超滤微滤技术的应用和原理

合集下载

超滤工作模式

超滤工作模式

超滤工作模式超滤工作模式是一种高效的过滤方法,通过超滤膜对水进行过滤,将水中的悬浮物、胶体、细菌等微生物去除,从而得到清澈透明的水质。

超滤工作模式在水处理领域被广泛应用,具有过滤效果好、操作简便、节能环保等优点。

超滤工作模式的原理是利用超滤膜的微孔结构,将水中的杂质截留在膜表面,而将水分子通过膜孔,从而实现对水的过滤。

超滤膜的孔径通常在0.01-0.1微米之间,能有效去除水中的微生物、有机物质、颗粒物等。

超滤工作模式适用于家庭自来水的净化、工业废水处理、饮用水生产等领域。

在超滤工作模式中,通常会采用压力差驱动水通过超滤膜,从而实现水的过滤。

在过程中,超滤膜会不断积累杂质,需要定期清洗或更换超滤膜以保持过滤效果。

超滤工作模式操作简便,只需设定好压力差和流量即可实现自动运行,无需人工干预。

超滤工作模式在水处理领域有着广泛的应用。

在家庭中,可以利用超滤水壶或超滤水龙头直接饮用经过超滤的水,保障家人的健康。

在工业领域,超滤工作模式可用于废水回收再利用,降低对环境的污染。

在饮用水生产中,超滤工作模式可以去除水中的异味、色泽等不良物质,提高水质的口感和安全性。

除了过滤水质,超滤工作模式还可以用于浓缩、分离等工艺。

在蛋白质提取、果汁浓缩等过程中,超滤工作模式可以有效分离目标物质,提高产品纯度和产量。

在生物制药、食品加工等领域,超滤工作模式也有着重要的应用价值。

总的来说,超滤工作模式是一种高效、节能、环保的过滤方法,适用于各种领域的水处理和工艺应用。

通过超滤工作模式,可以获得清洁透明的水质,保障人们的健康和生产的顺利进行。

希望超滤工作模式能够得到更广泛的应用,为人类的生活和生产带来更多便利和益处。

超滤、纳滤、反渗透、微滤的概念和区别

超滤、纳滤、反渗透、微滤的概念和区别

超滤、纳滤、反渗透、微滤的区别1、超滤(UF):过滤精度在0.001-0.1微米,属于二十一世纪高新技术之一。

是一种利用压差的膜法分离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保留对人体有益的一些矿物质元素。

是矿泉水、山泉水生产工艺中的核心部件。

超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。

超滤不需要加电加压,仅依靠自来水压力就可进行过滤,流量大,使用成本低廉,较适合家庭饮用水的全面净化。

因此未来生活饮用水的净化将以超滤技术为主,并结合其他的过滤材料,以达到较宽的处理范围,更全面地消除水中的污染物质。

2、纳滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法分离技术,水的回收率较低。

也就是说用纳滤膜制水的过程中,一定会浪费将近30%的自来水。

这是一般家庭不能接受的。

一般用于工业纯水制造。

3、反渗透(RO):过滤精度为0.0001微米左右,是美国60年代初研制的一种超高精度的利用压差的膜法分离技术。

可滤除水中的几乎一切的杂质(包括有害的和有益的),只能允许水分子通过。

也就是说用反渗膜制水的过程中,一定会浪费将近50%以上的自来水。

这是一般家庭不能接受的。

一般用于纯净水、工业超纯水、医药超纯水的制造。

反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。

4、微滤(MF):过滤精度一般在0.1-50微米,常见的各种PP滤芯,活性碳滤芯,陶瓷滤芯等都属于微滤范畴,用于简单的粗过滤,过滤水中的泥沙、铁锈等大颗粒杂质,但不能去除水中的细菌等有害物质。

滤芯通常不能清洗,为一次性过滤材料,需要经常更换。

① PP棉芯:一般只用于要求不高的粗滤,去除水中泥沙、铁锈等大颗粒物质。

②活性碳:可以消除水中的异色和异味,但是不能去除水中的细菌,对泥沙、铁锈的去除效果也很差。

③陶瓷滤芯:最小过滤精度也只0.1微米,通常流量小,不易清洗。

超滤微滤技术的应用和原理

超滤微滤技术的应用和原理
业化应用; 5. 我国从20世纪70年代开始研究,随后进
入快速发展阶段。
3
三、超滤的用途
超滤主要用于从液相物质中分离大分子化合 物(蛋白质、核酸聚合物、淀粉、天然胶、酶 等)、胶体分散液(粘土、颜料、矿物料、乳 液粒子、微生物)以及乳液(润滑脂、洗涤剂、 油水乳液)。采用先与适合的大分子结合的方 法也可以从水溶液中分离金属离子、可溶性溶 质和高分子物质(如蛋白质、酶、病毒),以 达到净化、浓缩的目的。
34
THE END!
THANK YOU!
35
1. 微滤膜的污染与 过滤阻力主要是 来自于被截留的溶质或颗粒在膜 的表面形成的浓差极化和滤饼层 的阻力及颗粒在膜微孔中的吸附 和堵塞。
2. 减少膜污染的措施——
31
2.减少膜污染的措施——
1. 料液的预处理:絮凝沉淀、多介质机械过滤、热处 理、调pH值、加配位剂(EDTA等)、氯化、活性 炭吸附、化学处理、精密过滤等。
膜技术应用
——超 滤
1
一、超滤的定义
超滤是在压差推动力作用下进行的筛 孔分离过程,它介于纳滤和微滤之间,膜 孔范围在1nm-0.05um.
2
二、超滤的发展进程
1. 1861年Schmidt首次公布了牛心胞薄膜 截留可溶性阿拉伯胶的实验结果;
2. 1867年,Traube制成第一次人工膜; 3. 1907年开始使用“超滤”这一术语; 4. 20世纪70年代,超滤从实验规模进入工
19
二、微滤的发展进程
1. 19世纪中叶开始出现微滤膜技术; 2. 20世纪初开始对该技术进行系统研究; 3. 20世纪60年代开始进入飞跃发展阶段; 4. 我国对该项技术的研究始于20世纪五、
六十年代,80年代初期开始起步并得到 快速发展。

膜(微滤、超滤、纳滤、反渗透)概述及其应用

膜(微滤、超滤、纳滤、反渗透)概述及其应用

膜(微滤、超滤、纳滤、反渗透)概述及其应用膜技术简介为了满足工业生产和饮用水方面的要求,各种膜的技术应运而生。

它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。

膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。

膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。

有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。

微滤(MF)又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。

微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。

无机膜材料有陶瓷和金属等。

鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。

对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。

可作为一般料液的澄清、保安过滤、空气除菌。

超滤(UF)是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000um分子量之间。

超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。

以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。

对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。

超滤工作原理

超滤工作原理

超滤工作原理超滤是一种常用的分离和过滤技术,广泛应用于水处理、污水处理、食品和饮料工业等领域。

它通过使用超滤膜,将溶质和悬浮物粒子从溶液中分离出来,实现液体的净化和浓缩。

下面将详细介绍超滤的工作原理。

一、超滤膜的结构和特性超滤膜是一种多孔性膜,通常由聚合物材料制成,具有一定的孔径范围。

超滤膜的孔径一般在0.001微米到0.1微米之间,可以过滤掉溶质和悬浮物粒子,同时保留溶剂和溶质中的较小分子。

二、超滤的工作原理超滤的工作原理基于溶质和溶剂分子的大小差异。

当溶液通过超滤膜时,溶剂和溶质中的小分子可以通过膜孔,而较大的溶质和悬浮物粒子则被滞留在膜表面。

这样,原液中的杂质和污染物就会被分离出来,从而实现液体的净化和浓缩。

三、超滤过程的影响因素1. 膜孔径:超滤膜的孔径大小直接影响到过滤效果。

孔径较小的膜可以过滤掉更小的溶质和悬浮物粒子,但同时也会增加膜的阻力,降低过滤速度。

2. 过滤压力:过滤压力越大,溶液通过膜的速度越快,但过大的压力可能会损坏膜的结构。

3. 温度:温度的增加可以提高溶液的流动性和扩散速率,从而提高超滤效果。

4. 溶液浓度:溶液中的溶质浓度越高,通过膜的速度越慢,超滤效果越好。

四、超滤的应用领域1. 水处理:超滤技术可以用于饮用水和工业用水的净化,去除水中的悬浮物、细菌和病毒等。

2. 污水处理:超滤膜可以用于污水处理厂的二次处理,去除污水中的有机物和悬浮物,提高水质。

3. 食品和饮料工业:超滤膜可以用于果汁、啤酒、酒精、乳制品等的浓缩和净化过程。

4. 生物制药:超滤技术可以用于生物制药过程中的分离和浓缩,提高产品纯度和产量。

总结:超滤是一种通过超滤膜将溶质和悬浮物粒子从溶液中分离的技术。

它的工作原理基于溶质和溶剂分子的大小差异,通过控制膜孔径、过滤压力、温度和溶液浓度等因素,可以实现液体的净化和浓缩。

超滤技术在水处理、污水处理、食品和饮料工业等领域有着广泛的应用。

超滤系统工作原理

超滤系统工作原理

超滤系统工作原理
超滤系统是一种物理分离技术,利用超滤膜筛选溶液中的溶质和颗粒物质。

其工作原理是基于压力驱动,将溶质通过微孔隔离。

以下是超滤系统的工作原理:
1. 进料:需要处理的溶液被引入超滤系统中,通常是通过管道连接到超滤膜的一侧。

2. 压力驱动:在超滤系统中施加一定的压力,如液体泵或其他压力装置,使溶液在超滤膜上形成一定的压力差。

3. 分离:超滤膜的孔径大小一般在0.01-0.1微米之间,根据溶质颗粒的大小选择合适的膜孔径。

较大的分子、颗粒物质和悬浮物将被留在超滤膜的一侧,而较小的分子和溶质则能通过超滤膜的微孔,形成过滤物。

4. 收集:超滤膜另一侧通过管道收集所得的过滤物,也即留在膜表面的较大分子和颗粒。

5. 结果:通过超滤系统处理后,溶液中的大部分悬浮颗粒和高分子物质被分离,产生的过滤物质较为纯净。

需要注意的是,超滤系统是一种物理分离方法,不改变原溶液中溶质的化学结构和溶解状态,而主要实现对颗粒、胶体和大分子物质的分离。

超滤、钠滤、反渗透、微滤的区别

超滤、钠滤、反渗透、微滤的区别

超滤、钠滤、反渗透、微滤的区别1、超滤(UF):过滤精度在0.001-0.1微米,属于二十一世纪高新技术之一。

是一种利用压差的膜法分离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保留对人体有益的一些矿物质元素。

是矿泉水、山泉水生产工艺中的核心部件。

超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。

超滤不需要加电加压,仅依靠自来水压力就可进行过滤,流量大,使用成本低廉,较适合家庭饮用水的全面净化。

因此未来生活饮用水的净化将以超滤技术为主,并结合其他的过滤材料,以达到较宽的处理围,更全面地消除水中的污染物质。

2、钠滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法分离技术,水的回收率较低。

也就是说用钠滤膜制水的过程中,一定会浪费将近30%的自来水。

这是一般家庭不能接受的。

一般用于工业纯水制造。

3、反渗透(RO):过滤精度为0.0001微米左右,是美国60年代初研制的一种超高精度的利用压差的膜法分离技术。

可滤除水中的几乎一切的杂质(包括有害的和有益的),只能允许水分子通过。

也就是说用反渗膜制水的过程中,一定会浪费将近50%以上的自来水。

这是一般家庭不能接受的。

一般用于纯净水、工业超纯水、医药超纯水的制造。

反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。

4、微滤(MF):过滤精度一般在0.1-50微米,常见的各种PP滤芯,活性碳滤芯,瓷滤芯等都属于微滤畴,用于简单的粗过滤,过滤水中的泥沙、铁锈等大颗粒杂质,但不能去除水中的细菌等有害物质。

滤芯通常不能清洗,为一次性过滤材料,需要经常更换。

① PP棉芯:一般只用于要求不高的粗滤,去除水中泥沙、铁锈等大颗粒物质。

②活性碳:可以消除水中的异色和异味,但是不能去除水中的细菌,对泥沙、铁锈的去除效果也很差。

③瓷滤芯:最小过滤精度也只0.1微米,通常流量小,不易清洗。

超滤净水器过滤原理

超滤净水器过滤原理

超滤净水器过滤原理
超滤净水器利用超滤技术来过滤水中的杂质和污染物。

超滤膜是一种以微孔为基础的膜,其孔径通常在0.01至0.1微米之间,比细菌和病毒直径要小得多。

超滤净水器的过滤原理如下:
1. 水进入超滤净水器后,首先经过一个预处理过程,去除较大的悬浮颗粒、沉淀物和泥沙等。

这有助于保护超滤膜不被堵塞。

2. 水通过预处理后,被推入超滤膜。

由于超滤膜的微孔直径非常小,一部分水分子可以通过孔隙进入下一个阶段,而较大的杂质和污染物则被滤除。

3. 被滤除的杂质和污染物会随着水的流动被排出系统。

因此,用户只需从出水口取水,就可以得到清洁的水源。

需要注意的是,超滤净水器不能去除溶解在水中的微量杂质,如重金属离子和溶解性盐类等。

此外,超滤膜也无法过滤出病毒和微生物的代谢物,因此在特殊环境下,如水质恶劣的地区或需要高纯度水的实验室中,可能需要额外的处理方法来满足需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
4.控制措施
B.膜的压差较高时,浓差极化产生的阻力 占主导地位,此时应着重减少浓差极化 阻力,其措施主要是:
① 增大料液流速; ② 升高料液温度; ③ 选择合适的膜组件结构
C.膜压差很高时,凝胶层阻力占主导地位, 凝胶层是由浓差极化造成的,所以防止 凝胶层的形成应尽量控制浓差极化。
13
七、超滤膜的清洗
3.
a. 料液性质 c. 操作条件
b. 膜及膜组件性质
11
4.控制措施
A. 膜的压差较低时,膜自身的机械阻力和膜 污染阻力占主导地位,应尽量减少膜污染 阻力来提高膜的运行水平
① 膜材料:与溶质电荷相同的强亲水和强疏水 性膜较耐污染; ② 膜孔径:一般选孔径比被截留粒子尺寸小一 个数量级的膜; ③ 溶液pH值:一般把它调至远离等电点,可减 少污染; ④ 盐:自身沉积或改变蛋白质性质而产生膜污 染; ⑤ 温度:适宜的料液温度会减少膜的污染。

1. 2.
五、微滤的操作模式
1. 无流动操作(静态过滤或死端过滤) 2. 错流操作(动态过滤)
22
23
24
25
六、微滤膜的特性
1. 微滤膜的分类: 按形态结构可分两类对称膜和非对称膜 按材料可分两类有机膜和无机膜 2. 微滤膜的结构: 具有毛细管状孔结构的筛网型微孔滤膜 具有曲孔的深度型微孔滤膜
物理方法:水力方法和气液脉冲法 化学方法:物理清洗——清洗剂扩散到污垢表层——渗 透扩散进污垢层——清洗反应——清洗反应产物转移至 清洗剂体系
14
七、超滤膜的清洗
3.常见的化学清洗剂 ① 酸碱液 ② 表面活性剂 ③ 氧化剂 ④ 酶 4.清洗效果评价 通常用纯水透水率恢复系数r来表示清洗效果: r=J/J0 *100%
2.
浓差极化
超滤时,由于筛分作用,料液中的部分大分子溶质会被膜截 留,溶剂及小分子溶质则能自由地透过膜,从而表现出超滤膜的 选择性。被截留的溶质在膜表面处积聚,其浓度会逐渐升高,在 浓度梯度的作用下,及近膜面的溶质又以相反方向向料液主体扩 散,平衡状态时膜表面形成一溶质浓度分布边界层,对溶剂等小 分子物质的运动起阻碍作用。这种现象称为膜的浓差极化,是一 个可逆过程。 造成膜污染的主要原因:
2
三、超滤的用途
超滤主要用于从液相物质中分离大分子 化合物(蛋白质、核酸聚合物、淀粉、天然胶、 酶等)、胶体分散液(粘土、颜料、矿物料、 乳液粒子、微生物)以及乳液(润滑脂、洗涤 剂、油水乳液)。采用先与适合的大分子结合 的方法也可以从水溶液中分离金属离子、可溶 性溶质和高分子物质(如蛋白质、酶、病毒), 以达到净化、浓缩的目的。
26
3.微滤膜的特点
① 微滤主要以筛分机理截留粒子而分离,所有比 膜孔径大的粒子全部截留,其他深层过滤介质 达不到绝对截留的要求 ② 孔径分部均匀,过滤精度高,可靠性强 ③ 孔隙率高,过滤速度快 ④ 微滤膜整体性强,不脱落,不对物料产生二次 污染,且膜层薄,对物料吸附少,减少损失 ⑤ 与其它深层过滤方法结合使用,可延长微滤膜 使用寿命。
J为清洗后膜的通量,J0为膜清洗前的初始通量
15
七、超滤的应用
1. 2. 3. 4. 工业废水处理 食品工业中的应用 高纯水制备中的应用 生物制药领域的应用
16
膜技术应用
——微 滤
17
一、微滤的定义
微滤是在压差
推动力作用下进行的
筛孔分离过程,膜孔
范围在0.05um20um.
18
二、微滤的发展进程
在实际膜分离技术应用中,尽管选择了较合适的膜和适 宜的操作条件下,在长期运行中,过滤通量随运行时间 的增加必然产生下降现象,即膜污染问题必然发生,此 时需要采取一定的清洗方法,使膜面或膜孔内污染物去 除,从而达到过滤通量恢复,延长膜寿命的目的。 1.影响膜清洗的因素:膜的化学特性和污染物特性 2.膜的清洗方法
① 有机高分子超滤膜采用相转化法、 拉伸法、复合膜法、烧结法、核 径迹法等 ② 无机超滤膜采用固体粒子烧结法、 溶胶凝胶法、阳极氧化法、动态 膜法、薄膜沉积法、水热法等;
10
六、超滤膜的污染及控制
1. 膜污染的定义:
指处理物料中的微粒,胶体粒子或溶质大分子,由于与膜存 在物理化学相互作用或机械作用而引起的在膜表面或膜孔内吸附, 沉积造成膜孔径变小或堵塞,使膜产生透过流量与分离特性的不 可逆变化。
3
四、超滤的基本原理
超滤的分离机理是“筛分”分子级的物质, 即它可截留溶液中溶解的大分子物质,而 透过小分子物质。 理想的超滤膜分离是筛分过程,在压力推 动下,进料液中的溶剂和小分子溶质透过 膜进入滤液侧,溶液中的大分子物质、胶 体、蛋白质等被超滤膜截留浓缩。 “筛分膜”和“深层膜”的比较——
4
5
6
7
8
五、超滤膜的特性
1. 超滤膜按形态结构可分两类:对称膜和非对称 膜 2. 超滤膜的分离特性:透过通量(速度)和截留 率(分离效果) 3. 超滤膜的材料:1)有机高分子材料(纤维素衍 生物、聚砜类、乙烯类聚合物、含氟类聚合物) 2)无机材料(多孔金属、多孔陶瓷、分子筛)
9
4.超滤膜的制备——
一、超滤的定义
超滤是在压差推动力作用下进行的筛 孔分离过程,它介于纳滤和微滤之间,膜 孔范围在1nm-0.05um.
1
ห้องสมุดไป่ตู้
二、超滤的发展进程
1. 1861年Schmidt首次公布了牛心胞薄膜 截留可溶性阿拉伯胶的实验结果; 2. 1867年,Traube制成第一次人工膜; 3. 1907年开始使用“超滤”这一术语; 4. 20世纪70年代,超滤从实验规模进入工 业化应用; 5. 我国从20世纪70年代开始研究,随后进 入快速发展阶段。
1. 19世纪中叶开始出现微滤膜技术; 2. 20世纪初开始对该技术进行系统研究; 3. 20世纪60年代开始进入飞跃发展阶段; 4. 我国对该项技术的研究始于20世纪五、
六十年代,80年代初期开始起步并得到
快速发展。
19
三、微滤的应用领域
微滤主要从气相和液相物质中截 留微米及亚微米级的细小悬浮物、微生 物、微粒、细菌、酵母、红血球、污染 物等以达到分离、净化和浓缩的目的。
20
四、微滤的分离机理
微滤的分离机理是筛分机理,膜的物理 结构起决定性作用。此外,吸附和电性 能对截留也有影响。 微滤膜的截留分表面层截留和内部截留 两种:
表面层截留:机械截留作用、物理作用或吸附 截留作用、架桥作用 膜内部截留:膜的网络内部截留作用,是指将 微粒截留在内部而不是在膜的表面
21
相关文档
最新文档