新七年级数学下册《整式乘法与因式分解》综合测试题及答案.docx

合集下载

初中数学-《整式乘法与因式分解》(有答案)-(苏科版)

初中数学-《整式乘法与因式分解》(有答案)-(苏科版)

初中数学-《整式乘法与因式分解》一、填空题1.分解多项式16ab2﹣48a2b时,提出的公因式是.2.当x=90.28时,8.37x+5.63x﹣4x=.3.若m、n互为相反数,则5m+5n﹣5=.二、选择题4.下列式子由左到右的变形中,属于因式分解的是()A.(x+2y)2=x2+4xy+4y2B.x2﹣2y+4=(x﹣1)2+3C.3x2﹣2x﹣1=(3x+1)(x﹣1)D.m(a+b+c)=ma+mb+mc 5.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx6.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7 B.18 C.12 D.97.(﹣8)2009+(﹣8)2008能被下列数整除的是()A.3 B.5 C.7 D.9三、解答题8.把下列各式分解因式:(1)18a3bc﹣45a2b2c2;(2)﹣20a﹣15ab;(3)18x n+1﹣24x n;(4)(m+n)(x﹣y)﹣(m+n)(x+y);(5)15(a+b)2+3y(b+a);(6)2a(b﹣c)+3(c﹣b).9.计算:(1)39×37﹣13×91;(2)29×20.09+72×20.09+13×20.O9﹣20.O9×14.10.已知,xy=3,求2x4y3﹣x3y4的值.11.求x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)的值,其中a=3,x=2,y=4.12.把5(a﹣b)3﹣10(b﹣a)2分解因式.13.下列分解因式是否正确?如果不正确,请给出正确结果.(1)﹣x2﹣y2=(x+y)(x﹣y);(2)9﹣25a2=(3+25a)(3+25b);(3)﹣4a2+9b2=(﹣2a+3b)(﹣2a﹣3b).14.把下列各式分解因式:(1)36﹣x2;(2)a2﹣;(3)﹣+y2;(4)25(a+b)2﹣4(a﹣b)2;(5)(x+2)2﹣9;(6)(x+a)2﹣(y+b)2.15.在边长为16.4cm的正方形纸片的四角各剪去一边长为1.8cm的正方形,求余下的纸片的面积.16.已知x2﹣y2=﹣1,x+y=,求x﹣y的值.17.已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.《第9章整式乘法与因式分解》参考答案与试题解析一、填空题1.分解多项式16ab2﹣48a2b时,提出的公因式是16ab.【考点】因式分解﹣提公因式法.【分析】首先找出公因式进而提取得出即可.【解答】解:16ab2﹣48a2b=16ab(b﹣3a).故答案为:16ab.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.2.当x=90.28时,8.37x+5.63x﹣4x=902.8.【考点】因式分解﹣提公因式法.【分析】首先将原式分解因式,进而代入原式求出即可.【解答】解:∵x=90.28时,∴8.37x+5.63x﹣4x=(8.37+5.63﹣4)x=10x=10×90.28=902.8.故答案为:902.8.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.3.若m、n互为相反数,则5m+5n﹣5=﹣5.【考点】有理数的加减混合运算;相反数.【专题】计算题.【分析】若m、n互为相反数,则m+n=0,那么代数式5m+5n﹣5即可解答.【解答】解:由题意得:5m+5n﹣5=5(m+n)﹣5=5×0﹣5=﹣5.故答案为:﹣5【点评】本题主要考查相反数的性质,相反数的和为0.二、选择题4.下列式子由左到右的变形中,属于因式分解的是()A.(x+2y)2=x2+4xy+4y2B.x2﹣2y+4=(x﹣1)2+3C.3x2﹣2x﹣1=(3x+1)(x﹣1)D.m(a+b+c)=ma+mb+mc【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、是整式乘法,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx【考点】公因式.【分析】根据公因式是多项式中每项都有的因式,可得答案.【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.【点评】本题考查了公因式,公因式的系数是各项系数的最大公约数,字母是相同的字母,指数是相同字母的指数最底的指数.6.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7 B.18 C.12 D.9【考点】代数式求值.【专题】整体思想.【分析】观察题中的两个代数式3x2﹣4x+6和x2﹣+6,可以发现3x2﹣4x=3(x2﹣),因此,可以由“代数式3x2﹣4x+6的值为9”求得x2﹣=1,所以x2﹣+6=7.【解答】解:∵3x2﹣4x+6=9,∴方程两边除以3,得x2﹣+2=3x2﹣=1,所以x2﹣+6=7.故选:A.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣的值,然后利用“整体代入法”求代数式的值.7.(﹣8)2009+(﹣8)2008能被下列数整除的是()A.3 B.5 C.7 D.9【考点】因式分解的应用.【专题】计算题.【分析】原式变形后,提取公因式即可得到结果.【解答】解:原式=(﹣8)2008×(﹣8+1)=(﹣8)2008×(﹣7)=﹣82008×7,则结果能被7整除.故选C【点评】此题考查了因式分解的应用,将所求式子进行适当的分解是解本题的关键.三、解答题8.把下列各式分解因式:(1)18a3bc﹣45a2b2c2;(2)﹣20a﹣15ab;(3)18x n+1﹣24x n;(4)(m+n)(x﹣y)﹣(m+n)(x+y);(5)15(a+b)2+3y(b+a);(6)2a(b﹣c)+3(c﹣b).【考点】因式分解﹣提公因式法.【分析】(1)直接提取公因式9a2bc进而得出答案;(2)直接提取公因式﹣5a进而得出答案;(3)直接提取公因式6x n进而得出答案;(4)直接提取公因式(m+n)进而得出答案;(5)直接提取公因式3(a+b)进而得出答案;(6)直接提取公因式(b﹣c)进而得出答案.【解答】解:(1)18a3bc﹣45a2b2c2=9a2bc(2a﹣5bc);(2)﹣20a﹣15ab=﹣5a(4+3b);(3)18x n+1﹣24x n=6x n(3x﹣4);(4)(m+n)(x﹣y)﹣(m+n)(x+y)=(m+n)(x﹣y﹣x﹣y)=﹣2y(m+n);(5)15(a+b)2+3y(b+a)=3(a+b)[5(a+b)+y]=3(a+b)(5a+5b+y);(6)2a(b﹣c)+3(c﹣b)=(2a﹣3)(b﹣c).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.9.计算:(1)39×37﹣13×91;(2)29×20.09+72×20.09+13×20.O9﹣20.O9×14.【考点】因式分解﹣提公因式法.【分析】(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.09,进而求出即可.【解答】解:(1)39×37﹣13×91=3×13×37﹣13×91=13×(3×37﹣91)=13×20=260;(2)29×20.09+72×20.09+13×20.O9﹣20.O9×14=20.09×(29+72+13﹣14)=2009.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知,xy=3,求2x4y3﹣x3y4的值.【考点】因式分解﹣提公因式法.【专题】计算题.【分析】原式提取公因式变形后,将已知等式代入计算即可求出值.【解答】解:∵2x﹣y=,xy=3,∴原式=(xy)3(2x﹣y)=27×=9.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提公因式法分解因式是解本题的关键.11.求x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)的值,其中a=3,x=2,y=4.【考点】因式分解﹣提公因式法.【分析】首先提取负号,进而提取公因式法分解因式求出即可.【解答】解:x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)=x(a﹣x)(a﹣y)﹣y(a﹣x)(a﹣y)=(a﹣x)(a﹣y)(x﹣y),∵a=3,x=2,y=4,∴原式=(3﹣2)×(3﹣4)×(2﹣4)=2.【点评】此题主要考查了提取公因式法分解因式以及代数式求值,正确得出公因式是解题关键.12.把5(a﹣b)3﹣10(b﹣a)2分解因式.【考点】因式分解﹣提公因式法.【分析】首先找出公因式进而提取公因式分解因式即可.【解答】解:5(a﹣b)3﹣10(b﹣a)2=5(a﹣b)3﹣10(a﹣b)2=5(a﹣b)2[(a﹣b)﹣2)]=5(a﹣b)2(a﹣b﹣2).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.13.下列分解因式是否正确?如果不正确,请给出正确结果.(1)﹣x2﹣y2=(x+y)(x﹣y);(2)9﹣25a2=(3+25a)(3+25b);(3)﹣4a2+9b2=(﹣2a+3b)(﹣2a﹣3b).【考点】因式分解﹣运用公式法.【专题】计算题.【分析】(1)错误,原式不能分解;(2)错误,利用平方差公式分解即可得到结果;(3)错误,利用平方差公式分解即可得到结果.【解答】解:(1)错误,正确解法为:﹣x2﹣y2=﹣(x2+y2),不能分解;(2)错误,正确解法为:9﹣25a2=(3+5a)(3﹣5a);(3)错误,﹣4a2+9b2=(﹣2a+3b)(2a+3b).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.把下列各式分解因式:(1)36﹣x2;(2)a2﹣;(3)﹣+y2;(4)25(a+b)2﹣4(a﹣b)2;(5)(x+2)2﹣9;(6)(x+a)2﹣(y+b)2.【考点】因式分解﹣运用公式法.【专题】计算题.【分析】原式各项利用平方差公式分解即可得到结果.【解答】解:(1)36﹣x2=(6+x)(6﹣x);(2)a2﹣b2=(a+b)(a﹣b);(3)﹣+y2=(y+)(y﹣);(4)25(a+b)2﹣4(a﹣b)2=(5a+5b+2a﹣2b)(5a+5b﹣2a+2b)=(7a+3b)(3a+7b);(5)(x+2)2﹣9=(x+5)(x﹣1);(6)(x+a)2﹣(y+b)2=(x+y+a+b)(x+a﹣y﹣b).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.15.在边长为16.4cm的正方形纸片的四角各剪去一边长为1.8cm的正方形,求余下的纸片的面积.【考点】平方差公式.【专题】计算题.【分析】由正方形面积减去四个小正方形面积求出余下的面积即可.【解答】解:根据题意得:16.42﹣4×1.82=(16.4+3.6)×(16.4﹣3.6)=20×12.8=256(cm2),则余下的纸片面积为256cm2.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.已知x2﹣y2=﹣1,x+y=,求x﹣y的值.【考点】因式分解﹣运用公式法.【专题】计算题.【分析】已知第一个等式左边利用平方差公式化简,将x+y的值代入计算即可求出x﹣y的值.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=﹣1,x+y=,∴x﹣y=﹣2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.17.已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式分解,变形后将已知等式代入计算即可求出值.【解答】解:∵4m+n=90,2m﹣3n=10,∴(m+2n)2﹣(3m﹣n)2=[(m+2n)+(3m﹣n)][(m+2n)﹣(3m﹣n)]=(4m+n)(3n﹣2m)=﹣900.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.。

2020—2021年苏教版七年级数学下册《整式乘法与因式分解》单元自测卷及答案解析一.doc

2020—2021年苏教版七年级数学下册《整式乘法与因式分解》单元自测卷及答案解析一.doc

苏教版2017-2018学年七年级下册第9章整式乘法与因式分解单元自测卷(满分:100分时间:60分钟)一、选择题(每题3分,共24分)1.(2014.扬州)若□×3xy=3x2y,则□内应填的单项式是( )A.xy B.3xy C.x D.3x 2.若(x+3y)2=(x-3y)2+M,则M为( )A.6xy B.12xy C.-6xy D.-12xy 3.计算(3a+b)(-3a-b)的结果为( )A.9a2-6ab-b2B.-b2-6ab-9a2C.b2-9a2 D.9a2-b24.(2014.岳阳)下列因式分解正确的是( )A.x2-y2=(x-y)2B.a2+a+1=(a+1)2 C.xy-x=x(y-1) D.2x+y=2(x+y)5.已知x2-2kx+64是完全平方式,则常数k的值为( ) A.8 B.±8 C.16 D.±16 6.(2014.泉州)分解因式x2y-y3的结果正确的是( ) A.y(x+y)2B.y(x-y)2C.y(x2-y2) D.y(x+y)(x-y)7.若x=-3a2+6a-4,则不论a取何值,一定有( ) A.x>0 B.x<0 C.x≥0 D.x≤0 8.(2013.宁波)将7张如图①所示的长为a、宽为b(a>b)的小长方形纸片,按如图②所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积之差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a、b应满足( )A.a=52b B.a=3b C.a=72b D.a=4b二、填空题(每题3分,共18分)9.(2014.山西)计算:3a2b3·2a2b=_______;-2ab(a-b)=_______.10.计算:(x+1)(x+3)=_______;(x-2)(x-5)=_______.11.若(x+2y)(2x+ny)=2x2-mxy-6y2,则m=_______,n =_______.12.整式A与m2-2mn+n2的和是(m+n)2,则A为_______.13.(2014.厦门)设a=192×918,b=8882-302,c=10532-7472,则数a、b、c按从小到大的顺序排列是_______.14.如图是我国古代数学家杨辉最早发现的图形,称为“杨辉三角”.他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如其中每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2,展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3,展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=_______.三、解答题(共58分)15.(12分)计算:(1)(2014.济南) (a+3) (a-3)+a(4-a) ;(2)(x+y)(x2+y2)(x-y)(x4+y4) ;(3)(a-2b+3) (a+2b-3);(4)[(x-y)2+(x+y)2](x2-y2)16.(12分)把下列各式分解因式:(1)(2014.内江)a-4ab2;(2) (2014.菏泽)2x3-4x2+2x;(3) 2a(x2+1)2-8ax2; (4) 8(x+2y)2-(x+2y)4-16.17.(8分)(1)若2m=8,2n=32,求22m+n-4的值;(2)若x=2m-1,则将y=1+4m+1州用含x的代数式表示.18.(6分)(2013.河南改编)先化简,再求值:(x+2)2-(2x +1)(2x-1)-4x(x+1),其中x=-2.19.(8分)已知x+y=1,xy=1,求下面各式的值:5(1)x2y+xy2;(2)(x2+1)(y2+1).20.(12分)先阅读材料,再解答下列问题:我们已经知道,多项式与多项式相乘的法则可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.例如:(2a+b) (a+b)=2a2+3ab+b2就可以用图①或图②等图形的面积来表示.(1)请写出图③所表示的代数恒等式:(2)画出一个几何图形,使它的面积能表示(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(3)请仿照上述方法写出另一个含a、b的代数恒等式,并画出与之对应的几何图形.参考答案一、1.C 2.B 3.B 4.C 5.B 6.D 7.B 8.B二、9.6a4b4-2a2b+2ab210.x2+4x+3 x2-7x +10 11.-1 -3 12.4mn 13.a<c<b 14.a4+4a3b+6a2b2+4ab3+b4三、15.(1) 4a-9 (2)x8-y8(3)a2-4b2+12b-9(4)2x4-2y416.(1) a(1-2b)(1+2b) (2) 2x(x-1)2(3) 2a(x+1)2(x-1)2(4)-(x+2y-2)2(x+2y+2)2 17.(1)128 (2)4x2+8x+5 18.原式=-7x2+5.当x =-2时,原式=-2319.(1)15(2)412520.(1)(a+2b)(2a+b)=2a2+5ab+2b2(2)略(3)略。

(完整版)苏教版七年级下册整式乘法与因式分解同步测试卷(含答案)

(完整版)苏教版七年级下册整式乘法与因式分解同步测试卷(含答案)

苏教版七年级下册 整式乘法与因式分解 同步测试卷一、选择(每小题3分,共30分)1.下列关系式中,正确的是( )A.(a-b)2=a 2-b 2B.(a+b)(a-b)=a 2-b 2C.(a+b)2=a 2+b 2D.(a+b)2=a 2-2ab+b 22.x 5m+3n+1÷(x n )2·(-x m )2等于( )A.-x 7m+n+1B.x 7m+n+1C.x 7m-n+1D.x 3m+n+13.若36x 2-mxy+49y 2是完全平方式,则m 的值是( )A.1764B.42C.84D.±844.在“2008北京奥运会”国家体育场的“鸟巢”钢结构工程施工建设中,首次用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么4.6×108的原数是( )A.4600000B.46000000C.460000000D.46000000005.代数式ax 2-4ax+4a 分解因式,结果正确的是( )A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2)6.已知31=-x x ,则221xx +的值是( ) A.9 B.7 C.11 D.不能确定7.下列多项式中,不能用公式法因式分解的是( ) A.2241y xy x +- B.222y xy x ++ C.22y x +- D.22y xy x ++ 8.下列计算正确的是( )A.(ab 2)3=ab 6B.(3xy)3=9x 3y 3C.(-2a 2)2=-4a 4D.(x 2y 3)2=x 4y 69.若x+y=2,xy=-2 ,则(1-x)(1-y)的值是( )A.-1B.1C.5D.-310.(x 2+px+q)(x 2-5x+7)的展开式中,不含x 3和x 2项,则p+q 的值是( )A.-23B.23C.15D.-15二、填空(每小题3分,共30分)11.计算:(-2mn 2)3= ,若5x =3,5y =2,则5x-2y = .12.分解因式:x 3-25x= . a(x-y)-b(y-x)+c(x-y)= .13.(8x5y2-4x2y5)÷(-2x2y)= .14.分解因式x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b,分解的结果是(x-2)(x+1),那么x2+ax+b分解因式正确的结果是 .15.若(x2+y2)(x2+y2-1)-12=0,那么x2+y2= .16.一个长方形的长增加了4㎝,宽减少了1㎝,面积保持不变,长减少2㎝,宽增加1㎝,面积仍保持不变,则这个长方形的面积是 .17.(-3a2-4)2= ,(x n-1)2(x2)n=18.若m2+n2=5,m+n=3,则mn的值是 .19.已知x2+4x-1=0,那么2x4+8x3-4x2-8x+1的值是 .20.若2x=8y+1,81y=9x-5,则x y= .三、解答题(60分)21.计算(8分)⑴(-2y3)2+(-4y2)3-(-2y)2·(-3y2)2 ⑵[(3x-2y)2-(3x+2y)2+3x2y2]÷2xy22.因式分解(12分)⑴8a-4a2-4 ⑵116y²-18y+116y²⑶(x2-5)2+8(x2-5)+1623.化简求值(8分)⑴(x 2+3x)(x-3)-x(x-2)2+(-x-y)(y-x)其中x=3 y=-2.⑵已知81,61==y x ,求代数式22)32()32(y x y x --+的值.24.已知(x+y)2=4,(x-y)2=3,试求:⑴x 2+y 2的值.⑵xy 的值.25.用m 2-m+1去除某一整式,得商式m 2+m+1,余式m+2,求这个整式.26.将一条20m 长的镀金彩边剪成两段,恰可以用来镶两张不同的正方形壁画的边(不计接头处),已知两张壁画面积相差10㎡,问这条彩边应剪成多长的两段?27.根据图8-C-1示,回答下列问题⑴大正方形的面积S 是多少?⑵梯形Ⅱ,Ⅲ的面积S Ⅱ,S Ⅲ,分别是多少?⑶试求S Ⅱ+S Ⅲ与S-S Ⅰ的值.⑷由⑶你发现了什么?请用含a,b 的式子表示你的结论.参考答案一、选择8-C-11.B 2.B 3.D 4.C 5.A 6.B 7.D 8.D 9.D 10.B二、填空11.-8m 3n 6,34 12.x(x-5)(x+5) ,(x-y)(a+b+c) 13.-4x 3y+2y 4 14.(x+2)(x-3) 15.416.分析:可利用面积相等列方程组,并巧妙地消去了ab 项,求出a ,b 的值,进而求出长方形的面积.解:设这个长方形的长与宽分别为acm 和bcm 则:⎩⎨⎧(a+4)(b-1)=ab (a-2)(b+1)=ab ,整理得:⎩⎨⎧a-4b+4=0a-2b-2=0 ,解得⎩⎨⎧a=8b=3∴ab=8×3=24(cm 2). 17.9a 4+24a 2+16 , x 4n -2x 3n +x 2n 18.2 19.-1 20.81 解答题21.⑴解:原式=4y 6-64y 6-(4y 2·9y 4)=4y 6-64y 6-36y 6=-96y 6.⑵解:原式=[(3x-2y+3x+2y)(3x-2y-3x-2y )+3x 2y 2]÷2xy=[6x·(-4y)+3x 2y 2]÷2xy=(-24xy+3x 2y 2)÷2xy=-12+32xy 22.解:⑴原式=-4(a 2-2a+1)= -4(a-1)2(2)原式=116 (y 2-2y+1)=116(y-1)2 (3) 原式=(x 2-5)2+2×4(x 2-5)+42=(x 2-5+4)2,=(x 2-1)2,=(x+1)2(x-1)2.23.⑴ 解:原式=x 3-3x 2+3x 2-9x-x(x 2-4x+4)+(x 2-y 2)=x 3-9x-x 3+4x 2+x 2-y 2=5x 2-13x-y 2,当x=3,y=-2时,原式=2.⑵解:原式=(2x+3y-2x+3y)(2x+3y+2x-3y)=6y ·4x=24xy所以当81,61==y x ,原式=816124⨯⨯= 1224. 解:⑴ 由已知得x 2+y 2+2xy=4①:x 2+y 2-2xy=3② ①+②得2x 2+2y 2=7,故x 2+y 2=3.5 ⑵①―②得,4xy=1,xy=0.2525. 解:(m 2+m+1)(m 2-m+1)+m+2=m 4-m 3+m 2+m 3-m 2+m+m 2-m+1+m+2=m 4+m 2+m+3,∴要求的整式为m 4+m 2+m+326.解:设应剪成两段的长为xm ,ym (x>y ), 可列方程组为⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+10442022y x y x ,解之得⎩⎨⎧==614y x ,故应剪成14m 和6m 的两段.27.⑴ S=a 2⑵ S Ⅱ=S Ⅲ= 12(ɑ+b )(ɑ-b ) ⑶ S Ⅱ+S Ⅲ=2×12(ɑ+b )(ɑ-b )=(a+b)(a-b) S-S Ⅰ=a 2-b 2⑷ S Ⅱ+S Ⅲ= S-S Ⅰ, (a+b)(a-b)= a 2-b 2。

第九章 整式乘法与因式分解 2021-2022学年七年级数学下册单元复习(苏科版)(解析版)

第九章 整式乘法与因式分解 2021-2022学年七年级数学下册单元复习(苏科版)(解析版)

第九章整式乘法与因式分解(提优)一.选择题(共8小题)1.已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=()A.0B.1C.2020D.2021【分析】先通过已知等式,找到a,b,c的关系再求值.【解答】解:∵a2(b+c)=b2(a+c).∴a2b+a2c﹣ab2﹣b2c=0.∴ab(a﹣b)+c(a+b)(a﹣b)=0.∴(a﹣b)(ab+ac+bc)=0.∵a≠b.∵a2(b+c)=2021.∴a(ab+ac)=2021.∴a(﹣bc)=2021.∴﹣abc=2021.∴abc=﹣2021.∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020=﹣abc﹣2020=2021﹣2020=1.故选:B.【点评】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是求解本题的关键.2.若x2+2mx+16是完全平方式,则(m﹣1)2+2的值是()A.11B.3C.11或27D.3或11【分析】先根据完全平方式特征求m,再求代数式的值.【解答】解:∵x2+2mx+16是完全平方式.∴m2=16.∴m=±4.当m=4时,(m﹣1)2+2=9+2=11.当m=﹣4时(m﹣1)2+2=25+2=27.故答案为:C.故选:C.【点评】本题考查求代数式的值,根据完全平方式的特征求m的值是求解本题的关键.3.下列各数中,可以写成两个连续奇数的平方差的( )A .520B .502C .250D .205【分析】根据平方差公式,利用方程求解即可.【解答】解:设较小的奇数为m ,则与之相邻的较大的奇数为m +2,这两个奇数的平方差为:(m +2)2﹣m 2=4m +4,因此这两个奇数的平方差能被4整除,而520÷4=130,502÷4=125……2,250÷4=62……2,205÷4=51……1,故选:A .【点评】本题考查平方差公式的应用,掌握平方差公式的结构特征是正确应用的前提.4.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc 的值是( )A .0B .1C .2D .3【分析】根据题目中的式子,可以求得a ﹣b 、a ﹣c 、b ﹣c 的值,然后对所求式子变形,利用完全平方公式进行解答.【解答】解:∵a =2018x +2018,b =2018x +2019,c =2018x +2020,∴a ﹣b =﹣1,a ﹣c =﹣2,b ﹣c =﹣1,∴a 2+b 2+c 2﹣ab ﹣ac ﹣bc=2a 2+2b 2+2c 2−2ab−2ac−2bc 2=(a 2−2ab+b 2)+(a 2−2ac+c 2)+(b 2−2bc+c 2)2=(a−b)2+(a−c)2+(b−c)22=(−1)2+(−2)2+(−1)22 =3,故选:D .【点评】本题考查因式分解的应用,解答本题的关键是明确题意,应用完全平方公式进行解答.5.利用因式分解简便计算69×99+32×99﹣99正确的是( )A .99×(69+32)=99×101=9999B .99×(69+32﹣1)=99×100=9900C .99×(69+32+1)=99×102=10096D .99×(69+32﹣99)=99×2=198【分析】利用提公因式分法将99提公因式进行计算即可判断.【解答】解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.【点评】本题考查了因式分解的应用,解决本题的关键是掌握因式分解.6.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262【分析】根据“和谐数”的概念找出公式:(2k+1)3﹣(2k﹣1)3=2(12k2+1)(其中k 为非负整数),然后再分析计算即可.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤√1007 12∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.【点评】本题是一道概念型推理题目,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.7.如图,4张边长分别为a、b的长方形纸片围成一个正方形,从中可以得到的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2﹣(a﹣b)2=4ab【分析】假设大正方形的面积S1,小正方形的面积S2,则S1﹣S2=4个长方形面积.【解答】解:设大正方形的面积S1,小正方形的面积S2,大正方形的边长为a+b,则大正方形面积S1=(a+b)2,小正方形的边长为a﹣b,则小正方形面积S2=(a﹣b)2,四个长方形的面积为4ab,∵S1﹣S2=4ab,∴(a+b)2﹣(a﹣b)2=4ab,故选:D.【点评】本题主要考查通过正方形面积的计算,列出代数式,得出两个完全平方公式相减等于4ab的正确性.难点在于小正方形边长的求解:用一个长方形的长a,减去另一个长方形的宽b,即a﹣b.8.如图,在长方形ABCD中放入一个边长为8的大正方形ALMN和两个边长为6的小正方形(正方形DEFG和正方形HIJK).3个阴影部分的面积满足2S3+S1﹣S2=2,则长方形ABCD的面积为()A.100B.96C.90D.86【分析】设长方形ABCD的长为a,宽为b,则由已知及图形可得S1,S2,S3的长、宽及面积如何表示,根据2S3+S1﹣S2=2,可整体求得ab的值,即长方形ABCD的面积.【解答】解:设长方形ABCD的长为a,宽为b,则由已知及图形可得:S1的长为:8﹣6=2,宽为:b﹣8,故S1=2(b﹣8),S2的长为:,8+6﹣a=14﹣a,宽为:6+6﹣b=12﹣b,故S2=(14﹣a)(12﹣b),S3的长为:a﹣8,宽为:b﹣6,故S3=(a﹣8)(b﹣6),∵2S3+S1﹣S2=2,∴2(a﹣8)(b﹣6)+2(b﹣8)﹣(14﹣a)(12﹣b)=2,∴2(ab﹣6a﹣8b+48)+2b﹣16﹣(168﹣14b﹣12a+ab)=2,∴ab﹣88=2,∴ab=90.故选:C.【点评】本题考查借助几何图形,考查了整式的混合运算,根据所给图形,数形结合,正确表示出相关图形的长度和面积,是解题的关键.二.填空题(共8小题)9.若25x2﹣mxy+9y2是完全平方式,则m的值为±30.【分析】完全平方公式:(a±b)2=a2±2ab+b2.把所求式化成该形式就能求出m的值.【解答】解:由25x2﹣mxy+9y2=(5x±3y)2,解得m=±30.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.此题解题的关键是利用平方项求乘积项.10.若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为﹣8.【分析】首先利用多项式乘法法则计算出(x2﹣x+m)(x﹣8),再根据积不含x的一次项,可得含x的一次项的系数等于零,即可求出m的值.【解答】解:(x2﹣x+m)(x﹣8)=x3﹣8x2﹣x2+8x+mx﹣8m=x3﹣9x2+(8+m)x﹣8m,∵不含x的一次项,∴8+m=0,解得:m=﹣8.故答案为﹣8.【点评】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.11.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值﹣2021.【分析】将两式m2=n+2021,n2=m+2021相减得出m+n=﹣1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.【解答】解:将两式m2=n+2021,n2=m+2021相减,得m2﹣n2=n﹣m,(m+n)(m﹣n)=n﹣m,(因为m≠n,所以m﹣n≠0),m+n=﹣1,解法一:将m2=n+2021两边乘以m,得m³=mn+2021m①,将n2=m+2021两边乘以n,得n³=mn+2021n②,由①+②得:m³+n³=2mn+2021(m+n),m³+n³﹣2mn=2021(m+n),m³+n³﹣2mn=2021×(﹣1)=﹣2021.故答案为﹣2021.解法二:∵m 2=n +2021,n 2=m +2021(m ≠n ),∴m 2﹣n =2021,n 2﹣m =2021(m ≠n ),∴m 3﹣2mn +n 3=m 3﹣mn ﹣mn +n 3=m (m 2﹣n )+n (n 2﹣m )=2021m +2021n=2021(m +n )=﹣2021,故答案为﹣2021.【点评】本题考查因式分解的应用,代数式m 3﹣2mn +n 3的降次处理是解题关键.12.已知:x +1x =3,则x 2+1x 2= 7 . 【分析】根据完全平方公式解答即可.【解答】解:∵x +1x =3,∴(x +1x )2=x 2+2+1x 2=9, ∴x 2+1x 2=7, 故答案为:7.【点评】本题考查了完全平方公式,熟记完全平方公式是解题的关键.13.如图,AB =5,C 为线段AB 上一点(AC <BC ),分别以AC 、BC 为边向上作正方形ACDE 和正方形BCFG ,S △BEF ﹣S △AEC =52,则S △BEC = 3 .【分析】设正方形AEDC 的边长是a ,正方形BCFG 的边长是b ,根据正方形的性质得出AE =DE =DC =AC =a ,CF =FG =BG =BC =b ,根据S △BEF ﹣S △AEC =52得出S 正方形ACDE +S 正方形BCFG +S △DFE ﹣S △ABE ﹣S △BGF ﹣S △AEC =52,求出b ﹣a =1,再根据a +b =AB =5求出a 、b 的值,再根据三角形的面积公式求出答案即可.【解答】解:设正方形AEDC 的边长是a ,正方形BCFG 的边长是b ,则AE =DE =DC =AC =a ,CF =FG =BG =BC =b ,∵S △BEF =S 正方形ACDE +S 正方形BCFG +S △DFE ﹣S △ABE ﹣S △BGF ,∵S △BEF ﹣S △AEC =52,∴S 正方形ACDE +S 正方形BCFG +S △DFE ﹣S △ABE ﹣S △BGF ﹣S △AEC =52,∴12a 2+12b 2+12(b ﹣a )a −12×5×a −12b 2=52, 即52b −52a =52, ∴b ﹣a =1,∵AC +BC =AB =5,∴a +b =5,解得:a =2,b =3,即BC =3,AE =2,∴S △BEC =12×BC ×AE =12×3×2=3,故答案为:3.【点评】本题考查了整式的混合运算,正方形的性质,三角形的面积等知识点,能正确根据整式的运算法则进行计算是解此题的关键.14.如图是A 型卡片(边长为a 的正方形)、B 型卡片(长为a 、宽为b 的长方形)、C 型卡片(边长为b 的正方形).现有4张A 卡片,11张B 卡片,7张C 卡片,选用它们无缝隙、无重叠地拼正方形或长方形,下列说法正确的是 ①③④ .(只填序号)①可拼成边长为a +2b 的正方形;②可拼成边长为2a +3b 的正方形;③可拼成长、宽分别为2a +4b 、2a +b 的长方形;④用所有卡片可拼成一个大长方形.【分析】①②③利用完全平方公式和多项式乘多项式法则求出要拼成的图形的面积,各项系数即为各型号卡片的个数.④所有卡片面积和为4a 2+11ab +7b 2,将此多项式因式分解即可.【解答】①(a +2b )2=a 2+4ab +4b 2,要用A 型卡片1张,B 型卡片4张,C 型卡片4张, 所以可拼成边长为a +2b 的正方形.②(2a +3b )2=4a 2+12ab +9b 2,要用A 型卡片4张,B 型卡片12张,C 型卡片9张, 因为B 型卡片只有11张,C 型卡片只有7张,所以不能拼成边长为2a+3b的正方形.③(2a+4b)(2a+b)=4a2+2ab+8ab+4b2=4a2+10ab+4b2,可得A型卡片4张,B型卡片10张,C型卡片4张,所以可拼成长、宽分别为2a+4b、2a+b的长方形.④所有卡片面积和为4a2+11ab+7b2=(4a+7b)(a+b).所以所有卡片可拼长长为(4a+7b),宽为(a+b)的长方形.故答案为:①③④.【点评】本题主要考查了整式乘法、分解因式与几何图形之间的联系,解题时注意利用数形结合和熟记公式是解题的关键.15.三种不同类型的地砖的长、宽如图所示,若现有A型地砖4块,B型地砖4块,C型地砖2块,要拼成一个正方形,则应去掉1块地砖;这样的地砖拼法可以得到一个关于m,n的恒等式为(2m+n)2=4m2+4mn+n2.【分析】分别计算出4块A的面积和4块B的面积、2块C的面积,再计算这三种类型的砖的总面积,用完全平方公式化简后,即可得出多了哪种类型的地砖.【解答】解:4块A的面积为:4×m×m=4m2;4块B的面积为:4×m×n=4mn;2块C的面积为2×n×n=2n2;那么这三种类型的砖的总面积应该是:4m2+4mn+2n2=4m2+4mn+n2+n2=(2m+n)2+n2,因此,多出了一块C型地砖,去掉一块C型地砖,这两个数的平方为(2m+n)2.这样的地砖拼法可以得到一个关于m,n的恒等式为:4m2+4mn+n2=(2m+n)2故答案为:4m2+4mn+n2=(2m+n)2.【点评】本题考查了完全平方公式的几何意义,立意较新颖,注意面积的不同求解是解题的关键,对此类问题要深入理解.16.已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是等腰三角形.【分析】把给出的式子重新组合,分解因式,分析得出b=c,才能说明这个三角形是等腰三角形.【解答】解:b2+2ab=c2+2ac,a2+b2+2ab=a2+c2+2ac,(a+b)2=(a+c)2,a+b=a+c,b=c,所以此三角形是等腰三角形,故答案为:等腰三角形.【点评】此题主要考查了学生对等腰三角形的判定,即两边相等的三角形为等腰三角形,分类讨论思想的应用是解题关键.三.解答题(共9小题)17.(1)(﹣3a3)2•a3+6a12÷(﹣a3);(2)(﹣0.125)2019×22020×42018.【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)先将原式变形,然后根据积的乘方可以解答本题.【解答】解:(1)(﹣3a3)2•a3+6a12÷(﹣a3)=9a6•a3+6a12÷(﹣a3)=9a9+(﹣6a9)=3a9;(2)(﹣0.125)2019×22020×42018=(−18)2019×(22018×42018×22)=(−18)2019×(22018×42018×4)=(−18)2019×82018×4=(−18×8)2018×(−18)×4=(﹣1)2018×(−18)×4=1×(−18)×4=−12.【点评】本题考查整式的混合运算、有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m2+m﹣2=0.【分析】先算乘方,再算乘法和除法,再合并同类项,最后代入求出即可.【解答】解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m)﹣2,∵m2+m﹣2=0,∴m2+m=2,当m2+m=2时,原式=2×2﹣2=2.【点评】本题考查整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.19.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”.(1)判断28,50是否为“神秘数”?如果是,请写成两个连续偶数平方差的形式;(2)观察上式,猜想“神秘数”是4的倍数吗?并说明理由.【分析】(1)结合新定义,直接可以判断28是“神秘数”,可以设50是“神秘数”,根据新定义,列出方程,无整数解,即可否定;(2)利用新定义,列出“神秘数”的表达式,因式分解,即可解决.【解答】解:(1)∵28=82﹣62,∴28是“神秘数”,设50=(2k+2)2﹣(2k)2,∴8k+4=50,∴k=23 4,∴2k不是整数,故50不是“神秘数”,即28是“神秘数”,且28=82﹣62,50不是“神秘数”;(2)“神秘数”是4的倍数,理由如下:∵(2k+2)2﹣(2k)2=8k+4=4(2k+1),∵2k+1是奇数,∴4(2k+1)是4的倍数,故“神秘数”是4的倍数.【点评】本题考查了因式分解的应用,理解新定义的原理是解决本题的关键.20.观察下列各式:(x﹣1)÷(x﹣1)=1;(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1.根据上面各式的规律可得(x n+1﹣1)÷(x﹣1)=x n+x n﹣1+…+x+1;利用规律完成下列问题:(1)52021+52020+52019+…+51+1=52022−14;(2)求(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)的值.【分析】根据各式规律即可确定出所求;(1)仿照题目中规律,将x=5,n=2021代入后再等式变形即可;(2)将x=﹣3,n=20代入题目中发现的规律,再等式变形计算即可求出答案.【解答】解:由题意得:x n+1﹣1;(1)将x=5,n=2021代入得:(52022﹣1)÷(5﹣1)=52021+52020+52019+…+51+1,∴52021+52020+52019+…+51+1=52022−15−1=52022−14.(2)将x=﹣3,n=20代入得:[(﹣3)21﹣1]÷(﹣3﹣1)=(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)+1,∴(﹣3)20+(﹣3)19+(﹣3)18+…+(﹣3)=(−3)21−1−3−1=321+14−1=321−34.【点评】本题主要考查了探索规律,体现了由一般到特殊的应用,解题的关键是探索出规律,根据规律答题.21.阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片.若干个长为a和宽为b 的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2b2=(2a+b)(a+2b).【分析】(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,ab+bc+ac=38作为整式代入即可求出.(3)找规律,根据公式画出图形,拼成一个长方形,使它满足所给的条件.【解答】解:(1)根据题意,大矩形的面积为:(a+b+c)(a+b+c)=(a+b+c)2,各小矩形部分的面积之和=a2+2ab+b2+2bc+2ac+c2,∴等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)a2+b2+c2 =(a+b+c)2﹣2ab﹣2ac﹣2bc=112﹣2×38=45.(3)如图所示【点评】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.22.如图所示,现有边长分别为b、a的正方形、邻边长为b和a(b>a)的长方形硬纸板若干.(1)请选择适当形状和数量的硬纸板,拼出面积为2b2+3ab+a2的长方形,画出拼法的示意图;(2)从这三种硬纸板中选择一些拼出面积为8ab的不同形状的长方形,则这些长方形的周长共有4种不同情况;(3)现有①类纸板1张,②类纸板4张,则应至少取③类纸板4张才能用它们拼成一个新的正方形;(4)已知长方形②的周长为20,面积为12,求小正方形①与大正方形③的面积之和.【分析】(1)将多项式2b2+3ab+a2进行因式分解,结合边长即可画出符合题意的图形;(2)利用8ab可以分解为:a,8b;8a,b;2a,4b;4a,2b即可得出答案;(3)利用图形直接得出答案;(4)利用长方形②的周长为20,面积为12,得出a,b的关系,利用完全平方公式得出小正方形①与大正方形③的面积之和a2+b2的值.【解答】解:(1)如图所示:S=2b2+3ab+a2=(a+b)(a+2b);(2)从这三种硬纸板中选择一些拼出面积为8ab的不同形状的长方形,∵8ab可以分解为:a,8b;8a,b;2a,4b;4a,2b.∴这些长方形的周长共有4种不同情况.故答案为:4.(3)设还需要③类纸片x张才能用它们拼成一个新的正方形;则新正方形面积为:a2+4ab+xb2,且它是完全平方式.∴x=4.故答案为:4.(4)由已知得:a+b=10,ab=12,∴a2+b2=(a+b)2﹣2ab=100﹣24=76.【点评】此题考查了整式的运算和因式分解与几何图形设计,体现了数形结合思想.23.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为(m﹣n)2;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?【分析】(1)表示出阴影部分的边长,即可得出其面积;(2)大正方形的面积减去矩形的面积即可得出阴影部分的面积,也可得出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系.(3)根据(2)所得出的关系式,可求出(x﹣y)2,继而可得出x﹣y的值.(4)利用两种不同的方法表示出大矩形的面积即可得出等式.【解答】解:(1)图②中的阴影部分的面积为(m﹣n)2,故答案为:(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2,故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)(x﹣y)2=(x+y)2﹣4xy=25,则x﹣y=±5;(4)(2m+n)(m+n)=2m(m+n)+n(m+n)=2m2+3mn+n2.【点评】本题考查了完全平方公式的几何背景,属于基础题,注意仔细观察图形,表示出各图形的面积是关键.24.小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是(a+b)2=a2+2ab+b2;(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片2张,3号卡片3张;(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式a2+3ab+2b2分解因式,其结果是(a+2b)•(a+b);(4)动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2=(a+2b)(a+3b)画出拼图.【分析】(1)利用图②的面积可得出这个乘法公式是(a+b)2=a2+2ab+b2,(2)由如图③可得要拼成一个长为(a+2b),宽为(a+b)的大长方形,即可得出答案,(3)由图③可知矩形面积为(a+2b)•(a+b),利用面积得出a2+3ab+2b2=(a+2b)•(a+b),(4)先分解因式,再根据边长画图即可.【解答】解:(1)这个乘法公式是(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)由如图③可得要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片2张,3号卡片3张;故答案为:2,3.(3)由图③可知矩形面积为(a+2b)•(a+b),所以a2+3ab+2b2=(a+2b)•(a+b),故答案为:(a+2b)•(a+b).(4)a2+5ab+6b2=(a+2b)(a+3b),如图,故答案为:(a+2b)(a+3b).【点评】本题主要考查了因式分解的应用,解题的关键是能运用图形的面积计算的不同方法得到多项式的因式分解.25.阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80解决问题:(1)若x满足(2020﹣x)(x﹣2016)=2.则(2020﹣x)2+(x﹣2016)2=12;(2)若x满足(2021﹣x)2+(x﹣2018)2=2020,求(2021﹣x)(x﹣2018)的值;(3)如图,在长方形ABCD中,AB=20,BC=12,点E.F是BC、CD上的点,且BE =DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为160平方单位,则图中阴影部分的面积和为384平方单位.【分析】(1)根据题目提供的方法,进行计算即可;(2)根据题意可得,a2+b2=2020,a+b=(2021﹣x)+(x﹣2018)=3,将ab化成=12[(a+b)2﹣(a2+b2)]的形式,代入求值即可;(3)根据题意可得,(20﹣x)(12﹣x)=160,即(20﹣x)(x﹣12)=﹣160,根据(1)中提供的方法,求出(20﹣x)2+(12﹣x)2的结果就是阴影部分的面积.【解答】解:(1)设2020﹣x=a,x﹣2016=b,则(2020﹣x)(x﹣2016)=ab=2,a+b =(2020﹣x)+(x﹣2016)=4,所以(2020﹣x)2+(x﹣2016)2=a2+b2=(a+b)2﹣2ab=42﹣2×2=12;故答案为:12;(2)设2021﹣x=a,x﹣2018=b,则(2021﹣x)2+(x﹣2018)2=a2+b2=2020,a+b =(2021﹣x)+(x﹣2018)=3,所以(2021﹣x)(x﹣2018)=ab=12[(a+b)2﹣(a2+b2)]=12×(32﹣2020)=−20112;答:(2021﹣x)(x﹣2018)的值为−2011 2;(3)由题意得,FC=(20﹣x),EC=(12﹣x),∵长方形CEPF的面积为160,∴(20﹣x)(12﹣x)=160,∴(20﹣x)(x﹣12)=﹣160,∴阴影部分的面积为(20﹣x)2+(12﹣x)2,设20﹣x=a,x﹣12=b,则(20﹣x)(x﹣12)=ab=﹣160,a+b=(20﹣x)+(x﹣12)=8,所以(20﹣x)2+(x﹣12)2=(20﹣x)2+(12﹣x)2=a2+b2=(a+b)2﹣2ab=82﹣2×(﹣160)=384;故答案为:384.【点评】本题考查完全平方公式的应用,阅读理解题目中提供的方法,是类比、推广的前提和关键.。

七年级数学苏科版(下册)第9章整式乘法与因式分解综合测试题(一).docx

七年级数学苏科版(下册)第9章整式乘法与因式分解综合测试题(一).docx

第9章整式乘法与因式分解综合测试题(一)一、选择题(卑小理3分•具30分)1. F列爹项式中.能用平方差公式分解因式的是( )A・m^n2 B. 44肿C・ 4府~4m・l D. —ni*—fi*2. 下列计算正确的是( )A. (B.C・(dP=* D.x»+x^^3. 卜列各式不能用零扶公式什算的是( )A. (xb )( rLb)B. (-a-6)(-a>6 )C・(3"2y)(3y・2x)D・(x”・3c)(x” ・3C)4. 把代数式叫2・9”;分解因式・结果正鋼的M ( )A. m(/-9)B. m(尸3FC・ in(y・3)(y-3) I). m(y*9Xj*-9)5•若氏方形的(fa枳楚4<丹3卄2«・它的•边长为2d•则它的周K为( )A・2a"6・l B.ZiU14. d til x-2y-8.i *2^ -2. J T-4)^的(ft15•图3是•个K方形.请你仔细良察图形.具林的■式的乗法艾系式为__________16. 己知正方形的面(x>0.16y>0) •利用分解因式•耳出竇示谀正方形周K的代数式: _____ ・17. 若(■f •则m-ns18. 音n=O・HBy52yS的值为___________三JW答矣58余)19. (母小圧5*. * lOOifW:(I )12 345:-12 344x12 346:C. 4UD.&Md6. 如杲9F・b.25址-个完全平方公式•那么k的值晁( )A. 15B. ±15C. 30D. ±307. 下列什算正确的是()人-力心汕心B. aCa^l W-1C. (<i^)(a-2AW-<i6-262D. -加・(沖)空-2<?8. 若有理数a.b満足(<146)99•则占的值为( )A・ 2 B. -2C.8D.-89.如图1,已知长方形纸片的长为却•寛为血2・现从长方形纸片上的下・个边氏为加的正方形之石.剩余部分可剪拼成•个K方形(KF X无址独)•若拼成的氏方形•边长为2•则另- 边长是()A. 3m-*4B.C. 12m寺16D. m'+3/nZ24.(12分)阅比下面的材札然后冋答何魁.(i h/( x^2)(”3:.六5”“=(*2)("3 )•V(x4<> )(JT“a祐)x*aZi ••••分解因式)xW>= ______ .(2 一次項系数为1的二次三項式… 戸峠•如果*数項g可以分解为a 9 b的枳■并11 乂満足•那么xfa)(xW))•例1分績因式&朋・分析:v8M ・2〉x( -4) ■(・2)+( -4) Y令8=("2)(丄-4).餅:x:-6x*8=(x-2)(x-4).例2分解因式:宀-1Z分析:v-12=3x( -4).入(-4) a 1 ■ Ar-x-12=(z*3 )< ,v-4).朝:x2-x-12=(x*3 )(x-4)・利用这-结论.把下列各式分駅因式:(D«:*3X4-2:10.三角形的三边I K a.b.c满足(a-i' )>(r/-r )6=0•则这个三角形尼( )A.尊腰三角形B. r[角三角形C・等边三角形 D.形状不能确定21.(X厂已知多項式”- ・(-1「•H F(1) 化简多项式朋;(2) 若“2•求多项式M的值.二、填空題(年小珂4分•典32分)11•计算:(-5<妒)社_____12.多项式\0m2-25mn的公因式是______ .一123456719>0II121415g17U19a2123A2S»22. (8分)(-5 Z-5严能被6轅除吗?说明理由.EHdl 2 blUS323・(10分川算图4中阴盼部分的面积.(2)( — 1 )("2)・2("3记20.• >小理5分.性10分)分解因式:(1&-曲4心:裁-x-6.13•在如图2所示的日历中•任逍・出一竖列上相邻的三个数•设中间的•个数为a■则这三个数中皿小的与最大的积为______ .(用含“的代戟式表示)第9章整式乘法与因式分解综合测试题(一)参考答案•J.B 2.D 3.C 4.C 5.D6.D7.C8.D9. A 10. A二、11.25册12.5m13"79 14. 1615.1 u+b If a+2/t)=a,十3ab+2/F16.沁17. -1 1&7三、19. (1)原式二12345— 12345-1)(12345“1)=1.(2 )原式二12r+18=3F+13卄16.20.解:(1)原式1-2&+“1)二&( l・m )1(2 )原式二{m-n )2-8( m-n )十4T m-w-4 )2.21•解:(1 册二7血+9+1 -«Vr=5x+10.(2)当*2 时.ir=5x+10=r5x2+10=20.21解:(-5丹・(-5円能被6整除.理由如下:(-5 严―-5 尸兀(-5 严4[ 1-(・5) ]=6x5R 气因此(-5丹_(-5丹能被6整除.23.鮮:S 琳罪分=(2«+厶)(3a+2Z> )-2a*b r2-6a2^7 fil)+2A :-4<i6-6fr ♦ 3 皿+2b2.24.解:(1 )(x4a)(x+b)(2)' T..^2+3X+2=(X+1)(X+2).|2ir2-x-^=(x+2 )(x-3).(拟逆郭備海) (多考芬案见下期)。

初一数学《整式乘法与因式分解》提优测试卷 含答案

初一数学《整式乘法与因式分解》提优测试卷 含答案

a
a
14.因式分解: a 2 a 1 =__________________. 4
15.如果 x 2 mx 16 是一个完全平方式,则 m=______. 16.因式分解: m2 11n mn 11m =___________________. 17.因式分解: 9 a 2 b 2 2ab =_____________________. 18.因式分解: x 2 4x 12 =_________________.
2.下列各式中,可分解因式的只有(
).
(A) x 2 y 2 (B) x 2 y 3 (C) ma nb (D) x 2 y 2
3.把 (x a)3 (a x)2 分解因式的结果为(
).
(A) (x a)2 (x a 1)
(B) (x a)2 (x a 1)
(C) (x a)2 (x a)
19.若16 x n (2 x)(2 x)(4 x 2 ), 则 n 的值为

20.若100x 2 kxy 49 y 2 能分解为 (10x 7 y)2 ,则 k 的值为

三.分解下列因式:(每题 3 分,共 30 分)
21. x 2 (m 2) 9 y 2 (2 m)
22. a 2 1 6ab 9b2
(B) x 2 (x y) y 2 (x y)
(C) (x y)(x y)2
(D) (x y)2 (x y)
6.下列各多项式中能用平方差公式因式分解的有(
).
(1) a 2 b 2 ;(2) 2x 2 4 y 2 ; (3) x 2 4 y 2 ; (4) (m)2 (n)2 ;
(D) (a x)2 (x a 1)
4. a 4 b 4和a 2 b 2 的公因式是(

第九章 整式乘法与因式分解 2021-2022学年七年级数学下册单元复习(苏科版)(解析版)

第九章 整式乘法与因式分解 2021-2022学年七年级数学下册单元复习(苏科版)(解析版)

第九章整式乘法与因式分解(基础)一.选择题(共8小题)1.下面计算正确的是()A.x3•x3=x9B.a4÷2a3=2aC.2x2•3x2=6x2D.(x5)2=x10【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、单项式乘单项式分别计算,进而判断得出答案.【解答】解:A.x3•x3=x6,故此选项不合题意;B.a4÷2a3=12a,故此选项不合题意;C.2x2•3x2=6x4,故此选项不合题意;D.(x5)2=x10,故此选项符合题意.故选:D.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、单项式乘单项式,正确掌握相关运算法则是解题关键.2.下列等式从左到右的变形,属于因式分解的是()A.a2﹣b2=(a+b)(a﹣b)B.a(x﹣y)=ax﹣ayC.x2+2x+1=x(x+2)+1D.(x+1)(x+3)=x2+4x+3【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【解答】解:A、a2﹣b2=(a+b)(a﹣b),把一个多项式化为几个整式的积的形式,故此选项符合题意;B、a(x﹣y)=ax﹣ay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x2+2x+1=x(x+2)+1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x+1)(x+3)=x2+4x+3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点评】本题考查了因式分解的意义.掌握因式分解的定义:把一个多项式化为几个整式的积的形式是解题关键.3.下列计算正确的是()A.a2•a3=a5B.(a3)2=a5C.(2ab2)3=6a3b6D.3a2÷4a2=3 4a【分析】直接利用整式的除法运算法则、同底数幂的乘除运算法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项正确;B 、(a 3)2=a 6,故此选项错误;C 、(2ab 2)3=8a 3b 6,故此选项错误;D 、3a 2÷4a 2=34,故此选项错误; 故选:A .【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算、幂的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.4.如果x 2+(m ﹣2)x +9是个完全平方式,那么m 的值是( ) A .8B .﹣4C .±8D .8或﹣4【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【解答】解:∵关于x 的二次三项式x 2+(m ﹣2)x +9是完全平方式, ∴x 2+(m ﹣2)x +9=(x ±3)2, 而(x ±3)2=x 2±6x +9, ∴m ﹣2=±6, ∴m =8或﹣4. 故选:D .【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.5.在下列各项中,可以用平方差公式计算的是( ) A .(2a +3b )(3a ﹣2b ) B .(a +b )(﹣a ﹣b )C .(﹣m +n )(m ﹣n )D .(12a +b )(b −12a )【分析】利用平方差公式的结构特征判断即可得到结果.【解答】解:A 、(2a +3b )(3a ﹣2b ),不符合平方差公式的结构特征,故错误; B 、(a +b )(﹣a ﹣b ),不符合平方差公式的结构特征,故错误; C 、(﹣m +n )(m ﹣n ),不符合平方差公式的结构特征,故错误; D 、(12a +b)(b −12a),符合平方差公式的结构特征,故正确; 故选:D .【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键. 6.若(x +m )(x ﹣8)中不含x 的一次项,则m 的值为( ) A .8B .﹣8C .0D .8或﹣8【分析】先根据多项式乘以多项式法则展开式子,并合并,不含x 的一次项就是含x 项的系数等于0,求解即可.【解答】解:∵(x +m )(x ﹣8)=x 2﹣8x +mx ﹣8m =x 2+(m ﹣8)x ﹣8m ,又结果中不含x 的一次项, ∴m ﹣8=0, ∴m =8. 故选:A .【点评】本题考查了多项式乘以多项式的法则,根据不含某一项就是说这一项的系数等于0得出是解题关键.7.如图,大正方形与小正方形的面积之差是30,则阴影部分的面积是( )A .15B .10C .30D .20【分析】设大正方形边长为x ,小正方形边长为y ,则AE =x ﹣y ,然后表示阴影部分面积,再计算整式的乘法和加减,进而可得答案.【解答】解:设大正方形边长为x ,小正方形边长为y ,则AE =x ﹣y , 阴影部分的面积是:12AE •BC +12AE •DB ,=12(x ﹣y )•x +12(x ﹣y )•y , =12(x ﹣y )(x +y ), =12(x 2﹣y 2), =12×30 =15. 故选:A .【点评】此题主要考查了整式的混合运算,关键是正确运用算式表示出阴影部分面积. 8.如图甲,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形如图乙,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A.(a+2b)(a﹣b)=a2+ab﹣2b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】分别求得两幅图形中阴影部分的面积,然后依据阴影部分的面积相等可得到答案.【解答】解:图甲的面积=大正方形的面积﹣空白处正方形的面积=a2﹣b2;图乙中矩形的长=a+b,宽=a﹣b,图乙的面积=(a+b)(a﹣b).所以a2﹣b2=(a+b)(a﹣b).故选:D.【点评】本题主要考查的是平方差公式的几何背景,依据两个图形中阴影部分面积相等求解是解题的关键.二.填空题(共8小题)9.计算:(2×103)×(8×105)= 1.6×109.【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【解答】解:原式=2×8×108=1.6×109.故答案为:1.6×109.【点评】本题考查了单项式乘单项式,科学记数法,解决本题的关键是准确进行单项式乘单项式运算.10.若多项式4x2﹣kx+25是一个完全平方式,则k的值是±20.【分析】根据已知可得完全平方式是(2x±5)2=4x2±20x+25,依据对应相等可得﹣kx =±20x,解得k=±20.【解答】解:∵4x2﹣kx+25是一个完全平方式,∴4x2﹣kx+25=(2x)2﹣kx+52=(2x±5)2,∵(2x±5)2=4x2±20x+25,∴﹣kx=±20x,解得k=±20.故答案为:±20.【点评】本题主要考查了完全平方式,完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方.另一种是完全平方差公式,就是两个整式的差括号外的平方.算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央.(就是把两项的乘方分别算出来,再算出两项的乘积,再乘以2,然后把这个数放在两数的乘方的中间,这个数以前一个数间的符号随原式中间的符号,完全平方和公式就用+,完全平方差公式就用﹣,后边的符号都用+)”11.在实数范围内分解因式:a2﹣3b2=(a+√3b)(a−√3b).【分析】利用平方差公式因式分解即可.【解答】解:a2﹣3b2=a2﹣(√3b)2=(a+√3b)(a−√3b).【点评】本题考查了在实数范围内分解因式,一定要注意分解到不能再分解为止.12.若a﹣b=8,ab=﹣15,那么a2+b2的值为34.【分析】利用完全平方公式,把a2+b2化为(a﹣b)2+2ab求解即可.【解答】解:∵a﹣b=8,ab=﹣15,∴a2+b2=(a﹣b)2+2ab=64﹣30=34.故答案为:34.【点评】本题主要考查了完全平方公式,解题的关键是熟记完全平方公式.13.若x2+x﹣2=0,则x3+2x2﹣x+2020=2022.【分析】根据条件得x2=2﹣x,x2+x=2,然后整体代入求值即可.【解答】解:∵x2+x﹣2=0,∴x2=2﹣x,x2+x=2,∴原式=x2(x+2)﹣x+2020=(2﹣x)(2+x)﹣x+2020=4﹣x2﹣x+2020=2024﹣(x2+x)=2024﹣2=2022,故答案为:2022.【点评】本题考查了因式分解的应用,体现了整体思想,将x2=2﹣x代入,可以起到降次的目的,这是解题的关键.14.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为2a2.【分析】结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积﹣直角三角形的面积.【解答】解:阴影部分的面积=大正方形的面积+小正方形的面积﹣直角三角形的面积=(2a)2+a2−12•2a•3a=4a2+a2﹣3a2=2a2.故填:2a2.【点评】此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.15.有两个正方形A、B,现将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A,B的面积之和为11.【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【解答】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=10,2ab=10,所以a2+b2=11,故答案为:11.【点评】本题主要考查了完全平方公式的几何背景,解题的关键是根据图形得出数量关系.16.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为(x ﹣6)(x+2).【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字相乘法分解因式即可.【解答】解:因式分解x2+ax+b时,∵甲看错了a的值,分解的结果是(x+6)(x﹣2),∴b=6×(﹣2)=﹣12,又∵乙看错了b的值,分解的结果为(x﹣8)(x+4),∴a=﹣8+4=﹣4,∴原二次三项式为x2﹣4x﹣12,因此,x2﹣4x﹣12=(x﹣6)(x+2),故答案为:(x﹣6)(x+2).【点评】本题考查十字相乘法进行因式分解,掌握十字相乘法的使用方法是得出答案的关键.三.解答题(共9小题)17.因式分解:(1)4m2﹣36;(2)2a2b﹣8ab2+8b3.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2b,再利用完全平方公式分解因式即可.【解答】解:(1)原式=4(m2﹣9)=4(m+3)(m﹣3);(2)原式=2b(a2﹣4ab+4b2)=2b(a﹣2b)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.18.先化简,再求值:(2x+3)(2x﹣3)﹣x(5x+4)﹣(x﹣1)2,其中x2+x﹣3=0.【分析】直接利用乘法公式以及单项式乘多项式分别化简,再合并同类项,进而把已知变形代入得出答案.【解答】解:(2x+3)(2x﹣3)﹣x(5x+4)﹣(x﹣1)2=4x2﹣9﹣5x2﹣4x﹣x2+2x﹣1=﹣2x2﹣2x﹣10,∵x2+x﹣3=0,∴x2+x=3,∴原式=﹣2(x2+x)﹣10=﹣2×3﹣10=﹣16.【点评】此题主要考查了整式的混合运算—化简求值,正确运用乘法公式计算是解题关键.19.已知多项式A=x2+2x+n2,多项式B=2x2+4x+3n2+3.(1)若多项式x2+2x+n2是完全平方式,则n=1或﹣1;(2)已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为多少?(3)判断多项式A与B的大小关系并说明理由.【分析】(1)根据完全平方式的定义计算即可;(2)根据题意可得(m+1)2+n2=0,再根据实数的非负性解答即可;(3)可得B﹣A=(x﹣1)2+2n2+2,再根据实数的非负性解答即可.【解答】解:(1)∵x2+2x+n2是一个完全平方式,∴n2=1,∴n=±1.故答案为:1或﹣1;(2)当x=m时m2+2m+n2=﹣1,∴m2+2m+1+n2=0,∴(m+1)2+n2=0,∵(m+1)2≥0,n2≥0,∴x=m=﹣1,n=0,∴x=﹣m时,多项式x2+2x+n2的值为m2﹣2m+n2=3;(3)B>A.理由如下:B﹣A=2x2+4x+3n2+3﹣(x2+2x+n2)=x2+2x+2n2+3=(x+1)2+2n2+2,∵(x+1)2≥0,2n2≥0,∴(x+1)2+2n2+2>0,∴B>A.【点评】本题考查完全平方式,记住完全平方式的特征是解题的关键,形如a2±2ab+b2这样的式子是完全平方式,属于中考常考题型.20.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形.(1)图2中间空白的部分的面积是(a﹣b)2;(2)观察图2,请你写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系式(a﹣b)2=(a+b)2﹣4ab;(3)根据你得到的关系式解答下列问题:若x+y=﹣4,xy=3,求x﹣y的值.【分析】(1)由图形面积间和差关系可得此题结果为(a﹣b)2;(2)由图形面积间关系可得:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy,就能求得最后结果.【解答】解:(1)由题意得,图2中间空白的部分的面积是(a﹣b)2,故答案为:(a﹣b)2;(2)由图2中间空白的部分的面积的不同表示方法可得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy=(﹣4)2﹣4×3=4∴x﹣y=±2,即x﹣y的值是±2.【点评】此题考查了利用完全平方公式的几何背景解决问题的能力,关键是能根据图形得到整式间关系式,并能运用关系式解决新问题.21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的等式表示)4xy=(x+y)2﹣(x﹣y)2.(2)若(3x﹣2y)2=5,(3x+2y)2=9,求xy的值;(3)若2x+y=5,xy=2,求2x﹣y的值.【分析】(1)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x﹣y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;(2)将(3x﹣2y)2=5,(3x+2y)2=9,代入(1)中的等式可求解;(3)将2x+y=5,xy=2,代入(1)中的等式可求解;【解答】解:(1)4xy=(x+y)2﹣(x﹣y)2;(2)∵(3x+2y)2﹣(3x﹣2y)2=24xy=9﹣5,∴xy=1 6;(3)∵(2x+y)2﹣(2x﹣y)2=8xy,∴25﹣16=(2x﹣y)2,∴2x﹣y=±3.【点评】本题考查了完全平方公式的几何背景,弄清题意是解本题的关键.22.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以,F(123)=6.(1)计算:F(243),F(761)的值;(2)已知一个相异数p,且p=100a+10b+c,(其中a,b,c均为小于10的正整数),则F(p)=a+b+c,(3)若m,n都是“相异数”,其中m=100x+23,n=150+y(1≤x≤9,1≤y≤9且x,y都是正整数),若k=F(m)F(n),当F(m)+F(n)=16时,求k的值.【分析】(1)利用已知条件及方法代数求解(2)百位数的表示方法(3)利用前两问的方法表示F(m),F(n).利用F(m)+F(n)=16,求解不定等式中x与y的值.进而求出F(m),F(n)的值.【解答】解:(1)F(243)=(423+342+234)÷111=9,F(761)=(671+167+716)÷111=14.(2)∵相异数p=100a+10b+c,(其中a,b,c均为小于10的正整数),∴F(p)=[100(a+b+c)+10(a+b+c)+(a+b+c)]÷111=a+b+c故答案为:a+b+c(3)∵m,n都是“相异数”,且m=100x+23,n=150+y(1≤x≤9,1≤y≤9且x,y都是正整数),∴F(m)=[00(x+2+3)+10(x+2+3)+(x+2+3)]÷111=x+5,F(n)=(51y+y51+1y5)=[100(1+5+y)+10(1+5+y)+(1+5+y)]÷111=6+y又∵F(m)+F(n)=16∴x+y=5.又∵1≤x≤9,1≤y≤9∴当x=1,y=4当x=2,y=3当x=3,y=2当x=4,y=1.又∵m,n都是“相异数”,∴x≠2,x≠3,y≠1∴x=1,y=4∴F(m)=6,F(n)=10∴k=6÷10=0.6故k=0.6【点评】本题考查了数的表示及数的运算,解决不定等式的方法是本题的难点,最后根的取舍考查了同学对相异数定义的理解23.将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a=9,宽为b=2,且a>b,AD=30.请求:(1)长方形ABCD的面积;(2)S1﹣S2的值.【分析】(1)根据图形和题目中的数据,可以计算出长方形ABCD的面积;(2)根据图形和题目中的数据,可以计算出S1﹣S2的值.【解答】解:(1)由图可知,AB=4b+a=4×2+9=8+9=17,又∵AD=30,∴S长方形ABCD=AB•AD=17×30=510;(2)由图可得,S1﹣S2=(4b•AD﹣4ab)﹣(a•AD﹣3ab)=(4×2×30﹣4×9×2)﹣(9×30﹣3×9×2)=(240﹣72)﹣(270﹣54)=168﹣216=﹣48.【点评】本题考查整式的混合运算,利用数形结合的思想解答是解答本题的关键.24.完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,ab=1所以(a+b)2=9,2ab=2所以a2+b2+2ab=9,2ab=2得a2+b2=7根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)①若(4﹣x)x=5,则(4﹣x)2+x2=6;②若(4﹣x)(5﹣x)=8,则(4﹣x)2+(5﹣x)2=17;(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.【分析】理解题目给出得例题,再根据完全平方公式的变形应用,解决问题.【解答】解:(1)∵x+y=8;∴(x+y)2=82;x2+2xy+y2=64;又∵x2+y2=40;∴2xy=64﹣(x2+y2),∴2xy=64﹣40=24,xy=12.(2)①∵(4﹣x)+x=4,∴[(4﹣x)+x]2=42[(4﹣x)+x]2=(4﹣x)2+2(4﹣x)x+x2=16;又∵(4﹣x)x=5,∴(4﹣x)2+x2=16﹣2(4﹣x)x=16﹣2×5=6.②由(4﹣x)﹣(5﹣x)=﹣1,∴[(4﹣x)﹣(5﹣x)]2=(4﹣x)2﹣2(4﹣x)(5﹣x)+(5﹣x)2=(﹣1)2;又∵(4﹣x)(5﹣x)=8,∴(4﹣x)2+(5﹣x)2=1+2(4﹣x)(5﹣x)=1+2×8=17.(3)由题意可得,AC+BC=6,AC2+BC2=18;∵(AC+BC)2=62,AC2+2AC•BC+BC2=36;∴2AC•BC=36﹣(AC2+BC2)=36﹣18=18,AC•BC=9;图中阴影部分面积为直角三角形面积,∵BC=CF∴S△ACF=12AC⋅CF=92.【点评】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①(4﹣x)+x=4,②(4﹣x)﹣(5﹣x)=﹣1是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段AB+BC=6,再根据两个正方形面积和为18,利用完全平方公式变形应用得到AC•BC=9,再根据直角三角形面积公式得出答案.25.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD 内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.【分析】(1)由题可知代数式的值与x的取值无关,所以含x项的系数为0,故将多项式整理为(2m﹣3)x﹣3m+2m2,令x系数为0,即可求出m;(2)根据整式的混合运算顺序和法则化简3A+6B可得3x(5y﹣2)﹣9,根据其值与x 无关得出5y﹣2=0,即可得出答案;(3)设AB=x,由图可知S1=a(x﹣3b),S2=2b(x﹣2a),即可得到S1﹣S2关于x的代数式,根据取值与x可得a=2b.【解答】解:(1)(2x﹣3)m+2m2﹣3x=2mx﹣3m+2m2﹣3x=(2m﹣3)x+2m2﹣3m,∵其值与x的取值无关,∴2m﹣3=0,解得,m=3 2,答:当m=32时,多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关;(2)∵A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,∴3A+6B=3[(2x+1)(x﹣1)﹣x(1﹣3y)]+6(﹣x2+xy﹣1)=3(2x2﹣2x+x﹣1﹣x+3xy]﹣6x2+6xy﹣6=6x2﹣6x+3x﹣3﹣3x+9xy﹣6x2+6xy﹣6=15xy﹣6x﹣9=3x(5y﹣2)﹣9,∵3A+6B的值与x无关,∴5y﹣2=0,即y=2 5;(3)设AB=x,由图可知S1=a(x﹣3b),S2=2b(x﹣2a),∴S1﹣S2=a(x﹣3b)﹣2b(x﹣2a)=(a﹣2b)x+ab,∵当AB的长变化时,S1﹣S2的值始终保持不变.∴S1﹣S2取值与x无关,∴a﹣2b=0∴a=2b.【点评】本题主要考查了多项式乘多项式,整式的化简求值,熟练掌握整式的混合运算顺序和法则及由题意得出关于y的方程是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!
2017-2018学年(新课标)沪科版七年级数学下册
第八章 整式乘除与因式分解
一、选择(每小题3分,共30分)
1.下列关系式中,正确的是( )
A.(a-b)2=a2-b2 B.(a+b)(a-b)=a2-b2
C.(a+b)2=a2+b2 D.(a+b)2=a2-2ab+b
2
2.x5m+3n+1÷(xn)2·(-xm)2等于( )
A.-x7m+n+1 B.x7m+n+1 C.x7m-n+1 D.x3m+n+1
3.若36x2-mxy+49y2是完全平方式,则m的值是( )
A.1764 B.42 C.84 D.±84
4.在“2008北京奥运会”国家体育场的“鸟巢”钢结构工程施工建设中,首
次用了我国科研人员自主研制的强度为4.6×108帕的钢材,那么4.6×10
8
的原数是( )
A.4600000 B.46000000 C.460000000 D.4600000000
5.代数式ax2-4ax+4a分解因式,结果正确的是( )
A.a(x-2)2 B.a(x+2)2 C.a(x-4)2 D.a(x+2)(x-2)
6.已知
3

1xx,则221

x
x
的值是( )

A.9 B.7 C.11 D.不能确定
7.下列多项式中,不能用公式法因式分解的是( )
A.
22

4

1
yxyx
B.222yxyx C.22yx D.22yxyx

8.下列计算正确的是( )
美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!

A.(ab2)3=ab6 B.(3xy)3=9x3y3 C.(-2a2)2=-4a4 D.(x2y3)2=x4y6
9.若x+y=2,xy=-2 ,则(1-x)(1-y)的值是( )
A.-1 B.1 C.5 D.-3
10.(x2+px+q)(x2-5x+7)的展开式中,不含x3和x2项,则p+q的值是( )
A.-23 B.23 C.15 D.-15
二、填空(每小题3分,共15分)
11.计算:(-2mn2)3= .
12.分解因式:x3-25x= .
13.分解因式x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),
乙看错了b,分解的结果是(x-2)(x+1),那么x2+ax+b分解因式正确的结果
是 .
14.若m2+n2=5,m+n=3,则mn的值是 .
15.已知x2+4x-1=0,那么2x4+8x3-4x2-8x+1的值是 .
三、解答题(55分)
16.计算(8分)
⑴(-2y3)2+(-4y2)3-(-2y)2·(-3y2)2 ⑵
[(3x-2y)2-(3x+2y)2+3x2y2]÷2xy
美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!

17.因式分解(10分)
⑴8a-4a2-4 ⑵
(x2-5)2+8(5-x2)+16

18.化简求值(7分)
⑴已知
81,6

1

yx
,求代数式22)32()32(yxyx的值.

19.已知(x+y)2=4,(x-y)2=3,试求:(8分)
⑴x2+y2的值. ⑵xy的值.
美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!

20.将一条20m长的镀金彩边剪成两段,恰可以用来镶两张不同的正方
形壁画的边(不计接头处),已知两张壁画面积相差10㎡,问这条彩
边应剪成多长的两段?(10分)

21.根据图8-C-1示,回答下列问题
⑴大正方形的面积S是多少?(2分)
a

a b b Ⅰ Ⅱ

8-C-1
美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!

⑵梯形Ⅱ,Ⅲ的面积SⅡ,SⅢ,分别是多少?(4分)
⑶试求SⅡ+SⅢ与S-SⅠ的值.(3分)
⑷由⑶你发现了什么?请用含a,b的式子表示你的结论.(3分)
美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!

参考答案
一、选择
1.B 2.B 3.D 4.C 5.A 6.B 7.D 8.D 9.D 10.B
二、填空
11.-8m3n6 12.x(x-5)(x+5) 13. (x+2)(x-3) 14. 2 15.-1
三.解答题
16.⑴解:原式=4y6-64y6-(4y2·9y4)
=4y6-64y6-36y6=-96y6.
⑵ 解:原式=[(3x-2y+3x+2y)(3x-2y-3x-2y)+3x2y2]÷2xy
=[6x·(-4y)+3x2y2]÷2xy=(-24xy+3x2y2)÷2xy=
xy

2

3
12

17.解:⑴原式=-4(a2-2a+1)=-4(a-1)2(2)原式
=(x2-5+1)2=(x2-1)2=(x+1)2(x-1)2
18.解:原式=(2x+3y-2x+3y)(2x+3y+2x-3y)
=6y·4x=24xy
所以当81,61yx,原式=816124=21
19. 解:⑴由已知得x2+y2+2xy=4①:x2+y2-2xy=3②
①+②得2x2+2y2=7,故x2+y2=3.5
⑵①―②得,4xy=1,xy=0.25

20.解:设应剪成两端的长为xm,ym(x>y)可列方程组为10442022yxyx,
美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!

解之得614yx,故应剪成14m和6m的两段.
21.⑴S=a2
⑵SⅡ=SⅢ=baba)(21
⑶SⅡ+SⅢ=2×baba)(21=(a+b)(a-b)
S-SⅠ=a2-b2
⑷ SⅡ+SⅢ= S-SⅠ, (a+b)(a-b)= a2-b2

相关文档
最新文档