物理化学第二章习题
物理化学 第二章 热力学第二定律 练习题

热力学第二定律
解决的问题
物理变化和化学变化
过程中方向和限度问题
基本要求及主要公式 自发过程的共同特征—不可逆性,由此 引出第二定律的经验表述 一.第二定律的经验表述 1.克劳修斯说法:不能把热从低温物体传到 高温物体而不引起任何变化。 2.开尔文说法:不能从单一热源取热使之全 部变为功而不引起任何变化。或第二类永 动机是根本造不成的。
4.为了计算绝热不可逆过程的熵变,可在始
末态间设计一条绝热可逆途径来计算。 (×) 5.平衡态熵最大。 (× )
6.冰在0℃,101.325kPa下,转化为液态水, 其熵变△S=△H/T>0,所以该过程为自发 过程。 (× )
7.在等温等压下,吉布斯函数的改变量大于
零化学变化都不能进行。 (× )
p1 p2
若理想气体上式为△G=nRT㏑p2/p1
四、热力学函数的数学表达式 封闭体系,非体积功为零,可逆过程 dU=TdS-pdV
dH=TdS+Vdp
dA=-SdT-pdV dG=-SdT+Vdp
练 习 题
一、判断题 以下说法对吗? 1.自发过程一定是不可逆过程 (√)
2.熵增加过程一定是自发过程。 (×) 3.绝热可逆过程的△S=0,绝热不可逆过程 的△S>0。 (√)
(3)熵 (4)吉布斯函数 (3)
4.1mol理想气体经一等温可逆压缩过程,则 (1)△G>△A (2)△G<△A (3)△G=△A (4)无法比较 (3)
A U T S等Biblioteka 过程: G H T S
U 0
H 0
在相同的始终态之间:△S相等
G A
5.熵变的计算 (1)封闭体系简单状态变化 a、等温可逆 △S=QR/T b、等容过程 c、等压过程
物理化学第四版 第二章热力学第一定律习题(答案)

p外
(
nRT2 p2
nRT1 ) p1
nCV ,m (T2
T1)
T2 174.8K
U 5.40 kJ, H -9.0 kJ , w 5.40kJ
2020/4/12
14
例3. 试求下列过程的U和H:
A(蒸气) n = 2mol T1 = 400K p1 = 50.663kPa
A(液体) n = 2mol T2 = 350K p2 = 101.325kPa
⑥ 任何绝热过程
W=ΔU
2020/4/12
4
(ⅱ)热量Q的计算:
QV= ∫nCV,mdT= ΔU Qp = ∫nCp,mdT= ΔH
相变热 Qp = ΔH (定温、定压)
ΔvapHm(T) ΔfusHm(T) …
2020/4/12
5
1.试写出实际气体的范德华方程
。
2.封闭系统的热力学第一定律的数学表达式为
= H + nRT =-79 kJ + 2 8.314 400 103 kJ
2020/4/12
=-72.35 kJ
16
例4:求反应CH3COOH(g)
CH4(g)+CO2(g)在
1000K时的标准摩尔反应焓 r H m,已知数据如下表:
物质
CH3COOH(g)
f
H
m
(298K
)
kJ.mol -1
He(g)
n= 4.403mol
T1=273K p1=1.0×106 Pa
V1=0.01m3
(1) Q = 0,可逆
(2) Q = 0 p外= p2
He(e)
n=4.403mol
T2=? P2=1.0×105Pa
第五版物理化学第二章习题答案

第二章热力学第一定律1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-1mol水蒸气(H2O,g)在100℃,下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p ambΔV =-p(V l-V g ) ≈ pVg = nRT =在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) = H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-p ambΔV =-(p2V2-p1V1)≈-p2V2 =-n2RT=-系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=,Wa=-;而途径b的Q b=-。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b 由热力学第一定律可得Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -始态为25℃,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28.47℃,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律4mol 某理想气体,温度升高20℃, 求ΔH-ΔU 的值。
物理化学-课后答案-热力学第一定律

第二章热力学第一定律【复习题】【1】判断下列说法是否正确。
(1)状态给定后,状态函数就有一定的值,反之亦然。
(2)状态函数改变后,状态一定改变。
(3)状态改变后,状态函数一定都改变。
(4)因为△U=Q v, △H =Q p,所以Q v,Q p是特定条件下的状态函数。
(5)恒温过程一定是可逆过程。
(6)汽缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则△H= Q p=0。
(7)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。
(8)系统从状态Ⅰ变化到状态Ⅱ,若△T=0,则Q=0,无热量交换。
(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则△H = Q p = 0。
(10)理想气体绝热变化过程中,W=△U,即W R=△U=C V△T,W IR=△U=C V△T,所以W R=W IR。
(11)有一个封闭系统,当始态和终态确定后;(a)若经历一个绝热过程,则功有定值;(b)若经历一个等容过程,则Q有定值(设不做非膨胀力);(c)若经历一个等温过程,则热力学能有定值;(d)若经历一个多方过程,则热和功的代数和有定值。
(12)某一化学反应在烧杯中进行,放热Q1,焓变为△H1,若安排成可逆电池,使终态和终态都相同,这时放热Q2,焓变为△H2,则△H1=△H2。
【答】(1)正确,因为状态函数是体系的单质函数,体系确定后,体系的一系列状态函数就确定。
相反如果体系的一系列状态函数确定后,体系的状态也就被惟一确定。
(2)正确,根据状态函数的单值性,当体系的某一状态函数改变了,则状态函数必定发生改变。
(3)不正确,因为状态改变后,有些状态函数不一定改变,例如理想气体的等温变化,内能就不变。
(4)不正确,ΔH=Qp,只说明Qp 等于状态函数H的变化值ΔH,仅是数值上相等,并不意味着Qp 具有状态函数的性质。
ΔH=Qp 只能说在恒压而不做非体积功的特定条件下,Qp 的数值等于体系状态函数H 的改变,而不能认为Qp 也是状态函数。
物理化学第二章作业及答案

第二章多相多组分系统热力学2007-4-24§2.1 均相多组分系统热力学 练习1 水溶液(1代表溶剂水,2代表溶质)的体积V 是质量摩尔浓度b 2的函数,若 V = A +B b 2+C (b 2)2(1)试列式表示V 1和V 2与b 的关系;答: b2: 1kg 溶剂中含溶质的物质的量, b 2=n 2, 112222,,,,2T P n T P n V V V B cb n b ⎛⎫⎛⎫∂∂===+ ⎪ ⎪∂∂⎝⎭⎝⎭ ∵ V=n 1V 1+n 2V 2( 偏摩尔量的集合公式)∴ V 1=(1/n 1)(V-n 2V 2)= (1/n 1)( V-b 2V 2)= (1/n 1)(A+Bb 2+c(b 2)2-Bb 2-2cb 2)= (1/n 1)[A-c(b 2)2] (2)说明A ,B , A/n 1 的物理意义;由V = A +B b 2+C (b 2)2 , V=A;A: b 2→0, 纯溶剂的体积,即1kg 溶剂的体积B; V 2=B+2cb 2, b 2→0, 无限稀释溶液中溶质的偏摩尔体积A/n 1:V 1= (1/n 1)[A-c(b 2)2],∵b 2→0,V = A +B b 2+C (b 2)2, 纯溶剂的体积为A, ∴A/n 1 为溶剂的摩尔体积。
(3)溶液浓度增大时V 1和V 2将如何变化?由V 1,V 2 的表达式可知, b 2 增大,V 2 也增加,V 1降低。
2哪个偏微商既是化学势又是偏摩尔量?哪些偏微商称为化学势但不是偏摩尔量? 答: 偏摩尔量定义为,,c B B T P n Z Z n ⎛⎫∂= ⎪∂⎝⎭所以,,c B B T P n G G n ⎛⎫∂= ⎪∂⎝⎭ ,,c B B T P n H H n ⎛⎫∂= ⎪∂⎝⎭ ,,cBB T P n F F n ⎛⎫∂= ⎪∂⎝⎭ ,,cB B T P n U U n ⎛⎫∂= ⎪∂⎝⎭ 化学势定义为:,,c B B T P n G n μ⎛⎫∂=⎪∂⎝⎭= ,,c B T V n F n ⎛⎫∂ ⎪∂⎝⎭= ,,c B S V n U n ⎛⎫∂ ⎪∂⎝⎭= ,,cB S P n H n ⎛⎫∂ ⎪∂⎝⎭ 可见,偏摩尔Gibbs 自由能既是偏摩尔量又是化学势。
北京大学《物理化学》课后章节练习题第2章习题及答案

的变化值
8. 1 mol 过冷水在 268K,pθ下凝固,计算
(a)最大非膨胀功。 (b)最大功。 (c)此过程如在 100×pθ下进行,相应的最大功和最大非膨胀功又为多少?已知 水在熔点时的热容差为 37.3J·K-1·mol-1,∆fusHm(273K)=6.012 kJ·mol-1,ρ(水)= 990 kg·m-3,ρ(冰)=917 kg·m-3。
4. 一导热良好的固定隔板将一带无摩擦绝热活塞的绝热气缸分为左右两室,左
室中充入 1mol A,右室中充入 2mol B,设A和B均为理想气体且A为单原子 气体,B为双原子气体,起始温度均为 300K,压力均为 101.325kPa,始态如 图所示,图中C为销钉,p外为 50.663kPa。 (a)若将绝热活塞上的销钉 C 拔掉,求平衡时,该过程的功及体系的熵变。 (b)若拔掉销钉后使其可逆膨胀至p外,则该过程的功和体系熵又为何值。
-3-
19.
某实际气体状态方程为 (
p
+
a Vm2
)Vm
=
RT
,式中a为常数,在压力变化不大的
情况下,将 1 mol该气体从p1、V1经恒温可逆过程变化到p2、V2,求该体系的∆U、 ∆H、∆S、∆F、∆G以及该过程的Q和W。
C p,m = {22 .47 + 201 .8 × 10 −3 (T / K ) − 63 .5 × 10 −6 T 2 / K 2}J .K −1.mol −1
18. 在 573K及 0~6×106Pa的压力范围内,N2(g)的焦耳-汤姆逊系数 μJ-T 与温
物理化学 答案 第二章_习题解答

=
(0.3 × 48.66 +
0.7 ×12) KJ·mol-1
=
23.0KJ·mol-1
B
∑ ∑ ∑ S
2-2 已知当 NaCl 溶液在 1kg 水中含物质的量为 n(单位为 mol)的 NaCl 时,体积 V 随 n 的变化关系为:
V/m3 = 1.00138×10-3 + 1.66253×10-5n/mol +1.7738×10-3(n/mol)3/2 + 1.194×10-7(n/mol)2
求当 n 为 2mol 时 H2O 和 NaCl 的偏摩尔体积为多少? 解:设水用“A”表示,NaCl 用“B”表示,由题意得:
1
⎜⎜⎝⎛
∂V ∂n B
⎟⎟⎠⎞ = 1.66253 ×10−5
+ 1.7738 ×10−3
×
3 2
1
× (n / mol) 2
+ 1.194 × 10−7
× 2(n / mol)
那么当 n=2 时,NaCl 的偏摩尔体积
VB
= 1.66253 × 10−5
+ 1.7738 × 10−3
×
3
×
2
1 2
mol·dm3 = 0.547mol·dm-3
bB
=
nB mA
=
wB M (1 − wB )
=
0.095 0.18 × (1 − 0.095)
mol·kg-1 = 0.583mol·kg-1
2-4 若将 25℃、101.325KPa 纯理想气体的状态定为气体的标准状态,则氧气的标准
熵 S1O =205.03J·K-1·mol-1,现改为 25℃、100Kpa 的纯理想气体作为气体的标准态,氧气
大学物理化学 第二章 热力学第二定律学习指导及习题解答

3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0
。
4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T
或
S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章热力学第一定律习题
一、选择题
1. 一定量的理想气体从同一始态出发,分别经(1) 等温压缩,(2) 绝热压缩到具有相同压力的终态,以H1,H2分别表示两个终态的焓值,则有:( )
(A) H1> H2(B) H1= H2
(C) H1< H2(D) 无法比较
2. 下列的过程可应用公式ΔH=Q进行计算的是:( )
(A) 不做非体积功,终态压力相同但中间压力有变化的过程
(B) 不做非体积功,一直保持体积不变的过程
(C) 273.15 K,pθ下液态水结成冰的过程
(D) 恒容下加热实际气体
3. 非理想气体进行绝热自由膨胀时,下述答案中哪一个错误?()
(A) Q=0 (B) W=0
(C) ΔU=0 (D) ΔH=0
4. 已知:Zn(s)+(1/2)O2−−→ZnO Δr H m=351.5 kJ·mol-1
Hg(l)+(1/2)O2−−→HgO Δr H m= 90.8 kJ·mol-1
因此Zn+HgO−−→ZnO+Hg 的Δr H m是:( )
(A) 442.2 kJ·mol-1(B) 260.7 kJ·mol-1
(C) -62.3 kJ·mol-1(D) -442.2 kJ·mol-1
5. 在一个密闭绝热的房间里放置一台电冰箱,将冰箱门打开,并接通电源使其工作,过一段时间之后,室内的平均气温将如何变化? ( )
(A) 升高(B) 降低
(C) 不变(D) 不一定
6. 对于理想气体的热力学能有下述四种理解:
(1) 状态一定,热力学能也一定
(2) 对应于某一状态的热力学能是可以直接测定的
(3) 对应于某一状态,热力学能只有一个数值,不可能有两个或两个以上的数值
(4) 状态改变时,热力学能一定跟着改变
其中正确的是:( )
(A) (1),(2) (B) (3),(4)
(C) (2),(4) (D) (1),(3)
7. 按下列路线循环一周,哪种情况是系统对环境做功:( )
8. 在一定T,p下,汽化焓Δvap H,熔化焓Δfus H和升华焓Δsub H的关系为:( )
(A) Δsub H>Δvap H(B) Δsub H>Δfus H
(C) Δsub H=Δvap H+Δfus H(D) Δvap H>Δsub H
上述各式中,哪一个错误?
9. 对于下列的四种表述:
(1) 因为ΔH =Q p ,所以只有等压过程才有ΔH
(2) 因为ΔH =Q p ,所以Q p 也具有状态焓数的性质
(3) 公式ΔH =Q p 只适用于封闭体系
(4) 对于封闭体系经历一个不作其它功的等压过程,其热量只决定于体系的始态和终态 上述诸结论中正确的是: ( )
(A) (1) ,(4) (B) (3) ,(4)
(C) (2) ,(3) (D) (1) ,(2)
10. 下列宏观过程:
(1) p θ, 273 K 下冰融化为水
(2) 电流通过金属发热
(3) 往车胎内打气
(4) 水在 101 325 Pa, 373 K 下蒸发
可看作可逆过程的是: ( )
(A) (1),(4) (B) (2),(3)
(C) (1),(3) (D) (2),(4)
二、填空题
11. 对于任何宏观物质,其焓H 一定 _______ 内能U (填上 >、<、=) ,因为 _________;对于
等温理想气体反应,分子数增多的ΔH 一定 _________ΔU ,因为 ___________ 。
12. 在横线上填上 >、<、=或?(?代表不能确定)。
氢气和氯气在绝热刚性容器中反应,则:
(A) W ____ 0
(B) ΔU ____ 0
(C) ΔH ____ 0
(D) Q____ 0
13. 已知反应2 H 2(g) + O 2(g)−−→2 H 2O(l)在298 K 时恒容反应热Q V =-564 kJ·mol -1,则 H 2(g)在298
K 时标准摩尔燃烧焓Δc H m θ= _______kJ·mol -1。
参考答案
一、选择题
1.C
2.C
3.D
4.B
5.A
6.D
7.B
8.D
9.B 10.A
二、填空题
11. >;H =U +pV ; >;ΔH =ΔU + (Δn )RT ,而Δγ为正。
12. (A)=;(B)=;(C) >; (D)=
13. r m H ∆$=Q p =Q V +ΔνRT =-571.2 kJ·mol -1 ,c m H ∆$
=1/2r m H ∆$=-285.6 kJ·mol -1。