B .1a =±C .1a ≠D .1a =-8.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点()4,0,其对称轴为直线1x =,结合图像给出下列结论:①0b <;②420a b c -+>;③当2x >时,y 随x 的增大而增大;④所以正确关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个9.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<<10.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .33C .222+D .25+11.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >12.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s二、填空题13.设()()y x a x b =++的图象与x 轴有m 个交点,函数(1)(1)y ax bx =++的图象与x 轴有n 个交点,则所有可能的数对(,)m n 是__________.14.如图,在平面直角坐标系中,抛物线()2230y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为____________.15.如图已知1A ,2A ,3A ,n A ⋅⋅⋅是x 轴上的点,且112233411n n OA A A A A A A A A -====⋅⋅⋅==,分别过点1A ,2A ,3A ,n A ⋅⋅⋅作x 轴的垂线交二次函数()02>=x x y 的图象于点1P ,2P ,3P ,n P⋅⋅⋅,若记11OA P △的面积为1S ,过点1P 作1122P B A P ⊥于点1B ,记112P B P △的面积为2S ,过点2P 作2233P B A P ⊥于点2B ,记223P B P △的面积为3S ,…依次进行下去,则3S =______,最后记()111n n n PB P n -->△的面积为n S ,则n S =______.16.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.17.在平面直角坐标系中,把抛物线22y x =+先绕其顶点旋转180︒后,再向右平移2个单位,向下平移3个单位后的抛物线解析式为__________.18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).19.道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落在同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是___________.20.已知点()4,A m -,()2,B m ,()6,C n 均在抛物线2y x bx c =++上,则m ,n 的大小关系是m __________n .三、解答题21.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.22.平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过()21,21m m -++、()20,22mm ++两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线2y x bx c =++与x 轴有公共点,求m 的值;(3)设()1,a y 、()22,a y +是抛物线2y x bx c =++上的两点,请比较2y 与1y 的大小,并说明理由.23.已知抛物线23(0)y ax bx a =+-≠经过(1,0)(3,0)A B -,两点,C 点是抛物线与y 轴交点,直线l 是抛物线的对称轴. (1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得ACM △的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.24.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ; (2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 25.跳绳时,绳甩到最高处时的形状是抛物线,正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为20.9y ax bx =++. (1)求该抛物线的表达式;(2)如果小明站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶上方0.4米处,求小明的身高是多少?此时小明若向点O 方向走多少米,就能让绳子甩到最高处时,绳子刚好通过他的头顶;(3)如果有若干个与小明同身高的同学一起站在OD 之间玩跳绳,现知只要绳子甩到最高处时超过她们的头顶且每个同学同方向站立时的脚跟之间距离不小于0.55米就可以一起玩,问最多可以几个同学一起玩.26.阅读材料:二次函数的应用小明在学习过程中遇到一个问题:下列两个两位数相乘的运算中(两个乘数的十位上的数都是8,个位上的数的和等于10),猜想其中哪个积最大,并说明理由.8189⨯,8288⨯,8387⨯,……,8783⨯,8882⨯,8981⨯ 小明结合已学知识做了如下尝试:设两个乘数的积为y ,其中一个乘数的个位上的数为x ,则另一个乘数个位上的数为(10)x -,根据题意得:(80)[80(10)]y x x =++-=(80)(90)(80)(90)x x x x +-=-+-……(1)问题解决:请帮助小明判断以上问题中哪个积最大并求出这个最大的积;(2)问题拓展:下列两个三位数相乘的运算中(两个乘数的百位上的数都是7,十位上的数与个位上的数组成的数的和等于100),用以上方法猜想其中哪个积最大,并说明理由.701799⨯,702798⨯,703797⨯,……,797703⨯,798702⨯,799701⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意; ∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意. 故选:D . 【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.2.A解析:A 【分析】根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题. 【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+, ∴当x=3时,S 取得最大值,此时S=18, 故选:A . 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.3.B解析:B 【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-,∴抛物线一定经过原点, ∴选项A 排除;∵()222y mx m x =+- ,∴对称轴为直线x=22224m m m m---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m-<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合; 故选B. 【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.4.A解析:A 【分析】根据题意首先求得抛物线的对称轴,然后由抛物线的轴对称性质和二次函数的性质解答. 【详解】解:过点P 作PQ ⊥x 轴于Q ,根据题意,该抛物线的对称轴是直线x=422- =1.设点Q 的运动速度是每秒v 个单位长度,则∵当t=3和t=9时,n 的值相等, ∴x=12[(9v−2)+(3v−2)] =1, ∴v=12. ①当t=6时,AQ=6×12=3,此时点P 是抛物线顶点坐标,即n 的值最大,故结论正确;②当t=10时,AQ=10×12=5,此时点Q 与点B 不重合,即n≠0,故结论错误; ③当t=5时,AQ=52,此P 时点的坐标是(12,0); 当t=7时,AQ=72,此时点P 的坐标是(32,0). 因为点(12,0)与点(32,0)关于对称轴直线x=1对称,所以n 的值一定相等,故结论错误;④t=4时,AQ=4×12=2,此时点Q 与原点重合,则m=0,故结论正确. 综上所述,正确的结论是①④. 故选:A . 【点睛】本题主要考查了抛物线与x 轴的交点,二次函数的最值,二次函数图象上点的坐标特征,根据题意求得对称轴和点Q 的运动速度是解题的关键.5.C解析:C 【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标. 【详解】 解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1), 故选:C . 【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.6.D解析:D 【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解. 【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯,∵顶点在x 轴上,∴241441b ⨯⨯-⨯=0,解得b 2=16, b=±4. 故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.7.D解析:D 【分析】根据二次函数的定义去列式求解计算即可. 【详解】 ∵函数21(1)23ay a x x +=-++ 是二次函数,∴a-1≠0,2a 1+=2, ∴a≠1,21a =, ∴1a =-, 故选D . 【点睛】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键.8.C解析:C 【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及与x 轴y 轴的交点,综合判断即可. 【详解】解:抛物线开口向上,因此a >0,抛物线的对称轴为x=-2ba=1,所以0b <,所以①正确;抛物线的对称轴为x=1,与x 轴的一个交点为(4,0),则另一个交点(-2,0),于是4a-2b+c=0,所以②不正确;x >1时,y 随x 的增大而增大,所以③正确;抛物线与x 轴有两个不同的交点,因此一元二次方程20ax bx c ++=有两个不相等的实数根,所以④正确;综上所述,正确的结论有①③④. 故答案为:C . 【点睛】本题考查二次函数的图形和性质,掌握二次函数的图形和系数之间的关系是正确判断的前提.9.A解析:A 【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 10.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴222AC ==, 即:函数图象中,222,m n ==, ∴222m n +=+故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.11.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 12.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.二、填空题13.(11)(10)(21)(22)【分析】分别对ab 的值分类讨论根据直线和二次函数的交点式:y =a (x ﹣x1)(x ﹣x2)(abc 是常数a≠0)得出抛物线与x 轴的交点坐标情况即可求解【详解】因为是二次解析:(1,1),(1,0),(2,1),(2,2)【分析】分别对a 、b 的值分类讨论,根据直线和二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a≠0),得出抛物线与x 轴的交点坐标情况,即可求解.【详解】因为()()y x a x b =++ 是二次函数,令()()y x a x b =++=0,有0x a +=或0x b +=,解得:x a =-或x b =-;对m 来说,①当a b =时,图像与x 轴有一个交点,即1m =;② 当a b 时,图像与x 轴有两个交点,即2m =;函数(1)(1)y ax bx =++:令(1)(1)0y ax bx =++=,有10ax +=或10bx +=, 对n 来说,①当0a b =≠时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =;②当0a b 时,关于x 的方程无解,图像与x 轴没有交点,即0n =; ③当a b 且0ab =时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ④ 当a b 且0ab ≠时,关于x 的方程有两个不相等的解,图像与x 轴有两个交点,即2n =; 综上所述,当a b =时,1n =或0n =;当a b 时,1n =或2n =. ∴所有可能的数对(,)m n 是(1,1),(1,0),(2,1),(2,2)故答案为:(1,0)或(2,1)或(1,1)或(2,2).【点睛】本题考查了二次函数与x 轴的交点问题,解决本题的关键是正确理解二次函数的交点式. 14.【分析】求出A 点坐标和对称轴根据对称性求出M 点坐标利用中点求出B 点坐标进而求出P 点坐标代入求a 即可【详解】解:由题意得:对称轴为直线P 点横坐标为1当x=0时y=3∴A 点坐标为:根据对称性可知M 点坐标 解析:94【分析】求出A 点坐标和对称轴,根据对称性求出M 点坐标,利用中点,求出B 点坐标,进而求出P 点坐标,代入求 a 即可.【详解】 解:由题意得:对称轴为直线212a x a -=-=,P 点横坐标为1, 当x=0时,y=3,∴A 点坐标为:()0,3,根据对称性可知,M 点坐标为()2,3 ,∵M 为AB 中点,∴B 点坐标为:()4,3设OB 解析式为y=kx ,把B ()4,3代入得,3=4k解得,k=34, ∴直线OB 解析式为34y x =, 把1x =代入34y x =得,34y =, ∴P 点坐标为31,4⎛⎫ ⎪⎝⎭, 代入抛物线得:3234a a -+=,解得,94a =, 故答案为:94. 【点睛】本题考查了一次函数和二次函数的综合,解题关键是根据二次函数的性质求出B 点坐标,求出一次函数解析式.15.【分析】先根据二次函数图象上点的坐标特征求出点P (11)则根据三角形面积公式求得S1=同样求得S2=S3=S4=所有对应的三角形面积的分母都为2分子为2n-1从而可得Sn=【详解】解:∵当∴点P1( 解析:52, 212n - 【分析】 先根据二次函数图象上点的坐标特征求出点P (1,1),则根据三角形面积公式求得S 1=12,同样求得S 2=32,S 3=52,S 4=72,所有对应的三角形面积的分母都为2,分子为2n-1,从而可得S n =212n -. 【详解】解:∵()02>=x x y 当1x =,1y =,∴点P 1(1,1)∴S 1=111122=⨯⨯= 当2x =时,224y ==∴点P 2(2,4)∴S 2()1314122=⨯⨯-= 当3x =时,239y ==∴点P 2(3,9)∴S 3()1519422=⨯⨯-= 同理:S 4()17116922=⨯⨯-= ∴S n 212n -= 故答案为:52;212n - 【点睛】本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也涉及到三角形面积公式,图形类规律探索,解题的关键是学会利用数形结合的思想,找出相应三角面积的规律.16.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35, 故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.17.【分析】先求出抛物线绕其顶点旋转后解析式再根据平移规律即可求解【详解】解:抛物线先绕其顶点旋转后解析式为将抛物线向右平移个单位向下平移个单位后的抛物线解析式为故答案为:【点睛】本题考查了抛物线图象与 解析:2(2)1=---y x【分析】先求出抛物线22y x =+绕其顶点旋转180︒后解析式,再根据平移规律即可求解.【详解】解:抛物线22y x =+先绕其顶点旋转180︒后解析式为22y x =-+,将抛物线22y x =-+向右平移2个单位,向下平移3个单位后的抛物线解析式为()212y x =---.故答案为:2(2)1=---y x【点睛】本题考查了抛物线图象与几何变换,熟知二次函数图象旋转与平移规律是解题关键.18.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y轴的右侧,正确;③由表中数据可知在对称轴左侧,y随x增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x,y轴的交点坐标等.19.4【分析】根据抛物线形状建立二次函数模型以AB中点为原点建立坐标系xOy通过已知线段长度求出A(10)B(-1O)由二次函数的性质确定y=ax2-a利用PQ=EF建立等式求出二次函数中的参数a即可得解析:4【分析】根据抛物线形状建立二次函数模型,以AB中点为原点,建立坐标系xOy,通过已知线段长度求出A(1,0),B(-1,O),由二次函数的性质确定y=ax2-a,利用PQ=EF建立等式,求出二次函数中的参数a,即可得出EF的值.【详解】解:如图,令P下方的点为H,以AB中点为原点,建立坐标系xOy,则A(1,0),B(-1,O),设抛物线的方程为y=ax 2+bx+c∴抛物线的对称轴为x=0,则2b a-=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a .∴y =ax 2-a . ∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0).∴PH =a×(-0.2)2-a =-0.96aEF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a∴1+0.96a =-0.64a .解得a =58-. ∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故答案为:0.4.【点睛】 本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.20.【分析】由点AB 的坐标利用二次函数的对称性可求出b 的值利用二次函数图象上点的坐标特征可找出m 和n 的大小关系【详解】解:∵二次函数y=x2+bx+c 的图象经过点A (-4m )B (2m )∴∴b=2∵点A(解析:m n <【分析】由点A 、B 的坐标利用二次函数的对称性可求出b 的值,利用二次函数图象上点的坐标特征可找出m 和n 的大小关系.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点A (-4,m )、B (2,m ), ∴42122b -+-==-, ∴b=2, ∵点A(-4,m),C (6,n )在二次函数y=x 2+bx+c 的图象上,∴m=16-8+c=8+c ;n=36+12+c=48+c ,∴m <n ,故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数图象上点的坐标特征得到m ,n 的大小是解题的关键.三、解答题21.证明见详解.【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-,∵1,,39a b k c k ==-=-, ()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x 轴的交点问题,掌握二次函数与x 轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.22.(1)b =2,c =m 2+2m +2;(2)m =-1;(3)见解析【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b 和c ;(2)令y =0,抛物线和x 轴有公共点,即△≥0,再结合非负数的性质确定出m 的值, (3)将两点代入抛物线解析式中,表示出y 1,y 2,求出y 2-y 1分情况讨论即可【详解】解:(1)∵抛物线y =x 2+bx +c 经过(-1,m 2+2m +1)、(0,m 2+2m +2)两点, ∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =m 2+2m +2;(2)由(1)得y =x 2+2x +m 2+2m +2,令y =0,得x 2+2x +m 2+2m +2=0,∵抛物线与x 轴有公共点,∴△=4-4(m 2+2m +2)≥0,∴(m +1)2≤0,∵(m +1)2≥0,∴m +1=0,∴m =-1;(3)由(1)得,y =x 2+2x +m 2+2m +2,∵(a ,y 1)、(a +2,y 2)是抛物线的图象上的两点,∴y 1=a 2+2a +m 2+2m +2,y 2=(a +2)2+2(a +2)+m 2+2m +2,∴y 2-y 1=[(a +2)2+2(a +2)+m 2+2m +2]-[a 2+2a +m 2+2m +2]=4(a +2)当a +2≥0,即a ≥-2时,y 2-y 1≥0,即y 2≥y 1,当a +2<0,即a <-2时,y 2-y 1<0,即y 2<y 1.【点睛】此题是二次函数综合题,主要考查了待定系数法,抛物线与x 轴的交点,比较代数式的大小,解本题的关键是求出b ,用m 表示出抛物线解析式,难点是分类讨论.23.(1)223y x x =--;(2)在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【分析】(1)利用待定系数法即可得出结论;(2)点确定出点M 时直线BC 与直线l 的交点,利用待定系数法求出直线BC 解析式即可得出结论;【详解】解:(1)把(1,0)A -,(3,0)B 代入23y ax bx =+-得,309330a b a b --=⎧⎨+-=⎩, 解得,12a b =⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, 点M 在对称轴1x =上,且ACM ∆的周长最短,MC MA ∴+最小,点A 、点B 关于直线1x =对称,∴连接BC 交直线1x =于点M ,此时MC MA +最小,设直线BC 的关系式为y kx b =+,(3,0)B ,(0,3)C -,∴303k b b +=⎧⎨=-⎩, 解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当1x =时,132y =-=-,∴点(1,2)M -,∴在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【点睛】此题时二次函数综合题,主要考查了待定系数法,对称性,解题关键时掌握待定系数法,和判断出点M 的位置,24.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y =x +3分别交x 轴和y 轴于点A 和B ,∴点A (﹣3,0),点B (0,3),∵抛物线的对称轴为直线x =﹣2.抛物线与x 轴的另一个交点为C ,∴点C (﹣1,0),故答案为(﹣1,0);(2)∵抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (0,3),点C (﹣1,0),∴30930c a b c a b c =⎧⎪=-+⎨⎪=-+⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y =x 2+4x +3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.25.(1)20.10.60.9y x x =-++;(2)1.4米;(3)8个【分析】(1)已知抛物线解析式,求其中的待定系数,选定抛物线上两点E (1,1.4),B (6,0.9)坐标代入即可;(2)小明站在OD 之间,且离点O 的距离为3米,即OF=3,求当x=3时的函数值即可得出小明身高;将y=1.4代入解析式求出x 的值,再减去1即可得出答案;(3)求出y=1.4时x 的值,再用两者之间的差除以0.55,取整得出答案.【详解】解:(1)由题意得把点E (1,1.4),B (6,0.9),代入y=ax 2+bx+0.9得,0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩, 解得0.10.6a b =-⎧⎨=⎩ , ∴所求的抛物线的解析式是y=-0.1x 2+0.6x+0.9;(2)把x=3代入y=-0.1x 2+0.6x+0.9得:y=-0.1×32+0.6×3+0.9=1.8;1.8-0.4=1.4(米),∴小明的身高是1.4米;把y=1.4代入y=-0.1x 2+0.6x+0.9得-0.1x 2+0.6x+0.9=1.4,解得:x 1=1,x 2=5(舍),则3-1=2(米),此时小明向点O 方向走2米就能让绳子甩到最高处时绳子刚好通过他的头顶. (3)当y=1.4时,-0.1x 2+0.6x+0.9=1.4,解得x 1=1,x 2=5,∴5-1=4,∴4÷0.55≈7.27,∴最多可以8个同学一起玩.【点睛】本题考查了二次函数的应用及坐标的求法,此题为数学建模题,解题的关键是注意审题,将实际问题转化为求函数最值问题,培养自己利用数学知识解答实际问题的能力. 26.(1)8585⨯最大,为7225;(2)750750⨯的积最大,理由见解析【分析】(1)由(80)(90)y x x =-+-,求解抛物线的对称轴,从而得到抛物线的顶点的横坐标,于是可得函数的最大值;(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,从而可得函数关系式为::w =(700)(800)a a -+-,再求解抛物线的对称轴为:7008001005022a -+===,再利用二次函数的性质可得答案.【详解】(1)解: (80)(90)y x x =-+-, ∴ 抛物线的对称轴为:809010522x -+=== 而对称轴5x =在自变量取值范围内(19x ≤≤且x 为整数)∴当5x =时,2max (580)(590)857225y =-+-==,所以:8585⨯最大,最大积为7225.(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,依题意,得:(700)[700(100)]w a a =++-=(700)(800)(700)(800)a a a a +-=-+- ∴抛物线的对称轴为:7008001005022a -+=== 而对称轴50a =在自变量取值范围内(199a ≤≤且x 为整数)∴当50a =时,750750⨯的积最大.【点睛】本题考查的是列二次函数关系式,二次函数的性质与二次函数的最值,二次函数的应用,掌握以上知识是解题的关键.。
第26章 二次函数 华东师大版九年级数学下册达标测试卷(含答案)

第26章二次函数达标测试卷一、选择题(每题3分,共24分)1.下列函数中,是二次函数的是()A.y=5x2B.y=22-2x C.y=2x2-3x3+1 D.y=1 x22.抛物线y=3(x-1)2+8的顶点坐标为()A.(1,8) B.(-1,8) C.(-1,-8) D.(1,-8) 3.某商场第1年销售计算机5 000台,设平均每年的销售量增长率为x,第3年的销售量为y台,则y关于x的函数表达式为()A y=5 000(1+2x)B y=5 000(1+x)2C y=5 000(1-2x)D y=5 000(1-x)2 4.在平面直角坐标系中,抛物线y=2x2保持不动,将x轴向上平移1个单位(y轴不动),则在新坐标系下抛物线的表达式是()A.y=2x2+1 B.y=2x2-1 C.y=2(x-1)2D.y=2(x+1)2 5.已知点A(2,y1)、B(3,y2)、C(-1,y3)均在抛物线y=ax2-4ax+c(a >0)上,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2 C.y2<y1<y3D.y2<y3<y1 6.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象为()7.若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是()A.-2 5或6 B.2 5或6 C.-92或6 D.-92或-2 5 8.如图,在平面直角坐标系中,抛物线y=13x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为83,则a,b的值分别为()A.13,43 B.13,-23 C.13,-43D.-13,43(第8题) (第13题) (第14题)二、填空题(每题3分,共18分)9.已知点P⎝ ⎛⎭⎪⎫a,12在抛物线y=2x2上,则a等于________.10.抛物线y=x2+6x+c与x轴有且只有1个公共点,则c=________.11.某小型无人机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s=-0.25t2+10t,那么无人机着陆后滑行__ _秒才能停下来.12.已知二次函数y=ax2+bx+c,x与y的部分对应值如下表:则不等式ax2+bx+c>-3的解集为________.13.如图,过点A(0,4)作平行于x轴的直线AC,分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于点B、C,则BC的长是________.14.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac<0;②a+b=0;③a+b+c>0;④b2-4ac<0.其中正确的是___(填序号)三、解答题(第15,16题每题5分,第17~19题每题6分,第20,21题每题8分,第22题10分,其余每题12分,共78分)15.一抛物线以(-1,9)为顶点,且经过x轴上一点(-4,0),求该抛物线的表达式及抛物线与y轴的交点坐标.16.如图,二次函数y=-x2+bx+c的图象经过坐标原点,且与x轴交于点A(-2,0).(1)求此二次函数的表达式;(2)结合图象,直接写出满足y>0的x的取值范围.(第16题)17.一名男生推铅球,铅球行进高度y(m)与水平距离x(m)之间满足关系式y=-112x2+23x+53.(1)求铅球离手时的高度;(2)求铅球推出的最大距离.18.在平面直角坐标系中,二次函数y=-2x2+bx+c的图象经过点A(-2,4)和点B(1,-2).(1)求这个二次函数的表达式及其图象的顶点坐标;(2)平移该二次函数的图象,使其顶点恰好落在原点的位置上,请直接写出平移方法.19.某网店正在热销一款电子产品,其成本为每件10元,销售过程中发现,该商品每天的销量y(件)与销售单价x(元)之间存在如图所示的函数关系.(1)求y与x之间的函数关系式;(2)该款电子产品的销售单价为多少时,每天的销售利润最大?最大利润是多少?(第19题)20.如图,已知抛物线y=ax2+(a-1)x+3(a≠0)与x轴交于A、B(1,0)两点,与y轴交于点C.(1)点C的坐标为________;(2)将抛物线y=ax2+(a-1)x+3平移,使平移后的抛物线仍经过点B,与x轴的另一个交点为B′,且点B′的坐标为(3,0),求平移后的抛物线的表达式.(第20题) 21.现有一面12米长的墙,某农户计划用28米长的篱笆靠墙围成一个如图所示的矩形养鸡场ABCD.(1)若矩形养鸡场的面积为90平方米,求所用的墙长AD;(2)求矩形养鸡场的最大面积.(第21题)22.如图,矩形OABC的顶点A、C的坐标为A(2 3,0)、C(0,2),抛物线y=-x2+bx+c经过点B、C.(1)求该抛物线的表达式;(2)将矩形OABC绕原点O顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点A的对应点A′落在抛物线的对称轴上时,求此时点A′的坐标.(第22题)23.某班数学兴趣小组对函数y =x 2-2|x |的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下表:其中m =__________;(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x 轴有__________个交点,对应的方程x 2-2|x |=0有__________个实数根;②方程x 2-2|x |=2有__________个实数根;③关于x 的方程x 2-2|x |=a 有4个实数根时,a 的取值范围是__________.(第23题)答案一、1.A 2.A 3.B 4.B5.A 【点拨】∵y =ax 2-4ax +c ,且a >0, ∴图象开口向上,对称轴是直线x =--4a2a =2, ∴x ≥2时,y 随x 的增大而增大,∵C (-1,y 3)关于直线x =2的对称点是(5,y 3),2<3<5,∴y 1<y 2<y 3. 6.C7.C 【点拨】∵y =-x 2+mx ,∴图象开口向下,对称轴为直线x =-m 2×(-1)=m2.①当m 2≤-2,即m ≤-4时,函数在x =-2时取得最大值5,∴-4-2m =5,解得m =-92;②当m2≥1,即m ≥2时,函数在x =1时取得最大值5, ∴-1+m =5,解得m =6.③当-2<m 2<1,即-4<m <2时,函数在x =m 2时取得最大值5,∴-m 24+m 22=5,解得m =2 5(舍去)或m =-2 5(舍去).综上所述,m 的值为-92或6.8.C 【点拨】如图,设平移后所得新抛物线的对称轴和两抛物线分别相交于点A 和点B ,连结OA 、OB ,(第8题)∴S 阴影=S △OAB .由题意得a =13,∴y =ax 2+bx =13x 2+bx =13⎝ ⎛⎭⎪⎫x +3b 22-3b 24,∴点A 的坐标为⎝ ⎛⎭⎪⎫-3b 2,-3b 24,∴点B 的坐标为 ⎝ ⎛⎭⎪⎫-3b 2,3b 24,∴AB =3b 22,点O 到AB 的距离为-3b2,∴S △AOB =12×3b 22×⎝ ⎛⎭⎪⎫-3b 2=83,解得b =-43.二、9.12或-12 10.9 11.2012.0<x <2 13.2 14.①②③三、15.解:设抛物线的表达式为y =a (x +1)2+9,将(-4,0)代入y =a (x +1)2+9, 得0=9a +9,解得a =-1, ∴抛物线的表达式为y =-(x +1)2+9.令x =0,则y =8,∴抛物线与y 轴的交点坐标为(0,8).16.解:(1)把(0,0)和(-2,0)分别代入y =-x 2+bx +c ,得⎩⎨⎧c =0,-4-2b +c =0,解得⎩⎨⎧b =-2,c =0,∴二次函数的表达式为y =-x 2-2x . (2)-2<x <0.17.解:(1)令x =0,则y =53.∴铅球离手时的高度为53 m.(2)当y =0时,-112x 2+23x +53=0, 解得x 1=10,x 2=-2(不合题意,舍去), ∴铅球推出的最大距离是10 m.18.解:(1)∵二次函数y =-2x 2+bx +c 的图象经过点A (-2,4)和点B (1,-2).∴⎩⎨⎧-2×4-2b +c =4,-2×1+b +c =-2,解得⎩⎨⎧b =-4,c =4, ∴这个二次函数的表达式为y =-2x 2-4x +4. ∵y =-2x 2-4x +4=-2(x +1)2+6, ∴顶点坐标为(-1,6).(2)(答案不唯一)将该二次函数图象先向右平移1个单位,再向下平移6个单位. 19.解:(1)设y 与x 之间的函数关系式为y =kx +b ,将(20,100),(25,50)代入,得 ⎩⎨⎧20k +b =100,25k +b =50,解得⎩⎨⎧k =-10,b =300, ∴y 与x 之间的函数关系式为y =-10x +300. (2)设该款电子产品的销售利润为w 元,根据题意得w =(x -10)(-10x +300)=-10x 2+400x -3 000=-10(x -20)2+1 000, ∵-10<0,∴x =20时,w 最大,为1 000.答:该款电子产品的销售单价为20元时,每天销售利润最大,最大利润是1 000元. 20.解:(1)(0,3)(2)∵抛物线y =ax 2+(a -1)x +3与x 轴交于点B (1,0),∴a +a -1+3=0,∴a =-1,∴y =-x 2-2x +3.设平移后的抛物线表达式为y =-(x +h )2+k , ∵平移后的抛物线经过点B (1,0)和点B ′(3,0), ∴⎩⎨⎧-(1+h )2+k =0,-(3+h )2+k =0,解得⎩⎨⎧h =-2,k =1, ∴平移后的抛物线表达式为y =-(x -2)2+1.21.解:(1)设所用的墙长AD 为x 米,则AB 的长为28-x2米,由题意可得x ·28-x2=90,解得x 1=18(舍去),x 2=10.答:所用的墙长AD 为10米. (2)设AB 为a 米,面积为S 平方米, 则S =a (28-2a )=-2(a -7)2+98, ∵0<28-2a ≤12,∴8≤a <14,∴当a =8时,S 取得最大值,此时S =96, 答:矩形养鸡场的最大面积是96平方米.22.解:(1)∵A (2 3,0),C (0,2),∴易得B (2 3,2). 把点C 和点B 的坐标代入y =-x 2+bx +c , 得⎩⎨⎧c =2,-12+2 3b +c =2,解得⎩⎨⎧b =2 3,c =2, ∴该抛物线的表达式为y =-x 2+2 3x +2. (2)设对称轴与x 轴交于点D ,∴易得OD =3, 又∵OA ′=OA =2 3,∴A ′D =(2 3)2-(3)2=3,∴A ′(3,-3). 23.解:(1)0 (2)如图.(3)①函数y =x 2-2|x |的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大. (4)①3;3 ②2 ③-1<a <0(第23题)【点拨】(3)题答案不唯一.24. 解:(1)由题意得⎩⎨⎧a -b +c =0,16a +4b +c =0c =3,,解得⎩⎪⎨⎪⎧a =-34,b =94,c =3,∴抛物线对应的函数表达式为y =-34x 2+94x +3.(2)设直线BC 对应的函数表达式为y =kx +d ,则⎩⎨⎧4k +d =0,d =3,解得⎩⎪⎨⎪⎧k =-34,d =3,∴y =-34x +3.设D (m ,-34m 2+94m +3)(0<m <4).过点D 作DM ⊥x 轴交BC 于点M ,则M ⎝ ⎛⎭⎪⎫m ,-34m +3,DM ∥OC ,∴DM =⎝ ⎛⎭⎪⎫-34m 2+94m +3-⎝ ⎛⎭⎪⎫-34m +3=-34m 2+3m ,∠DME =∠OCB ,又∵∠DEM =∠BOC =90°,∴△DEM ∽△BOC , ∴DE OB =DMBC .∵OB =4,OC =3,∴BC =5,∴DE =45DM ,∴DE =-35m 2+125m =-35(m -2)2+125(0<m <4).当m =2时,DE 取得最大值,最大值是125. (3)存在.∵F 为AB 的中点, ∴OF =32,∴tan ∠CFO =OCOF =2.如图,过点B 作BG ⊥BC ,交CD 的延长线于点G ,过点G 作GH ⊥x 轴,垂足为H .(第24题)①若∠DCE =∠CFO ,则tan ∠DCE =GBBC =2, ∴BG =10.易得△GBH ∽△BCO ,∴GH BO =HB OC =GBBC ,∴GH =8,BH =6,∴G (10,8). 设直线CG 对应的函数表达式为y =px +n ,11∴⎩⎨⎧n =3,10p +n =8,解得⎩⎪⎨⎪⎧p =12,n =3,∴直线CG 对应的函数表达式为y =12x +3,令12x +3=-34x 2+94x +3,解得x =73或x =0(舍去). ②若∠CDE =∠CFO ,同理可得BG =52,GH =2,BH =32,∴G ⎝ ⎛⎭⎪⎫112,2.易得直线CG 对应的函数表达式为y =-211x +3,令-211x +3=-34x 2+94x +3,解得x =10733或x =0(舍去).综上所述,点D 的横坐标为73或10733.12。
新课程课堂同步练习册(九年级数学下册人教版)答案

数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
2022-2023学年华东师大版九年级下册数学《第26章 二次函数》单元测试卷(有答案)

2022-2023学年华东师大版九年级下册数学《第26章二次函数》单元测试卷一.选择题(共10小题,满分30分)1.下列是二次函数的是()A.y=2﹣x2B.y=x﹣22C.D.y=2x﹣12.一次函数y=ax+b与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.3.抛物线y=﹣x2﹣2x一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.从地面竖直向上抛出一小球,小球的高度h(米)与运动时间t(秒)之间的解析式是h =﹣5t2+30t(0≤t≤6),则小球到达最高高度时,运动的时间是()A.1秒B.2秒C.3秒D.4秒5.如图是二次函数y=ax2+bx+c(a≠0)的图像,则下列结论正确的有()①abc>0;②2a+b=0;③b2<4ac;④4a+2b+c>0;⑤a+b≥am2+bm(m为任意实数)A.2个B.3个C.4个D.5个6.把函数y=(x﹣2)2+3的图象所在坐标系的坐标轴向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣3)2+3D.y=(x﹣1)2+3 7.小英在用“描点法”探究二次函数性质时,画出了以下表格,不幸的是,部分数据已经遗忘(如表所示),小英只记得遗忘的三个数中(如M,R,A所示),有两个数相同.根据以上信息,小英探究的二次函数解析式可能是()x…﹣10123…y…M R﹣4﹣3A…A.y=x2﹣3x﹣2B.C.y=2x2﹣5x﹣1D.8.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.若关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根的积是()A.0B.﹣8C.﹣15D.﹣249.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.410.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y =﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥1二.填空题(共10小题,满分30分)11.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是x0.40.50.60.7ax2+bx+c﹣0.64﹣0.250.160.5912.如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为.13.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y平方厘米,那么y关于x的函数解析式是.(不必写定义域)14.二次函数y=﹣x2+4x+a图象上的最高点的横坐标为.15.若点A(3,y1),B(﹣5,y2),C(7,y3)为二次函数y=(x+2)2﹣9的图象上的三点,则y1,y2,y3的大小关系是.16.将二次函数y=x2﹣2x+3化成顶点式为.17.一辆宽为2m的货车要通过跨度为8m,拱高为4m的截面为抛物线的单行隧道(从正中间通过),抛物线满足关系式.为保证安全,车顶离隧道至少要有0.5m的距离,则货车的限高应为m.18.如图所示的抛物线y=x2﹣bx+b2﹣9的图象,那么b的值是.19.二次函数的顶点坐标是.20.已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x 轴于点F,AB=4,设点D的横坐标为m.(1)连接AE,CE则△ACE的最大面积为;(2)当m=﹣2时,在平面内存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形,请写出点Q的坐标.三.解答题(共7小题,满分60分)21.已知函数y=(m﹣1)+4x﹣5是二次函数.求m的值.22.已知二次函数y=x2﹣4x+3.(1)求二次函数y=x2﹣4x+3图象的顶点坐标;(2)在平面直角坐标系xOy中,画出二次函数y=x2﹣4x+3的图象.23.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.24.在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A (﹣5,﹣4),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣9,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.25.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y =ax2+bx﹣75,其图象如图所示.(1)求a与b的值;(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3)销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?26.已知:由函数y=x2﹣2x﹣2的图象知道,当x=0时,y<0,当x=﹣1时,y>0,所以方程x2﹣2x﹣2=0有一个根在﹣1和0之间.(1)参考上面的方法,求方程x2﹣2x﹣2=0的另一个根在哪两个连续整数之间;(2)若方程x2﹣2x+c=0有一个根在0和1之间,求c的取值范围.27.记函数y=x2﹣2x(x≤2)的图象为G1,函数的图象记为G2,图象G1和G2记为图象G.(1)若点(3,m)在图象G上,求m的值.(2)已知直线l与x轴平行,且与图象G有三个交点,从左至右依次为点A,点B,点C,若AB=1,求点C坐标.(3)若当﹣1≤x≤n时,﹣1≤y≤3,求n的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:A、y=2﹣x2是二次函数,故此选项符合题意;B、y=x﹣22是一次函数,故此选项不符合题意;C、不是二次函数,故此选项不符合题意;D、y=2x﹣1是一次函数,故此选项不符合题意;故选:A.2.解:A、由一次函数的图象可知,a<0,由二次函数的图象可知,a>0,两结论矛盾,不符合题意;B、由一次函数的图象可知,a<0,b<0,由二次函数的图象可知,a<0,b>0,两结论矛盾,不符合题意;C、由一次函数的图象可知,a<0,b>0,由二次函数的图象可知,a<0,b<0,两结论矛盾,不符合题意;D、由一次函数的图象可知,a>0,b<0,由二次函数的图象可知,a>0,b<0,两结论一致,符合题意.故选:D.3.解:∵a=﹣1,抛物线开口向下,对称轴为x=,与y轴交于(0,),∴抛物线经过一、三、四象限,不经过第二象限.故选:B.4.解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,0≤t≤6,∴当t=3时,h有最大值,最大值为45,∴小球运动3秒时,小球达到最高高度,故选:C.5.解:由图象可知,抛物线开口向下,∴a<0,∵对称轴为,∴2a=﹣b,∴b>0且2a+b=0,②正确;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,③错误;∵2a+b=0,∴4a+2b+c=2(2a+b)+c=c>0,④正确;∵当x=1时,函数取最大值,为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥am2+bm(m为任意实数),⑤正确;综上所述,正确的有3个,故选:B.6.解:二次函数y=(x﹣2)2+3的图象的顶点坐标为(2,3),∴向右平移1个单位长度后的函数图象的顶点坐标为(3,3),∴所得的图象解析式为y=(x﹣3)2+3.故选:C.7.解:A、y=x2﹣3x﹣2的对称轴为直线,B、的对称轴为直线,C、y=2x2﹣5x﹣1的对称轴为直线,D、的对称轴为直线,若M与R相同,则抛物线的对称轴为直线,只有B选项符合,将点(1,﹣4),(2,﹣3)代入解析式,均符合;若M与A相同,则抛物线的对称轴为直线x=1,没有选项符合;若R与A相同,则抛物线的对称轴为直线,选项A、D符合,但将点(1,﹣4),(2,﹣3)代入解析式,却不符合;∴M与R相同,B选项符合,故选:B.8.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴抛物线y=ax2+bx+c与直线y=﹣n的交点的横坐标在﹣5与﹣3之间和1与3之间,∴关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是﹣4和2,∴两个整数根的积是﹣4×2=﹣8.故选:B.9.解:∵抛物线开口向下,交y轴的正半轴,∴a<0,c>0,∵﹣=,∴b=﹣a>0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,所以②正确;∵抛物线y=ax2+bx+c经过点(﹣2,0),而抛物线的对称轴为直线x=,∴点(﹣2,0)关于直线x=的对称点(3,0)在抛物线上,∴关于x的一元二次方程ax2+bx+c=0的两根是x1=﹣2,x2=3,所以③正确.由图象可知当﹣2<x<3时,y>0,∴不等式ax2+bx+c>0的解集是﹣2<x<3,所以④错误;故选:B.10.解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.二.填空题(共10小题,满分30分)11.解:∵函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,x轴上的点的纵坐标为0,由表中数据可知:y=0在y=﹣0.25与y=0.16之间,∴对应的x的值在0.5与0.6之间即0.5<x<0.6.故答案为0.5<x<0.6.12.解:∵函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,∴|m﹣1|=2,且m﹣3≠0,解得:m=﹣1.故答案为:﹣1.13.解:∵△ABC是等腰直角三角形,四边形EFGD是矩形,∴△AFE和△DGB都是等腰直角三角形,∴ED=GF=x厘米,AF=BG=(20﹣x)厘米,∴EF=(20﹣x)厘米,∴矩形EFGD的面积y=x•(20﹣x)=﹣x2+10x,∴y关于x的函数关系式是y=﹣x2+10x.故答案为:y=﹣x2+10x.14.解:∵二次函数y=﹣x2+4x+a=﹣(x﹣2)2+4+a,∴二次函数图象上的最高点的横坐标为:﹣2.故答案为:﹣2.15.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,∴B(﹣5,y2)关于直线x=﹣2的对称点是(1,y2),∵1<3<7,∴y2<y1<y3,故答案为:y2<y1<y3.16.解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.17.解:∵车的宽度为2米,车从正中通过,∴x=1时,y=﹣×12+4=,∴货车安全行驶装货的最大高度为﹣0.5=3.25(米),即货车的限高为:3.25;18.解:由图可知,抛物线经过原点(0,0),所以,02﹣b×0+b2﹣9=0,解得b=±3,∵抛物线的对称轴在y轴的右边,∴﹣>0,∴b>0,∴b=3.故答案为:3.19.解:二次函数y =﹣(x ﹣1)2+2的顶点坐标是(1,2),故答案为:(1,2).20.解:(1)∵点B (1,0),AB =4,则点A (﹣3,0),由题意得:,解得:,即抛物线的表达式为:y =﹣x 2﹣2x +3;设直线AC 的表达式为:y =mx +n ,则,解得:,故直线AC 的表达式为:y =x +3;设点D (m ,m +3),则点E (m ,﹣m 2﹣2m +3),则△ACE 的面积=S △EDA +S △EDC =DE ×AO =3×(﹣m 2﹣2m +3﹣m ﹣3)=﹣(m 2+3m )=﹣(m +)2+≤, ∴△ACE 的最大面积为, 故答案为:;(2)当m =﹣2时,﹣m 2﹣2m +3=3,即点E (﹣2,3),设点Q (s ,t ),当BC 是对角线时,由中点坐标公式得:,解得:, 当BE 是对角线时,由中点坐标公式得:,解得:, 当BQ 是对角线时,由中点坐标公式得:,解得:, 即点Q 的坐标为(﹣3,0)或(﹣1,0)或)(﹣3,6),故答案为:(﹣3,0)或(﹣1,0)或)(﹣3,6).三.解答题(共7小题,满分60分)21.解:由题意:,解得m =﹣1,∴m=﹣1时,函数y=(m﹣1)+4x﹣5是二次函数.22.解:(1)y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为:(2,1);(2)解:该函数过点(0,3),(1,0),(2,﹣1),(3,0),(4,3)这五个点,用五点作图画出图象如下:23.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.24.解:(1)把点A(﹣5,﹣4),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣9,∴当y=﹣9时,有﹣x2+2x﹣1=﹣9,∴x=﹣2或x=4,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值﹣4,∴m=﹣4;②在对称轴x=1右侧,y随x最大而减小,∴x=m=4时,y有最大值﹣9;综上所述:m=﹣4或m=4;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,Δ=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.25.解:(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得:;(2)∵y=﹣x2+20x﹣75=﹣(x﹣10)2+25,=25.∴当x=10时,y最大答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(3)根据题意,当y=21时,得:﹣x2+20x﹣75=21,解得:x1=8,x2=12,∴x=8或x=12,即销售单价定在8元或12元时,该种商品每天的销售利润为21元;故销售单价在8≤x≤12时,销售利润不低于21元.26.解:(1)利用函数y=x2﹣2x﹣2的图象可知,当x=2时,y<0,当x=3时,y>0,所以方程的另一个根在2和3之间;(2)函数y=x2﹣2x+c的图象的对称轴为直线x=1,由题意,得,解得0<c<1.27.解:(1)∵点(3,m)在图象G上,函数y=x2﹣2x(x≤2)的图象为G1,函数y=﹣x2+2(x>0)的图象记为G2,图象G1和G2记为图象G.∴点(3,m)在图象G2上,将点(3,m)代入y=﹣x2+2得,m=﹣×32+2=﹣,∴m的值﹣;(2)如图,∵直线l与x轴平行且与图象G有三个交点,从左至右依次为点A,点B,点C,由图象得﹣1≤y≤0,设A(a,a2﹣2a),∵y=x2﹣2x的对称轴为直线x=1,顶点为(1,﹣1),∴点B(2﹣a,a2﹣2a),∵AB=1,∴2﹣a﹣a=1,解得a=,∴点C的纵坐标为a2﹣2a=﹣,将y=﹣代入y=﹣x2+2得﹣=﹣x2+2,解得x=±(负值不合题意,舍去),∴点C坐标为(,﹣);(3)∵y=x2﹣2x(x≤2)的对称轴为直线x=1,顶点为(1,﹣1),函数y=﹣x2+2(x>0)的顶点为(0,2),∴当y=3时,3=x2﹣2x,解得x=﹣1或3(舍去),当y=﹣1时,﹣1=﹣x2+2,解得x=或﹣(舍去),∵当﹣1≤x≤n时,﹣1≤y≤3,结合图象得1≤n≤.。
2023年华东师大版九年级数学下册第二十六章《二次函数》复习检测卷附答案解析

2023年九年级数学下册第二十六章《二次函数》复习检测卷一、单项选择。
1.在平面直角坐标系中,将二次函数y=(x-1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的表达式为()A.y=(x-2)2-1B.y=(x-2)2+3C.y=x 2+1D.y=x 2-12.关于二次函数y=-3x 2+6x+1,下列说法错误的是()A.图象与y 轴的交点坐标为(0,1)B.图象的对称轴在y 轴的右侧C.当x>0时,y 的值随x 值的增大而减小D.y 的最大值为43.如图,抛物线L 1:y=ax 2+bx+c(a≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为()A.1B.2C.3D.44.如图,抛物线y=ax 2+bx+c 与x 轴相交于点A(-2,0),B(6,0),与y 轴相交于点C,小红同学得出了以下结论:①b 2-4ac>0;②4a+b=0;③当y>0时,-2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.15.抛物线y=ax 2+bx+c 上部分点的横坐标x,纵坐标y 的对应值如下表:下列结论不正确的是()x -2-101y466A.抛物线的开口向下B.抛物线的对称轴为直线x=12C.抛物线与x 轴的一个交点坐标为(2,0)D.函数y=ax 2+bx+c 的最大值为2546.若函数y=mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点,那么m 的值为()A.0B.0或2C.2或-2D.0,2或-27.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为()A.1或-2B.-2或2C.2D.18.二次函数y=ax 2+bx+c 的部分图象如图所示,则下列选项错误的是()A.若(-2,y 1),(5,y 2)是图象上的两点,则y 1>y 2B.3a+c=0C.方程ax 2+bx+c=-2有两个不相等的实数根D.当x≥0时,y 随x 的增大而减小9.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b 2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()A.1个B.2个C.3个D.4个10.如图,函数y=ax 2-2x+1和y=ax-a(a 是常数,且a≠0)在同一平面直角坐标系的图象可能是()11.已知二次函数y=x 2-2ax+a 2-2a-4(a 为常数)的图象与x 轴有交点,且当x>3时,y 随x 的增大而增大,则a 的取值范围是()A.a≥-2B.a<3C.-2≤a<3D.-2≤a≤312.若二次函数y=x 2-6x+c 的图象经过A(-1,y 1),B(2,y 2),C(3+2,y 3)三点,则关于y 1,y 2,y 3大小关系正确的是()A.y 1>y 2>y 3B.y 1>y 3>y 2C.y 2>y 1>y 3D.y 3>y 1>y 213.已知a>1,点A(a-1,y 1),B(a,y 2),C(a+1,y 3)都在二次函数y=12-x 2的图象上,则()A.y 1>y 2>y 3B.y 1>y 3>y 2C.y 2>y 1>y 3D.y 3>y 1>y 214.已知y=ax 2+k 的图象上有三点A(-3,y 1),B(1,y 2),C(2,y 3),且y 2<y 3<y 1,则a 的取值范围是()A.a>0B.a<0C.a≥0D.a≤015.如图,二次函数y=ax 2+bx(a≠0)的图象过点(2,0),下列结论错误的是()A.b>0B.a+b>0C.x=2是关于x 的方程ax 2+bx=0(a≠0)的一个根D.点(x 1,y 1),(x 2,y 2)在二次函数的图象上,当x 1>x 2>2时,y 2<y 1<0二、填空题。
九年级数学下第26章二次函数26.1二次函数及其图象2二次函数y=ax2的图象习题新人教

•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月27日星期日2022/3/272022/3/272022/3/27 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/272022/3/272022/3/273/27/2022 •3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/272022/3/27March 27, 2022
x> 0时 , y随 x的 增 大 而 增 大 , x< 0时 , y随 x的 增 大 而 减 小 .
2.a<0⇔开口向下⇔有最大值⇔
x> 0时 , y随 x的 增 大 而 减 小 , x< 0时 , y随 x的 增 大 而 增 大 .
知识点 2 求二次函数y=ax2的解析式
【例2】(2013·山西中考)如图是我省某地一座抛物线形拱桥,
(1)求此抛物线的解析式. (2)过点P作CB所在直线的垂线,垂足为点R, 求证:PF=PR.
【解析】(1)由题意可得:点A的坐标为(2,-1),
∵抛物线的顶点为坐标原点O,
∴可设抛物线的解析式为:y=ax2, 将点A(2,-1)代入可得:4a=-1,解得a=- 1 ,
4
∴抛物线的解析式为y=- 1 x2.
【例1】函数 ym2xm 2m 4 是关于x的二次函数,求:
(1)满足条件的m的值. (2)m为何值时,抛物线有最低点?求出这个最低点,这时当x为何 值时,y随x的增大而增大? (3)m为何值时,抛物线的开口方向向下?这时当x为何值时,y随x 的增大而减小?
【解题探究】(1)函数是二次函数的条件是自变量的最高次数
(完整版)人教九年级数学下册同步练习题及答案

第二十六章二次函数26.1二次函数(第一课时)一、课前小测1.已知函数y=(k+2)x+3是关于x的一次函数,则k_______.2.已知正方形的周长是ccm,面积为Scm2,则S与c之间的函数关系式为__ ___. 3.填表:4.在边长为4m的正方形中间挖去一个长为xm的小正方形, 剩下的四方框形的面积为y,则y与x间的函数关系式为_________.5.用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.二、基础训练121.形如_______ ________的函数叫做二次函数.2.扇形周长为10,半径为x ,面积为y ,则y 与x 的函数关系式为_______________。
3.下列函数中,不是二次函数的是( )x 2 B.y=2(x-1)2+4 C.y=12(x-1)(x+4) D.y=(x-2)2-x 2 4.在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y与x 的函数关系式为( )A.y=πx 2-4 B.y=π(2-x)2; C.y=-(x 2+4) D.y=-πx 2+16π 5.若y=(2-m)22m x -是二次函数,则m 等于( )A.±2 B.2 C.-2 D.不能确定三、综合训练1.已知y 与x 2成正比例,并且当x=1时,y=2,求函数y 与x 的函数关系式,并求当x=-3时,y的值.当y=8时,求x 的值.2.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?326.1二次函数(第二课时)一、课前小测1.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是( )A.a ≠0,b ≠0,c ≠0B.a <0,b ≠0,c ≠0C.a >0,b ≠0,c ≠0D.a ≠02.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是__ __(其中x 、t 为自变量).3.当k=__ ___时,27(3)k y k x -=+是二次函数。
初三数学二次函数单元测试题及答案

二次函数单元测评姓名分数一、选择题(每题4分,共40分)1.下列关系式中,属于二次函数的是(x为自变量)()A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是()A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在()A. 第一象限B. 第二象限C. x轴上D. y轴上4. 抛物线的对称轴是()A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限()A. 一B. 二C. 三D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y)是直线上的点,且-1<x<x,x<-1,则y,y,y的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y1<y2D. y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.B.C. D.二、填空题(每题4分,共20分)11. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.12. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.13.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.14.如图,某农场要盖一排三间长方形的羊圈,打算一面利用旧墙,其余各面用木材围成栅栏,该计划用木材围成总长24m的栅栏,设每间羊圈的一边长为x (m),三间羊圈的总面积s (m2),则s关于x的函数关系式是______________,x的取值范围_________,当x=_________时,s最大.三、解答下列各题15 (12)若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A 关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;xBA C16 (12分)直角坐标平面内,点 O 为坐标原点,二次函数 y=x 2+(k-5)x-(k+4) 的图象交 x 轴于点A(x 1,0)、B(x 2,0),且(x 1+1)(x 2+1)=-8. (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的 交点为C ,顶点为P ,求△POC 的面积.17. (12分)某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB= 4米,顶部C 离地面高为4.4米,现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8米,装货宽度为2.4米,请通过计算,判断这辆汽车能否顺利通过大门?18. (14分)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题: (1)求累积利润s (万元)与时间t (月)之间的函数关系式; (2)求截止到几月末公司累积利润可达30万元; (3)求第8个月公司所获利润是多少万元?19. (12分)如图(7)一位篮球运动员跳起投篮,球沿抛物线y =-15x 2+3.5运行,然后准确落人篮框内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章《二次函数》综合训练试题 (时间:90分钟,总分:120分)一、选择题(每题3分,共30分)1,函数y =x 2-4的图象与y 轴的交点坐标是( )A.(2,0)B.(-2,0)C.(0,4)D.(0,-4)2,(2008年上海市)在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A .3 B .2 C .1 D .03,抛物线经过第一、三、四象限,则抛物线的顶点必在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4,(08吉林长春)二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且5,已知反比例函数y =kx的图象在每个象限内y 随x 的增大而增大,则二次函数y =2kx 2-x +k 2的图象大致为如图2中的( )6,二次函数y =ax 2+bx +c 的图象如图3,则点(b ,ca)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7,某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A.y =x 2+aB.y =a (x -1)2C.y =a (1-x )2D.y =a (l+x )28,若二次函数y =ax 2+bx +c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取(x 1+x 2)时,函数值为( ) A.a +c B.a -c C.-c D.c9,不论m 为何实数,抛物线y =x 2-mx +m -2( )A.在x 轴上方B.与x 轴只有一个交点C.与x 轴有两个交点D.在x 轴下方10,若二次函数y =x 2-x 与y =-x 2+k 的图象的顶点重合,则下列结论不正确的是( ) A.这两个函数图象有相同的对称轴 B.这两个函数图象的开口方向相反C.方程-x 2+k =0没有实数根D.二次函数y =-x 2+k 的最大值为12二、填空题(每题3分,共24分)11,顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为___.12,若点A (2,m )在抛物线y =x 2上,则点A 关于y 轴对称点的坐标是___.13,二次函数y =2x 2+bx +c 的顶点坐标是(1,-2).则b =___,c =___.14,已知二次函数y =ax 2+bx +c (a ≠0)与一次函数y =kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2),如图4所示,能使y 1>y 2成立的x 取值范围是___.15若输入的数据是x 时,输出的数据是y ,y 是x 的二次函数,则y 与x 的函数表达式为___. 16,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式___.17,抛物线y =ax 2+bx +c 中,已知a ∶b ∶c =l ∶2∶3,最小值为6,则此抛物线的解析式为___.18,把一根长100cm 的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和最小是___. 图4 图2 图3图119,利用二次函数的图象求下列方程的近似根:(1)x2+x-12=0;(2)2x2-x-3=0.20,已知抛物线与x轴交于点(1,0)和(2,0)且过点(3,4).求抛物线的解析式.21,已知二次函数y=x2-6x+8.求:(1)抛物线与x轴和y轴相交的交点坐标;(2)抛物线的顶点坐标;(3)画出此抛物线图象,利用图象回答下列问题:①方程x2-6x+8=0的解是什么?②x取什么值时,函数值大于0?③x取什么值时,函数值小于0?22,当x=4时,函数y=ax2+bx+c的最小值为-8,抛物线过点(6,0).求:(1)顶点坐标和对称轴;(2)函数的表达式;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.23,已知抛物线y=x2-2x-8.(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积.24,如图5,宜昌西陵长江大桥属于抛物线形悬索桥,桥面(视为水平的)与主悬钢索之间用垂直钢拉索连接.桥两端主塔塔顶的海拔高度均是187.5米,桥的单孔跨度(即两主塔之间的距离)900米,这里水面的海拔高度是74米.若过主塔塔顶的主悬钢索(视为抛物线)最低点离桥面(视为直线)的高度为0.5米,桥面离水面的高度为19米.请你计算距离桥两端主塔100米处垂直钢拉索的长(结果精确到0.1米).图525,某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之问存在着如图6所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助⑵中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?26,(2008·东营市) 在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?图6 ) 图7B D 图 2B 图 1 图 3参考答案:第二十六章《二次函数》综合训练试题一、1,D ;2,B ;3,A ;4,D ;5,D ;6,D ;7,D ;8,D .提示:当x 取x 1,x 2(x 1≠x 2)时,函数值相等,列式并分解因式,由x 1≠x 2,得到x 1+x 2=0,即得;9,C ;10,C .二、11,y =-x 2-4x -9;12,(-2,4);13,-4、0;14,x <-2或x >8;15,y =x 2+1;16,答案不惟一,如,y =x 2+2x ;17,y =3x 2+6x +9;18,312.5cm 2.三、19,函数y =ax 2+bx +c 与x 轴的两个交点的横坐标就是方程ax 2+bx +c =的解; 20,y =2x 2-6x +4; 21,(1)由题意,得x 2-6x +8=0.则(x -2) (x -4)=0,x 1=2,x 2=4.所以与x 轴交点为(2,0)和(4,0),当x =0时,y =8.所以抛物线与y 轴交点为(0,8),(2)抛物线的顶点坐标为(3,-1),(3)如图1所示.①由图象知,x 2-6x +8=0的解为x 1=2,x 2=4.②当x <2或x >4时,函数值大于0;③当2<x <4时,函数值小于0;22,(1)(4,-8),x =4,(2)y =2x 2-16x +24,(3)x >4时,y 随x 的增大而增大,x <4时,y 随x 的增大而减小;23,(1)证明:因为对于方程x 2-2x -8=0,有x 1=2,x 2=4,即所以方程x 2-2x -8=0有两个实根,抛物线y =x 2-2x -8与x 轴一定有两个交点;(2)解:因为方程x 2-2x -8=0有两个根为x 1=2,x 2=4,所以AB =| x 1-x 2|=6.又抛物线顶点P 的纵坐标y P =244ac b a -=-9,所以S ΔABP =12×AB ×|y P |=27;24,如图2,以桥面上位于主悬钢索最低点的正下方一点坐标原点,以桥面所在的直线为x 轴建立平面直角坐标系,则A (0,0.5),B (-450, 94.5),C (450,94.5).由题意,设抛物线为:y =ax 2+0.5. 将C (450,94.5)代入求得:47101250a =或294450a =.所以2470.5101250y x =+.当x =350时,y =57.4;当x =400时,y =74.8.所以,离桥两端主塔100米处竖直钢拉索的长都约为57.4米,离桥两端主塔50米处竖直钢拉索的长都约为74.8米.25,(1)由图象中提供的信息可设y =kx +b ,此时的图象过点(60,5),(80,4),于是,有560,480.k b k b =+⎧⎨=+⎩解得1,208.k b ⎧=-⎪⎨⎪=⎩所以y 关于x 的函数关系式是y =-120x +8.(2)z =yx -40y -120=(-120x +8)(x -40)=-120x 2+10x -440,所以当x =100元时,最大年获得为60万元.(3)依题意可画出(2)中的图象,如图3,令z =40,得40=-120x 2+10x-440,整理,得x 2-200x +9600=0,解得x 1=80,x 2=120. 由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,销售单价应定为80元.)图2 图126,解:(1)∵MN ∥BC ,∴∠AMN=∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN =.∴ AN =43x .∴ S =2133248MNP AMN S S x x x ∆∆==⨯⋅=.(0<x <4) (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =.过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线BC 相切.BD 图 2B(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点. ∵ MN ∥BC ,∴ ∠AMN=∠B ,∠AOM =∠APC . ∴ △AMO ∽ △ABP .∴ 12AM AO AB AP ==. AM =MB =2.故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. 综上所述,当83x =时,y 值最大,最大值是2.图 4P 图 3。