数据结构 AVL树
关于数据结构树的举例

关于数据结构树的举例
树是一种常见的数据结构,它有根节点、子节点和叶节点组成。
树的一个重要特点是它可以表达具有层次结构的数据。
以下是一些关于数据结构树的举例:
1. 二叉树:每个节点最多有两个子节点的树结构。
一种常见的应用是二叉搜索树,其中左子节点的值小于父节点的值,右子节点的值大于父节点的值。
2. AVL树:一种自平衡二叉搜索树,用于解决普通二叉搜索
树可能导致的不平衡问题。
AVL树通过旋转操作来使树保持
平衡。
3. 红黑树:另一种自平衡二叉搜索树,也用于解决二叉搜索树可能导致的不平衡问题。
红黑树通过颜色标记节点并进行旋转操作来保持平衡。
4. B树:一种用于在外部存储中组织大量数据的数据结构。
B
树具有多个子节点和键值对,并且在每个节点上有更多的子节点,以减少I/O操作。
5. 堆:一种特殊的树结构,用于快速访问最大或最小元素。
在大根堆中,父节点的值大于或等于子节点的值;在小根堆中,父节点的值小于或等于子节点的值。
6. 树状数组:一种特殊的树结构,用于高效地进行前缀和查询和更新操作。
树状数组通常用于解决区间求和等相关问题。
7. Trie树:一种用于存储和搜索字符串的数据结构。
Trie树逐
个字符存储字符串,并通过每个节点的子节点表示不同的字符。
这些只是数据结构树的一些常见例子,还有许多其他类型的树结构可用于各种应用。
数据结构专业英语词汇汇总

数据结构专业英语词汇汇总
- Data structure: 数据结构
- Array: 数组
- Linked list: 链表
- Stack: 栈
- Queue: 队列
- Binary tree: 二叉树
- AVL tree: AVL树 (一种自平衡二叉查找树)
- Red-black tree: 红黑树 (一种自平衡二叉查找树)
- Hash table: 哈希表
- Graph: 图
- Vertex: 顶点
- Edge: 边
- Adjacency list: 邻接表 (一种表示图的数据结构)
- Adjacency matrix: 邻接矩阵 (一种表示图的数据结构) - Heap: 堆
- Binary heap: 二叉堆 (一种特殊的堆数据结构)
- Priority queue: 优先队列 (用堆实现的一种队列)
- Trie: 字典树 (一种用于快速检索的树形数据结构)
- Big O notation: 大O符号 (一种表示算法时间复杂度的记号) - Sorting algorithm: 排序算法
- Searching algorithm: 算法
- Abstract data type (ADT): 抽象数据类型
- Hashing: 哈希函数的计算过程
- Collision: 哈希冲突 (发生在两个不同的键值被映射到相同的哈希桶时)。
数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

数据结构与算法系列研究五——树、⼆叉树、三叉树、平衡排序⼆叉树AVL树、⼆叉树、三叉树、平衡排序⼆叉树AVL⼀、树的定义树是计算机算法最重要的⾮线性结构。
树中每个数据元素⾄多有⼀个直接前驱,但可以有多个直接后继。
树是⼀种以分⽀关系定义的层次结构。
a.树是n(≥0)结点组成的有限集合。
{N.沃恩}(树是n(n≥1)个结点组成的有限集合。
{D.E.Knuth})在任意⼀棵⾮空树中:⑴有且仅有⼀个没有前驱的结点----根(root)。
⑵当n>1时,其余结点有且仅有⼀个直接前驱。
⑶所有结点都可以有0个或多个后继。
b. 树是n(n≥0)个结点组成的有限集合。
在任意⼀棵⾮空树中:⑴有⼀个特定的称为根(root)的结点。
⑵当n>1时,其余结点分为m(m≥0)个互不相交的⼦集T1,T2,…,Tm。
每个集合本⾝⼜是⼀棵树,并且称为根的⼦树(subtree)树的固有特性---递归性。
即⾮空树是由若⼲棵⼦树组成,⽽⼦树⼜可以由若⼲棵更⼩的⼦树组成。
树的基本操作1、InitTree(&T) 初始化2、DestroyTree(&T) 撤消树3、CreatTree(&T,F) 按F的定义⽣成树4、ClearTree(&T) 清除5、TreeEmpty(T) 判树空6、TreeDepth(T) 求树的深度7、Root(T) 返回根结点8、Parent(T,x) 返回结点 x 的双亲9、Child(T,x,i) 返回结点 x 的第i 个孩⼦10、InsertChild(&T,&p,i,x) 把 x 插⼊到 P的第i棵⼦树处11、DeleteChild(&T,&p,i) 删除结点P的第i棵⼦树12、traverse(T) 遍历树的结点:包含⼀个数据元素及若⼲指向⼦树的分⽀。
●结点的度: 结点拥有⼦树的数⽬●叶结点: 度为零的结点●分枝结点: 度⾮零的结点●树的度: 树中各结点度的最⼤值●孩⼦: 树中某个结点的⼦树的根●双亲: 结点的直接前驱●兄弟: 同⼀双亲的孩⼦互称兄弟●祖先: 从根结点到某结点j 路径上的所有结点(不包括指定结点)。
王道数据结构 第七章 查找思维导图-高清脑图模板

每次调整的对象都是“最小不平衡子树”
插入操作
在插入操作,只要将最小不平衡子树调整平衡,则其他祖先结点都会恢复平衡
在A的左孩子的左子树中插入导致不平衡
由于在结点A的左孩子(L)的左子树(L)上插入了新结点,A的平衡因子由1增
至2,导致以A为根的子树失去平衡,需要一次向右的旋转操作。
LL
将A的左孩子B向右上旋转代替A成为根节点 将A结点向右下旋转成为B的右子树的根结点
RR平衡旋转(左单旋转)
而B的原左子树则作为A结点的右子树
在A的左孩子的右子树中插入导致不平衡
由于在结点A的左孩子(L)的右子树(R)上插入了新结点,A的平衡因子由1增
LR
至2,导致以A为根的子树失去平衡,需要两次旋转操作,先左旋转再右旋转。
将A的左孩子B的右子树的根结点C向左上旋转提升至B结点的位置
本质:永远保证 子树0<关键字1<子树1<关键字2<子树2<...
当左兄弟很宽裕时,用当前结点的前驱、前驱的前驱来填补空缺 当右兄弟很宽裕时,用当前结点的后继、后继的后继来填补空缺
兄弟够借。若被删除关键字所在结点删除前的关键字个数低于下限,且与此结点 右(或左)兄弟结点的关键字还很宽裕,则需要调整该结点、右(或左)兄弟结 点及其双亲结点及其双亲结点(父子换位法)
LL平衡旋转(右单旋转)
而B的原右子树则作为A结点的左子树
在A的右孩子的右子树中插入导致不平衡
由于在结点A的右孩子(R)的右子树(R)上插入了新结点,A的平衡因子由-1
减至-2,导致以A为根的子树失去平衡,需要一次向左的旋转操作。
RR
将A的右孩子B向左上旋转代替A成为根节点 将A结点向左下旋转成为B的左子树的根结点
名词解释平衡二叉树

平衡二叉树介绍平衡二叉树(Balanced Binary Tree),简称AVL树,是一种特殊的二叉搜索树。
在平衡二叉树中,任意节点的左子树和右子树的高度之差不超过1。
这种平衡性的特点使得平衡二叉树的查找、插入和删除操作的时间复杂度保持在O(log n)级别,极大地提高了数据结构的效率。
定义和性质平衡二叉树是一种特殊的二叉搜索树,满足以下性质: 1. 空树或者任意节点的左右子树高度之差的绝对值不超过1。
2. 左子树和右子树都是平衡二叉树。
对于平衡二叉树,我们还可以得出一些重要的结论: 1. 平衡二叉树的任意节点的左子树和右子树的高度差不超过1。
也就是说,平衡二叉树的高度是一个较小的常数倍数。
2. 平衡二叉树的最小高度是log n,最大高度是2log n。
实现方法为了保持二叉树的平衡,我们需要对插入和删除操作进行适当的调整。
下面介绍两种常见的平衡二叉树实现方法。
AVL树AVL树是最早提出的平衡二叉树之一。
在AVL树中,每个节点都会存储一个额外的信息,即平衡因子(balance factor)。
平衡因子的定义是左子树的高度减去右子树的高度。
如果平衡因子的绝对值大于1,就需要进行平衡调整。
AVL树的平衡调整分为四种情况:左-左旋转(LL),右-右旋转(RR),左-右旋转(LR),和右-左旋转(RL)。
通过这四种旋转操作,可以使得树重新达到平衡状态。
红黑树红黑树是另一种常见的平衡二叉树。
红黑树的平衡调整是通过变换节点的颜色和旋转节点来完成的。
红黑树的规则如下: 1. 每个节点要么是红色,要么是黑色。
2. 根节点是黑色。
3. 所有叶子节点(NIL节点)都是黑色。
4. 如果一个节点是红色的,则它的两个子节点都是黑色的。
5. 任意节点到其每个叶子节点的路径上包含相同数目的黑色节点。
通过对节点进行颜色变换和旋转操作,红黑树可以在插入和删除节点的过程中保持平衡。
平衡二叉树的应用平衡二叉树在计算机科学中有广泛的应用。
高度平衡的二叉树

AVL( Addison-Velski and Landis )树 伸展树 红黑树
二叉搜索树性能分析
对于有 n 个关键码的集合,其关键码有 n! 种 不同排列,可构成不同二叉搜索树有 1 n C 2 n (棵)
n 1
{2, 1, 3} {1, 2, 3} {1, 3, 2} {2, 3, 1} {3, 1, 2} {3, 2, 1}
B
BRAຫໍສະໝຸດ AR中序序列:BL
B
BR
A
AR
注意:改组后
B
A
平衡度为 0
2)RR平衡旋转: 若在A的右子树的右子树上插入结点,使A的平衡
因子从-1增加至-2,需要进行一次逆时针旋转。
(以B为旋转轴)
A B A C
左单旋转 (RotateLeft )
+1
A
0
+2
A
+1
C C A
0
0
B h D h
(a)
C E
Double Rotations
Fig. 28-5 (a) Adding 70 to the tree in Fig. 28-2c destroys its balance; to restore the balance, perform both (b) a right rotation and (c) a left rotation.
h
B
E
h D h
(b)
E
h + 1
B
h
D h + h 1
(c)
如果在子树E中插入一个新结点,该子树高度增1导致 结点A的平衡因子变成+2,出现不平衡。 沿插入路径检查三个结点A、C和E。它们处于一条方 向为“\”的直线上,需要做左单旋转。 以结点C为旋转轴,让结点A反时针旋转。
AVL树数据结构的特点与使用场景

AVL树数据结构的特点与使用场景AVL树是一种自平衡的二叉搜索树,它在插入或删除节点时会通过旋转操作来保持树的平衡,以确保树的高度始终保持在较小的范围内。
AVL树得名于其发明者Adelson-Velsky和Landis,是一种高度平衡的二叉搜索树,具有快速的查找、插入和删除操作的特点。
在本文中,将介绍AVL树数据结构的特点以及其在实际应用中的使用场景。
一、AVL树的特点1. 自平衡性:AVL树是一种自平衡的二叉搜索树,任何时刻,AVL 树的任意节点的左右子树的高度差不超过1。
当插入或删除节点后,AVL树会通过旋转操作来保持树的平衡,以确保树的高度始终保持在较小的范围内,从而保证了查找、插入和删除操作的时间复杂度为O(log n)。
2. 高度平衡:由于AVL树的自平衡性,使得树的高度相对较低,这样在进行查找操作时,平均查找时间较短,提高了搜索效率。
3. 严格平衡:AVL树是一种严格平衡的二叉搜索树,任何时刻,AVL树的任意节点的左右子树的高度差不超过1,这种严格平衡性保证了AVL树的高度始终保持在较小的范围内,使得其在各种操作下都能保持高效性。
4. 插入和删除操作复杂度低:由于AVL树的自平衡性,插入和删除节点时需要进行旋转操作来保持树的平衡,但这些旋转操作的时间复杂度为O(log n),因此插入和删除操作的复杂度仍然为O(log n),保证了操作的高效性。
二、AVL树的使用场景1. 数据库索引:在数据库系统中,AVL树常被用作索引结构,用于加速数据库的查找操作。
由于AVL树具有快速的查找、插入和删除操作,能够保持树的平衡,因此在数据库索引中得到广泛应用。
2. 编辑器中的自动补全功能:在文本编辑器或代码编辑器中,常常需要实现自动补全功能,AVL树可以用来存储单词或代码片段,通过快速查找实现自动补全功能,提高编辑效率。
3. 路由表:在网络路由中,需要快速查找目标地址对应的路由信息,AVL树可以用来存储路由表,通过快速查找实现高效的路由转发,提高网络传输效率。
avl方案介绍

avl方案1. 引言AVL树是一种自平衡二叉查找树,它在操作过程中保持树的高度平衡,从而保证了各种基本操作的时间复杂度为O(log n)。
本文将介绍AVL树的原理、实现方法以及应用场景。
2. AVL树的原理AVL树是由G.M. Adelson-Velsky和E.M. Landis在1962年提出的,它的名称取自于他们的名字的首字母。
AVL树的特点是每个节点的左子树和右子树的高度差不超过1,即保证了树的高度平衡。
AVL树的插入和删除操作会导致树的失衡,为了维持树的平衡,AVL树使用了旋转操作。
旋转操作主要包括左旋和右旋,通过重新调整子树的结构来使得树重新达到平衡。
3. 实现AVL树实现AVL树可以采用递归或迭代的方式,这里以递归方式为例进行说明。
3.1 AVL树节点定义首先需要定义AVL树的节点结构,一个简单的AVL树节点可以包括以下几个字段:class AVLNode:def__init__(self, key):self.key = keyself.left =Noneself.right =Noneself.height =1其中,key字段用于存储节点的键值,left和right字段分别指向节点的左子树和右子树,height字段表示节点的高度。
3.2 AVL树的插入操作AVL树的插入操作分为以下几个步骤:1.找到插入位置,若树为空,则直接插入新节点。
2.根据插入节点的键值与当前节点的键值进行比较,决定向左子树或右子树递归插入。
行旋转操作。
4.若当前节点失衡,根据失衡情况选择合适的旋转操作进行平衡调整。
下面是插入操作的递归实现代码:def insert(root, key):if not root:return AVLNode(key)elif key < root.key:root.left = insert(root.left, key)else:root.right = insert(root.right, key)root.height =1+ max(get_height(root.left), get_height(root.right)) balance = get_balance(root)# 左旋if balance >1and key < root.left.key:return rotate_right(root)# 右旋if balance <-1and key > root.right.key:return rotate_left(root)# 左右旋if balance >1and key > root.left.key:root.left = rotate_left(root.left)return rotate_right(root)# 右左旋if balance <-1and key < root.right.key:root.right = rotate_right(root.right)return rotate_left(root)return root3.3 AVL树的删除操作AVL树的删除操作也需要进行树的平衡调整,它分为以下几个步骤:1.找到待删除的节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业:
(HW8)
简答题: 2,3,4
程序题: 2,3,9
2.在二叉查找树类中增加三个成员函数:删除小于某个指定值的所有元素, 删除大于某个指定值得所有元素,删除某一指定范围中的所有元素。
3.将二叉查找树类中的插入、删除和查找函数改成非递归函数。
9.在二叉查找树中增加一个成员函数,找出集合中第k大的元素。
void menu(){
printf(" =================== Menu ================\n");
printf(" c -- clear
\n");
printf(" f -- find
\n");
printf(" i -- insert
\n");
printf(" d -- delete
ptr->
1
—— R 旋转 0
0 3
1
2
Hale Waihona Puke 1023
pptr->
[例1]
3 1
12
23
25
15
30
10
20
5
15
10 5
25
20
30
LR 型: case a)
—— L-R 旋转 1
0 4
1
2
3
4 3
2 1
0
0
-1
2
3
1
4
[例2]
k k1
k2
case b)
—— L-R 旋转
4
1
2
3
2
3
1
4
4
3
1
2
0、1、2、4、7、12、20、33、54、88 ……
而:Fibonacci 数列为: 0、1、1、2、3、 5、 8、13、21、34、55、89……
所以: N h = f(h+2) - 1 (可以用归纳法证明) ==> 转化为求 Fibonacci 数的问题。
现有:
==> 所以:n个结点的平衡树的树高最多为
i=1
|-------------------> |
|
< i > n ? >---------------->(return)
| | | | | | | | | | | |
|N
A
< 以结点pi为根的子树Ti平衡? >------- |
|N
| |
以结点pi为根的子树进行调整(同插入调整) |
| <----------------- |
|y
|
以结点 k 为根的子树进行调整 (LL/LR/RL/RR)
| | |
| <----------------- | |
调整相关结点的平衡度
| (return)
Delete_AVL(AVLNODE* root, char info)
基本思想: 从局部到全局,逐步平衡调整
sub_tree
sub_tree
tree 2
parent left
tree 1
ptr
tree 2
tree 3
插入调整算法:
() |
按分类树的插入算法将结点 U 插入
并记根到 U 结点路径上的结点 p1,p2,p3......pm |
在结点 p1,p2,p3......pm 中确定调整结点 k
|
< 找到 k >----------------- |
8 9 10
9
8
10
平衡调整算法的实现: L - 旋转
||
|| ||
rotate_left( )
parent
parent
ptr
==>
right
tree 1
right
ptr
tree 3
tree 2
tree 3
tree 1
tree 2
R - 旋转 parent
left
ptr
==>
tree 3
tree 1
class BT_avl: public BT_sort{ public:
void insert_AVL(char info); bool delete_AVL(char info); void rotate_left(); void rotate_right(); void avl_balance(); void view_avl_balance(); private: int h(BNODE* root); };
printf("Please enter your choice:");
}
发生删除! 调整前后 高度发生变化?
==> shorter
[例题] 删除20
==> 高度改变 !
删除前
删除后
==> 继续调整
调整前
RR ==>
高度改变 !
调整后
==> 继续调整
==> RL 调整
==>
删除调整算法:
()
| 按分类树的删除算法找到最后被删结点D,删除D。
|
记D到根结点路径上的结点为 p1,p2,p3......pn |
class BT_sort: public BinaryTree{ public:
bool find_BST(char info); void insert_BST(char info); bool delete_BST(char info); };
---- 结点的平衡因子:{-1,0,1}
0
0
-1
2. 平衡二叉树 (AVL树)
平衡二叉树结点的定义: class BNODE{
char info; int avl_bal; BNODE* llink; BNODE* rlink; BNODE* parent; BNODE(){llink=0; rlink=0; parent=0;} };
结点的平衡因子(balance factor) —— height_left - height_right
\n");
printf(" A -- del_less_than
\n");
printf(" B -- del_large_than
\n");
printf(" C -- del_between
\n");
printf(" k -- kth
\n");
printf(" q -- quit
\n");
printf(" =================== End =================\n");
[例3]
k k1
k2
case c)
—— L-R 旋转
[例4] 插入I,H,G,F,E,D,C,B,A, 构造平衡树
() |
|————< 完成?>————>
|
|n
| |
插入一个结点
|
|
| |
调整
|—————— |
(end)
[例5] 插入以下结点,构造平衡二叉树: 8,9,10,2,1,5,3,6,4,7,11,12 (课堂练习)
printf("Please enter your choice:");
}
class BT_sort: public BinaryTree{ public:
bool find_BST(char info); void insert_BST(char info); bool delete_BST(char info); };
[例1] 插入 30
root
基本思想: —— 逐个插入,逐个调整 —— 先按分类树插入,再调整 —— 对局部调整,求全局平衡
关键:找到调整点k
调整点k的特点:
>> 原平衡因子非零 >> 根到插入结点路径上的结点 >> 最靠近插入结点
插入调整算法:
() |
按分类树的插入算法将结点U插入
记根到U结点路径上的结点为集合P |
project 2: AVL_tree —— 实现 BT_avl 类 —— 实现用户界面中的所有菜单项
void menu(){
printf(" =================== Menu ================\n");
printf(" c -- clear
\n");
printf(" f -- find
从集合P中找关键点k |
< 找到结点k >----------> |Y
| |
< 结点k平衡 >----------> |N
| |
调整集合P中相关结点的平衡度
按不同的调整类型进行调整
|
并调整相关结点的平衡度
|
| |
<---------------
| |
(return)
局部调整各种类型:
LL 型:(LL:表示新插入结点在危机结点k的左子树的左子树上)
class BT_avl: public BT_sort{ public:
void insert_AVL(char info); bool delete_AVL(char info); void rotate_left(); void rotate_right(); void avl_balance(); void view_avl_balance(); };