碳纤维复合材料仿真

合集下载

基于Ls-Dyna软件2种材料模型的碳纤维复合材料层合板面内剪切有限元仿真

基于Ls-Dyna软件2种材料模型的碳纤维复合材料层合板面内剪切有限元仿真

2020年12月第44卷第12期Vol.J4No.12Dec.202() MATERIALS FOR MECHANICAL ENGINEERINGDOI:10.11973/jxgccl202012016基于Ls-Dyna软件2种材料模型的碳纤维复合材料层合板面内剪切有限元仿真孟宪明',钟正S程从前2,曹铁山S赵杰2,黄亚烽-吴瑶2(1.中国汽车技术研究中心有限公司,天津300300;2.大连理工大学材料科学与工程学院,大连116024)摘要:通过准静态单轴拉伸试验和面内剪切试验获取力学性能参数,采用Ls-Dyna软件中的纤维增强复合材料渐进损伤模型和复合材料层合板连续损伤模型模拟碳纤维复合材料层合板在面内剪切载荷作用下的力学响应和破坏模式,对比了2种模型的适用性。

结果表明:在面内剪切过程中的初始线弹性阶段,2种模型都能较好地模拟出碳纤维复合材料层合板的力学特性。

随着载荷的持续增大,渐进损伤模型的载荷-位移仿真曲线依旧呈线性上升,到达载荷峰值后迅速下降,与试验曲线存在很大偏差;连续损伤模型由于引入了损伤参数,当材料出现损伤后.其载荷-位移仿真曲线呈非线性,与试验曲线吻合良好。

关键词:碳纤维复合材料;连续损伤模型;渐进损伤模型;损伤参数中图分类号:TB332文献标志码:A文章编号:1000-3738(2020)12-0085-06Finite Element Simulation of In-plane Shear of Carbon Fiber ReinforcedPlastic Laminates with Two Material Models of LS-DYNA SoftwareMENG Xianming1.ZHONG Zheng2.CHENG Congqian2,CAO Tieshan2.ZHAO Jie2,HUANG Yafeng*,WU Yao2(1.China Automotive Technology&Research Center Co.,Ltd.,Tianjin300300,China;2.School of Materials Science and Engineering,Dalian University of Technology»Dalian116024,China)Abstract:The progressive failure model of fiber reinforced plastics and the continuous damage model of composite laminate of the Ls-Dyna software were applied to simulate the mechanical response and damage modes of carbon fiber reinforced plastic laminates under in-plane shear loads,with the mechanical parameters obtained by quasi-static uniaxial tensile and in-plane shear tests.The applicability of the two models was compared.The results show that in the initial linear elastic stage during in-plane shearing,the two models could simulate the mechanical characteristics of the carbon fiber r&nforced plastic laminates.As the load continued to increase,the load­displacement simulation curve obtained by the progressive failure model still rose linearly,and dropped rapidly after reaching the load peak;the simulation curve had a large deviation from the test curve.When the material was damaged,because of the introduction of damage parameters,the load-displacement simulation curve obtained by the continuous damage model was nonlinear,which was in good agreement with the test curve.Key words:carbon fiber reinforced plastic;continuous damage model;progressive failure model;damage parameter收稿日期:2020-08-05;修订日期:2020-11-27基金项目:国家重点研发计划“新能源汽车”重点专项项目(2O16YFBO1O16O2)作者简介:孟宪明(1980—),男,山东济南人,高级工程师•博士通信作者:赵杰教授0引言碳纤维复合材料(CFRP)作为一种比强度高、比刚度高、耐腐蚀性能较强的轻量化材料,广泛应用于汽车、航空航天、军工武器、高速动车等方面口切。

CFEP复合材料的热学和力学性能仿真

CFEP复合材料的热学和力学性能仿真

第48卷第12期2020年12月塑料工业CHINAPLASTICSINDUSTRYCF/EP复合材料的热学和力学性能仿真∗王㊀瑶ꎬ伍㊀斌ꎬ夏㊀茹ꎬ钱家盛ꎬ陈㊀鹏∗∗(安徽大学化学化工学院ꎬ安徽合肥230601)㊀㊀摘要:为了降低碳纤维/树脂基体复合材料的生产和应用成本ꎬ采用模拟仿真技术研究了短切碳纤维与环氧树脂的复合体系ꎮ通过控制短切碳纤维的取向分布状态ꎬ碳纤维在环氧树脂基体中的平铺结构和交错结构两种状态进行仿真ꎬ研究了复合材料的力学和热学性能ꎮ研究发现ꎬ具有碳纤维平铺结构的复合材料呈现各向异性的特点ꎬ具有交错结构的复合材料在面内具有各向同性的特点ꎮ关键词:环氧树脂ꎻ碳纤维ꎻ有限元ꎻ复合材料中图分类号:TQ323 5㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1005-5770(2020)12-0155-05doi:10 3969/j issn 1005-5770 2020 12 032开放科学(资源服务)标识码(OSID):SimulationonThermalandMechanicalPropertiesofCarbonFiber/EpoxyCompositesWANGYaoꎬWUBinꎬXIARuꎬQIANJia ̄shengꎬCHENPeng(SchoolofChemistryandChemicalEngineeringꎬAnhuiUniversityꎬHefei230601ꎬChina)Abstract:Inordertoreducetheproductionandapplicationcostofcarbonfiber/epoxycompositesꎬthecompositesystemofshortcarbonfiber(CF)andepoxyresinwasstudiedbysimulation.TheshortcarbonfiberswerearrangedintotwostatesinEPmatrixꎬwhichwerealignedstructureandcrossedstructure.Themechanicalandthermalpropertieswerestudiedindetails.ItisclearlyobservedthatcompositeswithalignedstructureofCFexhibitanisotropiccharacteristicsꎬandcompositeswithcrossedstructureofCFshowsisotropiccharacteristicsinthein ̄plane.Keywords:EpoxyResinꎻCarbonFiberꎻFiniteElementꎻComposites聚合物基碳纤维复合材料的常规加工工艺是:利用碳纤维良好的韧性和可纺性ꎬ加工成碳纤维布ꎬ之后与聚合物基体复合ꎬ模塑成型后加热固化ꎮ这种工艺方法依赖人工对复合材料的操作与处理ꎬ效率低ꎬ加工成本昂贵ꎬ且制品的质量稳定性受操作过程的影响[1-2]ꎮ此外ꎬ编织成二维布的碳纤维之间结合力较低ꎬ在受力或其他环境作用下ꎬ容易产生破坏应力集中点ꎬ造成部件的失效ꎮ降低聚合物基碳纤维复合材料的加工成本㊁提高材料的稳定性ꎬ是开发聚合物基碳纤维复合材料的重要方向[3]ꎮ研究者探索了多种碳纤维和聚合物的复合工艺ꎬ例如ꎬ利用短碳纤维与碳纤维布复合[4-5]ꎻ碳纤维丝层压等[6-7]ꎮ与碳纤维布的编织和浸渍工艺相比ꎬ碳纤维丝的层压技术工艺简单ꎬ可以采用机器连续操作ꎬ具有重要的发展前景ꎮ目前ꎬ国内外学者对碳纤维(CF)/环氧树脂复合材料的热力学性能进行了深入的研究ꎮPapathanasiou等[8]测试了纤维体积分数㊁长度㊁长宽比和取向等参数对/EP等效拉伸模量的影响ꎮ使用的CF的直径和长度分别是8μm和0 15~3mmꎬ纤维长宽比在25~120之间ꎬ纤维体积分数为0 4%~17%ꎮ结果表明ꎬ杨氏模量随纤维体积分数的增大而增大ꎬ随纤维长度和长宽比的增大而减小ꎮ当纤维体积分数和长宽比一定时ꎬ随机纤维复合材料的杨氏模量小于准直纤维复合材料ꎮ准直纤维复合材料沿纤维方向的刚度约为随机纤维复合材料的1 91倍ꎮShi ̄mamoto等[9]研究了纤维取向对SCF/EP复合材料抗弯强度和模量的影响ꎬ复合材料中纤维体积分数为20%ꎬCF的平均长度为3mmꎮ在研究过程中ꎬ0ʎ~10ʎ的角范围内ꎬ纤维取向率为71%ꎮ结果表明ꎬ复合材料具有一定的塑性性能ꎬ且SCF/EP复合材料的弯曲模量为16GPaꎬ弯曲强度为211MPaꎬ均为随机551 ∗国家重点研发计划项目(2017YFB0406204)∗∗通信作者:陈鹏ꎬ教授ꎬ博士生导师ꎬ研究方向为高分子理论计算与模拟以及高分子化学反应动力学ꎮchpecp@126 com作者简介:王瑶ꎬ女ꎬ1995年生ꎬ在读硕士研究生ꎬ研究方向为计算机模拟复合材料的导热性能ꎮwangyao_689@163 com塑㊀料㊀工㊀业2020年㊀㊀取向复合材料的2倍左右ꎮAhmadi等[10]用有限元方法研究了碳纤维界面特征㊁碳纤维体积分数㊁取向㊁各种排列方式等对增强多相复合材料热导率的影响ꎬ建立了由碳纤维㊁基体以及界面组成的三相代表性体积元的连续体模型ꎮ结果表明ꎬ界面热导率和界面厚度对横向热导率的影响最大ꎬ且有一定的临界界面热导率ꎻ同时碳纤维倾角增加ꎬ多相复合材料的纵向热导率减小ꎬ横向热导率增大ꎮDeng等[11]提出了碳纤维复合材料导热性增强的解析模型ꎬ该模型考虑了碳纤维的体积分数㊁导热性各向异性㊁纵横比㊁非直线性和界面热阻的影响ꎬ预测结果与实验数据吻合良好ꎮ本项研究采用有限元模拟方法ꎬ分析短切碳纤维(连续碳纤维丝切断成短纤维状)与聚合物基体的复合状态对材料力学和导热等性能的影响规律ꎬ从理论上预测碳纤维聚合物复合材料物理力学性能的主要影响因素ꎬ探讨了利用短切碳纤维与聚合物基体直接复合制备高性能复合材料的可能性ꎮ我们的模拟研究可以帮助实验研究和设计新型聚合物基碳纤维复合材料ꎮ1㊀模型与方法目前ꎬ有许多应用有限元方法分析和计算材料体系的物理性能的仿真软件ꎮ其中Exstream公司推出的Digimat软件适用于对复合材料进行分析计算ꎬ可以预测纤维㊁纤维编织物等填料在各种高分子和陶瓷等基体中的分布状态和物理性能ꎮ本文采用该软件分析短切碳纤维在环氧树脂基体中的分布状态和力学等物理性能之间的关系ꎮa-CF/EP平铺结构b-CF/EP交错结构方形内的条纹代表碳纤维在环氧树脂中的分布状态ꎮ图1㊀CF/EP复合材料仿真模型的结构设计Fig1㊀StructuraldesignofCF/EPcompositematerialsimulationmodel为了替代碳纤维编织布增强环氧树脂基体ꎬ基于实验中的层压法ꎬ本文设计了两种易于制备的CF/环氧树脂(EP)复合材料ꎮ一种是将四层短切碳纤维平铺在环氧树脂基体中ꎬ每一层中ꎬ短切碳纤维沿同一方向取向ꎬ且短切碳纤维之间互不交叉接触ꎬ形成如图1a所示的平铺CF/EP复合材料ꎬ简称平铺结构复合材料ꎻ另一种是将四层短切碳纤维以图1b所示的角度交错排列在环氧树脂基体中ꎬ简称交错结构复合材料ꎮ建模过程中ꎬ首先生成代表CF在EP中取向分布的单层结构ꎬ之后根据两种模型ꎬ将四个单层结构以相同或者不同的角度组合起来ꎮ该模型中ꎬ设定CF和EP㊁层和层之间的界面被视为相互连接的独立表面ꎬ进而不考虑它们之间的热阻ꎮ图2所示是Digimat所建立的计算模型ꎮa-平铺结构b-交错结构图2㊀CF/EP复合材料的仿真模型Fig2㊀SimulationmodelofCF/EPcompositematerial模拟体系选择周期性边界条件ꎬ短切碳纤维的直径设为7μmꎬ长度根据长径比不同而变化ꎮ在CF/EP复合材料中ꎬCF质量分数为20%ꎮ仿真CF/EP复合材料性能的其他参数如表1所示:表1㊀仿真过程中选用的材料参数Tab1㊀Materialparametersselectedinthesimulationprocess参数碳纤维环氧树脂密度/(kg/m3)18001400比热容/[J/(kg K)]7501000横向导热系数/[W/(m K)]35 0181 45面内导热系数/[W/(m K)]0 178横向杨氏模量/GPa2303 45面内杨氏模量/GPa403 45面内泊松比0 30 35横向泊松比0 250 35横向剪切模量/GPa15 4横向热膨胀系数/K-1-5 5ˑ10-72 44ˑ10-5面内热膨胀系数/K-11ˑ10-52㊀结果与讨论2 1㊀力学性能研究首先研究两种模型的力学性能ꎮ设定体系温度为25ħꎬ对复合材料施加拉伸和剪切两种不同的应力后ꎬ探究复合材料的杨氏模量(E)㊁剪切模量和泊松比的变化情况ꎮE和应力(σ)与应变(ε)有关:σ=Eεꎮ若是考虑到σ=F/Aꎬε=ΔL/Lꎬ可得:F/A=E(ΔL/L)(1)651第48卷第12期王㊀瑶ꎬ等:CF/EP复合材料的热学和力学性能仿真式中ꎬF-作用力ꎬNꎻA-受力面积ꎬm2ꎻΔL-长度的微小变化量ꎻL-长度ꎬmꎮ剪切模量的定义为剪切应力和剪切应变的比率ꎬ公式为:G=τxy/γxy=F/AΔX/L=FL/AΔX(2)式中ꎬG-剪切模量ꎬGPaꎻτxy-剪切应力ꎬGPaꎻγxy-剪切应变ꎻA-作用力的表面积ꎬm2ꎻΔX-横向位移ꎬmꎻL-初始长度ꎬmꎮ泊松比是指材料在单向受拉或受压时ꎬ横向正应变与轴向正应变的绝对值的比值ꎬ它是反映材料横向变形的弹性常数ꎮ若定义为在弹性范围内加载ꎬ则定义泊松比的计算公式为:εx=-νεy(3)式中ꎬεx-横向应变ꎻεy-纵向应变ꎻν-泊松比ꎮa-平行于CF取向方向的拉伸应力b-平行于CF取向方向的剪切应力c-垂直于CF取向方向的剪切应力图3㊀CF/EP复合材料力学性能测试示意图Fig3㊀SchematicdiagramofCF/EPcompositemechanicalpropertiestesting在测试体系的杨氏模量时ꎬ沿着短切碳纤维在环氧树脂基体中的取向方向(x方向)拉伸复合材料(图3a)ꎮ在测试体系的剪切模量时ꎬ设定平行和垂直CF取向方向的两种剪切力ꎬ得到横向剪切模量Gxz(剪切力平行于碳纤维取向方向)和面内剪切模量Gyz(剪切力垂直于碳纤维取向方向)两种剪切模量ꎬ如图3b㊁cꎮ在计算体系的泊松比时ꎬ同样测试了垂直(面内泊松比νyz)和平行(横向泊松比νxz)方向的泊松比系数ꎮ研究中分别考察了短切碳纤维的长径比对两种模型力学性能的影响ꎬ结果如图4和图5所示ꎮ从图4和图5可知ꎬ短切碳纤维的长径比对复合材料的力学性能影响不大ꎬ这是因为受模拟体系尺寸的影响ꎬ短切碳纤维的长度变化区间狭窄ꎮ然而ꎬ短切碳纤维的分布状态对CF/EP复合材料的力学性能有重要的影响ꎮ由于平铺结构中ꎬCF在EP基体中的分布呈现各向异性特征ꎬ图4中ꎬ复合材料的力学性能表现出明显的各向异性的特征ꎮ例如ꎬ沿着x方向(拉伸方向)的杨氏模量(Ex)ꎬ远高于沿着y和z方向的杨氏模量(Ey㊁Ez)ꎮ面内和横向两种剪切模量由较大的差异面内和横向的泊松比也如此ꎮ在交错结构中ꎬ平面方向的碳纤维在x和y方向均匀排列ꎮ如图5a所示ꎬ复合材料在x和y方向的杨氏模量略有偏差ꎬ但都明显高于z方向的杨氏模量ꎮ复合材料的面内剪切模量(Gxz)和横向剪切模量(Gyz)相差不大ꎬ面内泊松比(vxz)和横向泊松比(vyz)也相差不大ꎮab图4㊀CF/EP平铺结构ꎬ碳纤维长径比对力学性能的影响Fig4㊀CF/EPtilestructureꎬtheeffectofcarbonfiberlength ̄diameterratioonmechanicalproperties对比图4和图5可以发现ꎬ碳纤维的分布状态对复合材料的力学性能有重要的影响ꎮ短切碳纤维沿着一个方向分布的平铺结构ꎬ有利于提高CF/EP复合材料的各向异性特征ꎬ在碳纤维取向分布方向ꎬ材料的杨氏模量㊁剪切模量和泊松比远高于其他方向的数751塑㊀料㊀工㊀业2020年㊀㊀值ꎮ交错分布的短切碳纤维ꎬ有利于提高CF/EP复合材料的整体物性ꎮ在实际应用中ꎬ人们可以根据材料的应用需求设计和优化短切碳纤维的分布状态达到对材料力学性能的精确调控ꎮab图5㊀CF/EP交错结构ꎬ碳纤维长径比对力学性能的影响Fig5㊀CF/EPstaggeredstructureꎬtheeffectofcarbonfiberlength ̄diameterratioonmechanicalproperties2 2㊀热学性能研究如图6所示ꎬ为了研究CF/EP复合材料的热学性质ꎬ在模型的两端设置温度梯度场(ΔT=300K)ꎬ计算复合材料的导热系数和热膨胀系数ꎮ图6㊀CF/EP复合材料热学模型的温度分布图Fig6㊀TemperaturedistributiondiagramofCF/EPcompositethermalmodel在瞬态温度场T(xꎬyꎬzꎬt)下ꎬ体系导热系数的计算有限元微分方程如下:∂∂xkx∂T∂x()+∂∂yky∂T∂y()+∂∂xky∂T∂z()+ρQ=ρcT∂T∂t(4)式中ꎬT-温度ꎻρ-材料密度ꎬkg/m3ꎻcT-瞬态温度场下的材料比热ꎬJ/(kg K)ꎻkx㊁ky㊁kz-分别代表沿x㊁y㊁z方向的导热系数ꎻQ-物体内部的热源强度ꎻt-时间ꎮ在实际计算中ꎬ为了研究热传导的各向异性ꎬ分别在x㊁y和z三个方向施加温度梯度场ꎬ分别计算三个方向上的导热系数ꎮ混合短纤维复合材料线膨胀系数计算式如下[12]:αc=12EmVmαm+EfVfαfEmVmEfVf(1-νc)+12(1+νm)αmVm+12(1+νf)αfVf(5)式中ꎬαc-热膨胀系数ꎬK-1ꎻE-弹性模量ꎬGPaꎻV-体积分数ꎻν-泊松比ꎻ下标f㊁m㊁c-分别代表纤维㊁基体和复合材料ꎮ图7㊀碳纤维长径比对CF/EP复合材料热传导性能的影响Fig7㊀Theeffectofcarbonfiberlength ̄diameterratioonthethermalconductivityofCF/EPcomposites图8㊀CF长径比对CF/EP复合材料热膨胀系数的影响Fig8㊀Theeffectofcarbonfiberlength ̄diameterratiosonthethermalexpansioncoefficientofCF/EPcomposites如图7所示ꎬ对比平铺结构和交错结构的复合材料导热系数可以发现ꎬ平铺结构的复合材料在沿着碳纤维的取向方向具有较高的导热系数[约6W/(m K)]ꎮ交错结构复合材料的导热性能在平面方向均有相对较高的导热系数[约2 5W/(m K)]ꎬ在垂直碳纤维方向的导热系数较低[约0 2W/(m K)]ꎮ对比平铺结构和交错结构中CF/EP复合材料的热传导性能变化情况可知ꎬ与力学性能类似ꎬ平铺结构的851第48卷第12期王㊀瑶ꎬ等:CF/EP复合材料的热学和力学性能仿真热学性能显示出明显的各向异性特征ꎮ这一点在研究CF/EP复合材料的热膨胀系数时也得到了很好的体现ꎮ由于碳纤维的平铺结构ꎬ图8中复合材料的热膨胀系数在x方向(碳纤维取向方向)要远远小于y和z方向ꎻ而由于碳纤维在x-y平面内交错排列ꎬ复合材料在x和y方向的热膨胀系数接近ꎮ同样ꎬ由于仿真体系的尺寸太小ꎬ碳纤维长度对复合材料热学性能的影响没有表现出来ꎮ3㊀总结通过上述分析可知ꎬ碳纤维的分布状态对CF/EP复合材料的力学和热学性能有重要的影响ꎮ在平铺结构中ꎬ材料的力学和热学性能均表现出明显的各向异性ꎮ在交错结构中ꎬ材料在平面方向表现出各向同性ꎮ沿着碳纤维的取向方向ꎬ复合材料具有较高的杨氏模量和导热系数以及较低的热膨胀系数ꎮ垂直于碳纤维取向方向ꎬ复合材料的具有较高的剪切模量和较低的泊松比ꎮ我们可以通过控制碳纤维的分布状态来优化碳纤维复合材料的力学和热学特性或制备得到满足特殊需求的各向异性材料ꎮ参㊀考㊀文㊀献[1]尹红灵.热塑性碳纤维编织复合材料热压成型研究[D].上海:上海交通大学ꎬ2016.YINHL.Researchonhotpressformingofthermoplasticcarbonfiberbraidedcomposites[D].Shanghai:ShanghaiJiaotongUniversityꎬ2016.[2]王贵彬.碳纤维复合材料制品模压成型及有限元分析[D].徐州:中国矿业大学ꎬ2014.WANGGB.Compressionmoldingandfiniteelementanal ̄ysisofcarbonfibercompositeproducts[D].Xuzhou:ChinaUniversityofMiningandTechnologyꎬ2014. [3]刘树良ꎬ陈涛ꎬ魏宇祥ꎬ等.碳纤维增强复合材料加工技术研究进展[J].航空制造技术ꎬ2015ꎬ483(14):81-86.LIUSLꎬCHENTꎬWEIYXꎬetal.Researchprogressofcarbonfiberreinforcedcompositematerialsprocessingtechnology[J].AeronauticalManufacturingTechnologyꎬ2015ꎬ483(14):81-86.[4]刘晓军ꎬ单忠德ꎬ战丽ꎬ等.短纤维层间增强碳纤维复合材料层板的力学研究[J].工程塑料应用ꎬ2020ꎬ48(1):18-23.LIUXJꎬSHANZDꎬZHANLꎬetal.Researchonthemechanicsofshortfiberinterlayerreinforcedcarbonfibercompositelaminates[J].EngineeringPlasticsApplicationsꎬ2020ꎬ48(1):18-23.[5]北京化工大学.短切碳纤维层间增强纤维复合材料的制备方法:104945854A[P].2015-09-30.BeijingUniversityofChemicalTechnology.Preparationmethodofchoppedcarbonfiberinterlayerreinforcedfibercomposite:CN104945854A[P].2015-09-30. [6]ZHOUJMꎬMENGHMꎬLIDLꎬetal.Multi ̄scalemodelingofcarbonfiberreinforcedmagnesiumlaminates(Cf/AZ91D)forYoung smodulusprediction[J].RareMetalMaterialsandEngineeringꎬ2019ꎬ48(7):2068-2073.[7]OSTAPIUKMꎬBIENIAS'JꎬSUROWSKABꎬetal.Anal ̄ysisofthebendingandfailureoffibermetallaminatesbasedonglassandcarbonfibers[J].ScienceandEngineeringofCompositeMaterialsꎬ2018ꎬ25(6):1095-1106. [8]PAPATHANASIOUTDꎬINGBERMSꎬGUELLDC.Stiffnessenhancementinalignedꎬshort ̄fibrecomposites:Acomputationalandexperimentalinvestigation[J].Com ̄positesScienceTechnologyꎬ1995ꎬ54(1):1-9. [9]SHIMAMOTODꎬTOMINAGAYꎬIMAIYꎬetal.Fiberorientationandflexuralpropertiesofshortcarbonfiber/epoxycomposites[J].JournaloftheCeramicSocietyofJapanꎬ2016ꎬ124(1):125-8.[10]AHMADIMꎬANSARIRꎬHASSANZADEH ̄AGHDAMMK.Finiteelementanalysisofthermalconductivitiesofunidirectionalmultiphasecomposites[J].CompositeIn ̄terfacesꎬ2019:1-21.[11]DENGFꎬZHENGQSꎬWANGLFꎬetal.Effectsofanisotropyꎬaspectratioꎬandnonstraightnessofcarbonnanotubesonthermalconductivityofcarbonnanotubecom ̄posites[J].AppliedPhysicsLettersꎬ2007ꎬ90(2):787.[12]王玉庆ꎬ张名大ꎬ周本濂ꎬ等.复合材料热膨胀的一个理论模型[J].材料研究学报ꎬ1989ꎬ3(5):442-446.WANGYQꎬZHANGMDꎬZHOUBLꎬetal.Atheo ̄reticalmodelofcompositethermalexpansion[J].ChineseJournalofMaterialsResearchꎬ1989ꎬ3(5):442-446.(本文于2020-09-18收到)㊀«塑料工业»杂志投稿邮箱:slgy@bluestar chemchina com欢迎访问«塑料工业»杂志网站:www iplast cn951。

碳纤维复合材料单钉连接拉伸性能仿真分析和试验研究

碳纤维复合材料单钉连接拉伸性能仿真分析和试验研究
w ssu i d b h e - i n i n lf i lme tme h d T e tn in p o et s a d fi r y e w r r d c a t d e y t r e d me s a n t ee n t o . h e so r p ri n al e tp e e p e i— o i e e u td e o d y h cu l r p r e e e g tb tn a d s mp e tn in t s.A g o g e me t ewe n sm- e .S c n l ,t e a t a p o e i sw r o y sa d r a l e so e t o d a r e n t e i t b
程的模拟和验证及相关性能数据。 1 分 析 方 法
本文的仿真分析针对复合材料层合板结构静载加
载过 程 , 以三维 有 限元分 析技 术为 基础 , 通过 每一载 荷
A s at T etni rp re f ab nf e e f cdpat C R )wt s g oto t a tde b t c : h s npo et s ro b r i o e lsc( F P i i l b lji ss id r e o i oc i rn r i h ne nw u
中图分 类 号 : B 3 T 3 19 T 3 ; P 9 . 文 献标识 码 : A 文章 编 号 :0 8 5 0 ( 0 2 0 — 0 7 0 10 — 3 0 2 1 ) 1 0 1 — 4
S m u a in a s t d n Te i n Pr pe te fCa b n F b r Ren o c d i l to nd Te tS u y o nso o ris o r o i e if r e

碳纤维复合材料缺陷检测方法研究

碳纤维复合材料缺陷检测方法研究
缺陷响应模块利用声场仿真模块中得到的声场计算它与缺陷之间的 相互作用,在CIVA中设置了多种类型缺陷,有裂纹等平面类型缺 陷、空心体积类型缺陷、实心体积类型缺陷,这些缺陷有不同的形 状,可以用来模拟实际应用中的不同缺陷。
在声场仿真中分别对样本材料、几何形状、相控阵延迟法则和探头进 行设置, 模拟出2D和3D的声场分布。在缺陷响应部分,设置不同 大小和形状的缺陷,计算声场在缺陷上的变化。
•13
碳纤维复合材料无损检测研究概况
碳纤维复合材料新型无损检测技术 3.超声检测方法
使用超声检测技术对复合材料内部的各种缺陷进行 检测,还可以利用超声检测技术测量材料的厚度。 其穿透能力强,探伤灵敏度高,易于操作,快速方 便,目前在国外发达国家超声检测技术已广泛应用 在无损检测领域。
局限性: • 对于形状复杂的材料或工件检测较困难,要求被测表面较光滑 • 需要耦合剂以减弱声波在空气中的衰减,这样可以保证声波与材料达到最大程度的耦合。 • 碳纤维复合材料板的厚度一般在 5mm 左右,属于薄板结构,声波在板内部传播会造成反射信号被噪声污
实现的,破坏性检测只能针对原材料进行
•7
碳纤维复合材料无损检测研究概况
复合材料的低导电特性和低热导率,声衰减强等特性使其不像金属材料那样容 易产生腐蚀缺陷,却极易因偶然撞击而产生不可见的裂纹、分层等现象,即使 是极微小的撞击也会在近表面产生严重的缺陷,影响材料的性能 20世纪80年代后,为解决复合材料缺陷的无损检测问题,诞生了许多新技术新 方法如:X射线检测,涡流检测、微波检测、超声检测等常规检测方法
•16
展示结构
第一步
检测方法
对碳纤维复合材料仿真实验研
究进行了详细的介绍。通过声
场仿真模块选择检测参数,包

基于扩展有限元的碳纤维复合材料裂纹扩展仿真

基于扩展有限元的碳纤维复合材料裂纹扩展仿真

基于扩展有限元的碳纤维复合材料裂纹扩展仿真韩少燕 门 静 韩海燕(西安交通大学城市学院,陕西 西安 710018)引言 碳纤维复合材料以其良好的力学性能被广泛的应用于汽车、航空航天等领域[1]。

碳纤维层合板在实际使用过程中容易受到冲击载荷产生大变形弯曲,导致局部产生应力集中与应变从而引起材料损伤,例如基体开裂、纤维断裂后或者层间分层等,材料损伤扩展会进一步导致力学性能降低,从而导致材料失效最终结构失效。

扩展有限元通过引入富集函数来修正传统有限元的近似位移函数,以描述间断界面,使间断的描述独立于有限元网格,避免了计算过程中的网格重构[2]。

本文采用扩展有限元法模拟了碳纤维复合材料层合板在弯曲载荷作用下的开裂过程,以预测材料抵抗外力损伤的性能。

1、扩展有限元 扩展有限元是以美国西北大学Belytschko 教授为首的研究组于1999年提出的一种求解不连续问题的数值方法,该方法可有效的求解强和弱不连续问题[2-3]。

扩展有限元的基本原理是基于单位分解法在传统有限元位移模式中加入特殊函数(加强函数),从而反应不连续性的存在,不同类型的不连续问题,只是加强函数不同而已。

1.1单位分解法单位分解法是Melenk 和Bubska 及Duarte 和Oden 于1996年先后提出的。

对于求解区域Ω,单位分解法用一些相互交叉的子域ΩI 来覆盖,每个子域都与一个函数()I ϕx 相联系。

函数()I ϕx 仅在ΩI 内非零,且满足单位分解条件()1I Iϕ=∑x (1)Duarte 和Oden 用K 阶移动最小二乘近似函数来构造单位分解,即1()()[()]mh k I iI i Ii b q ϕ==+∑∑ u x x u x (2) 其中:()i q x 可以是单项式基。

系数是未知量,可以通过Galerkin 法或配点法求解。

为了提高逼近精度,或满足对待定问题的特殊逼近要求,也可以包含其他一些形式的函数(称之为加强基函数)。

碳纤维复合材料的实物强度与模拟仿真研究

碳纤维复合材料的实物强度与模拟仿真研究

碳纤维复合材料的实物强度与模拟仿真研究碳纤维复合材料是一种具有高强度、轻质、耐腐蚀、抗疲劳等优异性能的材料,广泛应用于航空、航天、汽车、轨道交通、船舶等领域,成为新一代高性能材料。

然而,碳纤维复合材料的实物强度与模拟仿真研究一直是研究的热点和难点之一。

本文将分析碳纤维复合材料的实物强度与模拟仿真研究现状,并展望未来。

一、碳纤维复合材料的实物强度研究1. 实物试验实物试验是研究碳纤维复合材料实物强度的重要方法。

通过实物强度试验,可以获得材料的实际强度和断裂韧性等基本性能指标。

根据试验方法的不同,可以分为单轴拉伸试验、双向剪切试验、缩径拉压试验、冲击试验等。

单轴拉伸试验是最常用的实物试验方法,通过拉伸试验机将样品施加单向拉伸力并测量应力-应变曲线,从而得到材料的拉伸强度、屈服强度、弹性模量和拉伸应变能等指标。

缩径拉压试验可以获得材料在径向压缩和拉伸状态下的强度和变形行为,适用于研究压缩和拉伸异向性。

冲击试验则可以模拟材料在受到冲击载荷时的响应,研究材料的韧性和抗冲击性能。

2. 实物强度影响因素碳纤维复合材料的实物强度受多种因素影响。

材料的纤维类型、体积分数和层叠方式对材料强度有很大影响。

纤维和基体之间的界面粘结力也是影响强度的重要因素。

此外,加工过程中的处理方式和温度等因素也会对材料强度造成影响。

3. 实物强度研究进展随着复合材料在工业领域的广泛应用,实物强度研究也得到了长足发展。

目前,国内外研究机构多采用复合材料的细观结构分析和材料力学性能测试相结合的方法进行研究。

此外,利用样本的数字化设计和孔洞、缺陷等不良状态的模拟,并通过计算机仿真技术对碳纤维复合材料的实物强度进行研究也越来越成为趋势。

二、碳纤维复合材料的模拟仿真研究1. 模拟仿真原理模拟仿真技术是一种基于数值计算方法的虚拟试验方法,能够通过计算机模拟材料受载情况,并得到物理量的计算结果,如材料应力、变形、破坏等。

这些计算结果可以帮助研究人员更好地了解材料的性能特点和响应规律。

碳纤维增强复合材料力学性能的有限元模拟分析

碳纤维增强复合材料力学性能的有限元模拟分析

碳纤维增强复合材料力学性能的有限元模拟分析引言:碳纤维增强复合材料是一种重要的结构材料,具有高强度、低密度和优异的耐腐蚀性能。

为了更好地理解和预测这种材料的力学性能,有限元模拟成为一种有效的工具。

本文将探讨碳纤维增强复合材料的力学性能及其有限元模拟分析方法。

1. 碳纤维增强复合材料的力学性能碳纤维增强复合材料由碳纤维和基体材料组成,具有独特的力学性能。

首先,碳纤维的高强度和高模量使得复合材料具有出色的抗拉强度和刚度。

其次,由于碳纤维和基体的界面结合紧密,复合材料还表现出较好的层间剪切性能。

此外,碳纤维增强复合材料的疲劳强度和耐冲击性也远远优于传统金属材料。

2. 有限元模拟在力学性能分析中的应用有限元模拟是一种计算方法,通过将复杂结构离散为数学模型,基于力学原理求解结构的应力和变形分布。

在碳纤维增强复合材料力学性能分析中,有限元模拟被广泛应用。

首先,可以通过有限元模拟研究复合材料在静力载荷下的应力分布和应变响应,从而评估其强度和刚度。

其次,有限元模拟还可以模拟在动力载荷下复合材料的疲劳寿命和冲击行为,并优化复合材料的设计和性能。

3. 有限元模拟参数的选择在进行碳纤维增强复合材料力学性能的有限元模拟时,需要选择合适的模拟参数。

首先,应选择适当的网格划分,以保证模型几何形状和表面质量的准确性。

其次,需要确定材料的力学性能参数,如弹性模量、剪切模量和层间剪切强度等。

对于复合材料的层间剪切强度,通常需要进行微观结构分析以获取准确的数值。

此外,外界加载条件(如温度、湿度等)也需要考虑进来以获得可靠的模拟结果。

4. 有限元模拟分析的挑战和进展尽管有限元模拟在碳纤维增强复合材料力学性能分析中具有重要的应用前景,但仍面临一些挑战。

首先,材料的非线性和各向异性使得模拟计算的复杂度增加。

其次,复合材料的失效机制与金属材料有所不同,需要改进模型和算法以准确地预测结构破坏行为。

此外,对于复合材料的疲劳和寿命预测,还需要开展更多的试验和验证以提高模拟的准确性。

abaqus碳纤维复合材料结构

abaqus碳纤维复合材料结构

Abaqus碳纤维复合材料结构1. 概述碳纤维复合材料是一种具有优异性能的先进材料,它在航空航天、汽车工业、体育器材等领域得到了广泛应用。

在工程设计中,对碳纤维复合材料结构的性能和可靠性进行准确的评估至关重要。

Abaqus是一种常用的有限元分析软件,能够对复材结构进行准确的模拟和分析,因此对于碳纤维复合材料结构的研究至关重要。

2. 碳纤维复合材料的特点碳纤维复合材料由高强度的碳纤维和塑料基体组成,具有重量轻、强度高、刚性大、耐腐蚀、抗疲劳等优点。

然而,碳纤维复合材料的非均匀性和复杂的结构使得其性能表现和预测变得更加复杂。

需要借助有限元分析等方法进行深入研究。

3. Abaqus对碳纤维复合材料结构的模拟Abaqus作为有限元分析软件,具有强大的建模和分析能力,能够对碳纤维复合材料的结构进行准确的模拟。

通过Abaqus可以建立复材层合板、复材蜂窝结构、复材夹芯板等常见的复材结构模型,并进行受力性能、疲劳寿命、断裂行为等方面的分析和预测。

4. Abaqus在碳纤维复合材料结构中的应用Abaqus在碳纤维复合材料结构领域有着广泛的应用,例如在航空航天领域,可以利用Abaqus对飞机机翼、机身等结构的复材部件进行受力和疲劳寿命分析;在汽车工业领域,可以利用Abaqus对碳纤维复合材料车身、悬挂系统等部件进行强度和刚度分析;在体育器材制造领域,可以利用Abaqus对碳纤维复合材料网球拍、高尔夫球杆等产品的性能进行模拟和预测。

这些实际应用表明Abaqus在碳纤维复合材料结构研究中的重要性和价值。

5. Abaqus在碳纤维复合材料结构研究中的挑战和展望尽管Abaqus在碳纤维复合材料结构研究中取得了显著的成果,但仍然面临一些挑战,如对复材材料本身非线性、破坏行为、界面效应等方面的准确建模和模拟;另外,随着复材结构的复杂化和应用领域的拓展,需要Abaqus不断更新和完善其建模和分析能力,以满足不断增长的复材结构仿真需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Probabilistic Assessment of a Stiffened Carbon Fibre Composite Panel Operating in its Postbuckled RegionAuthors:D. Elder and R. ThomsonCooperative Research Centre for Advanced Composite Structures Limited 506 Lorimer Street, Fishermans Bend, Victoria, 3207, AustraliaCorrespondence:D. ElderCRC-ACSPhone: + 61 3 9676 4906Fax: + 61 3 9676 4999E-mail: d.elder@.auABSTRACT:This paper presents a probabilistic study on the behaviour and buckling capacity of a thin shell carbon fibre stiffened panel operating in its postbuckling region. The paper is a part of the ongoing world wide research into this phenomena being conducted by the CRC-ACS and many other interested parties including the EU FP6 Project COCOMAT. The aim of the research is to develop proven design methods that will allow an increased specific strength of stiffened composite structures commonly used in the civil aviation industry. Unlike their metal counterparts which can be reliably designed to operate with postbuckled loads, the use of similar composite parts for primary structures has not yet been widely adopted by industry. This is mainly due to the relatively brittle nature of composites which prevents significant yield based load paths being developed local to the stiffened regions of the structure. Using LS-OPT and LS-DYNA the study explores the probabilistic variations of a COCOMAT panel using a stochastic analysis. The response of the panel was the peak buckling load and the design variables included uncertainties in material properties, manufacturing tolerances and geometric imperfections. It was concluded that three of the four ply angles require accurate orientation during placement to produce a panel that will exhibit good repeatability for experimental testing. In addition the available computational methods in LS-DYNA to simulate buckling are reviewed and compared through the testing of a small baseline model.Keywords:Buckling, Postbuckling, LS-OPT, LS-DYNA, Stochastic analysis, Composite materialsINTRODUCTIONThe requirement for cheaper and more efficient civil aviation transport has seen that that each new generation of aircraft is constructed with an increasing amount of carbon fibre composites which in general out perform their metal counter parts with respect to specific strength, corrosion resistance and fatigue. However one significant drawback of this material is its brittle nature and complex failure mechanisms. These attributes have led to the current design practices where for slender components prone to buckling, no material degradation is acceptable under the ultimate load condition as per figure 1 (a). The aim of the current European research initiative “MATerial exploitation at safe design of Composite airframe structures through more accurate simulation of COllape” (COCOMAT) is to improve the understanding of slender composite panels such that material degradation is permitted as per figure 1(b) [1]. This paper first investigates the available computational methods available in LS-DYNA to simulate a nonlinear buckling analysis and compares the results of each method on a baseline model. This is followed by the analysis of a COCOMAT composite stiffened panel (fuselage section) under a uniform quasi-static compressive loading and compares the experimental results to a LS-DYNA simulation. Finally, the paper presents a stochastic investigation into the panel and the contribution of eleven parameters into its buckling capacity using LS-OPT.Figure 1: (a) Current design limits and (b) COCOMAT aim to improved strength [2](b) (a)BUCKLING CONSIDERATIONS in LS-DYNAAs a baseline, some fundamentals on elastic buckling shall first be considered. To progress this topic a simple baseline model as per figure 2 was analysed by the four different methods available in LS-DYNA. All simulations in this section used the highest order of accuracy possible, with selectively reduced integrated Hughes-Liu shell elements, double precision LS-DYNA code, tight convergences tolerances for implicit simulations and suitably slow loading rates for dynamic analyses. All dynamic models had appropriate damping and one of the two nonlinear static models included initial perturbations as this analysis method proved particularly sensitive to this attribute. From these analyses a number of recommendation are presented at the end of this section..Figure 2: Baseline modelANALYSIS METHOD 1 (Linear Eigen Extraction)A linear elastic eigen buckling solution indicated that a first local buckle occurred at 84 kN with a deformation mode of two wave lengths as per figure 3 and the eighth mode (global collapse) at 160 kN with a half wave length mode.Figure 3: First local buckling modeANALYSIS METHOD 2 (Nonlinear Static)Two buckling modes were observed, a local buckling occurring at 82 kN as per figure 4, and the global collapse mode at 122 kN (with no perturbations) and 115 kN with perturbations as per figure 5. A half wave length deformation mode occurred at global buckling.Figure 4: First local buckling mode using nonlinear static analysisANALYSIS METHOD 3 (Nonlinear Dynamic)Two dynamic simulations were completed, one explicit and an implicit, which gave similar local and global buckling modes and values to that of method 2. In addition one extra local mode shape (three in total) developed after the first local, with a deformation similar to that in figure 3. The peak buckling load estimates were 117 kN for implicit and 119 kN for explicit analyses as per figure 5.COMPARISON OF THE FOUR BUCKLING METHODSThe four computational methods are compared, in an X-Y plot with the axial shortening shown on the X axis and the resultant compressive load on the Y axis as per figure 5.Figure 5: Comparison of linear, nonlinear static and nonlinear dynamic bucklingRECOMMENDATIONS FROM THE BUCKLING STUDYThe recommendations for LS-DYNA buckling simulations are as per below: • A linear eigen1value extraction is approximate only due to the methods assumptions of linear stress distribution and zero deformation. The method isinexpensive and useful for initial investigations using LS-DYNA and LS-OPT.•Nonlinear static1 was sensitive to very small initial perturbations with respect to buckling shortening estimates. The inclusion of a full wave length perturbation with a magnitude of 0.1 mm reduced the buckled shorteninglength to that of approximately 50% of the non perturbed model. In comparison the dynamic model experienced no reduction in the shorteninglength with the same perturbation. The shortening magnitudes correspond tosignificant variations in peak stress between the static and dynamic methods.It is considered that the differences between these two analysis methods(nonlinear static and dynamic) may be due to dynamic effects allowing thetransient models to better evolve modes with lower energy states.•Nonlinear dynamic implicit1 and explicit2 analyses gave similar peak buckling values to the nonlinear static solution. For explicit analysis single precision isgenerally considered acceptable however under slow loading rates where anaccumulated global error is evident, double precision should be considered.COCOMAT PANEL ANAYSISUsing LS-OPT a sensitivity check on the peak compressive capacity of the COCOMAT panel was carried out using a stochastic analysis. The aim of this analysis was to improve the robustness of the panel such that manufacturing and material variance are minimised insuring better repeatability of the panel during manufacturing and testing.SECTION CONSIDEREDThe panel under consideration was a curved stiffened panel with plan dimension 720 x 680 mm, a radius of 938 mm and five stiffeners of height 15.5 mm as per figure 6. The panel was constructed from a laminated carbon/epoxy composite with thicknesses ranging from 1 to 3 mm. The panel was supported on all for sides with a compressive strain produced in the Z direction. Initial perturbations were produced using the *PERTURBATION_NODE keyword command and the analysis method was single precision explicit using the 4 node Belytschko-Tsay shell elements.1 The shell available for composite implicit analysis is limited to the 8 node thick shell element; also doubleprecision is recommended by [3].2The shells available for composite explicit analysis are the 4 node shell and the 8 node thick shell elements[3].Figure 6: Isometric view of curved stiffened composite panelThe load capacity comparison (without variable variance) between the experimental and LS-Dyna simulation is shown in figure 7 and the associated mode shapes in figure 8. The experimental test specimen and the LS-DYNA simulation experienced no material degradation.Figure 7: Axial compression force verses shortening for experimental & LS-DYNAFigure 8: Predicted local buckling mode at 90 kN and (b) global collapse load at 137 kNVARIABLES CONSIDEREDA total of 11 variables were considered, four ply orientations, four E11 moduli, skin thickness, perturbation magnitude and perturbation wave length as per table 1.Table 1: Variable mean and standard deviations adopted for the panel from [5]Variable LS-OPTsymbol Distribution Mean StandarddeviationPly angles (0°, 45°, 90° & -45°)p0, p45p90, p135Normal Mean 3°Elastic 11 ply modulus (0°, 45°, 90° & -45°)e0, e45e90, e135Normal Mean 0.05xMeanSkin thickness (1 mm) thick LogNormal 1 mm 0.045 mm Perturbation pert Normal 0.75 mm 0.4 mm Perturbation wavelengthwave_l Normal 75 mm 25 mmSTOCHASTIC ANALYSIS RESULTSThis section of the paper reviews the stochastic results from the LS-OPT/LS-DYNA simulations and discusses their significance. The LS-OPT model adopted was a linear Metamodel based Monte Carlo simulation derived from a D-Optimal point selection. Using this basis; 19 LS-DYNA experiments were conducted, with the results further extended to include 10,000 Monte Carlo experiments. The aims of this section were achieved by using the LS-OPT statistical tools and its visualisation capabilities of response probability distributions, stochastic contributions of variables and correlation coefficient.Probability Distribution of Buckling ResponseLS-OPT visualises the shape of the probability distribution of the resultant load as per figure 9. This information allows the further statistical data to be developed by: •The user identifying the form of the distribution and carrying out additional computations to determine the probability verses the buckling load.•LS-OPT assumes that the distribution is normal and determines the resultant mean and variance. In this example LS-OPT predicts a mean of 114 kN andstandard deviation of 6.07 kN, allowing a probability verses bucking loadrelationship to be developed by the user as per table 2.Table 2: Buckling load verses probability of collapseLoad 130 kN 120 kN 110 kN 100 kN 90 kNProbability of collapse 99.6% 84% 26% 1% 0.004%Figure 9: Probability distribution for the buckling forceStochastic Contribution of the VariablesLS-OPT visualises the stochastic contribution of each variable by plotting its contribution to the panels buckling load capacity as per figure 10. The graph shows that the most significant uncertainty is associated with the accumulative effect of ply placement for the three plies 0° (p0), 45° (p45) and -45° (p135) which together represent 47% of the total variation (refer table 1 for variable nomenclature).Figure 10: Stochastic contribution of variables to the buckling capacityCoefficient of CorrelationThe correlation coefficient provides a measure of the linear relationship between a variable and the response. The coefficient range is bound by the limits of -1 to 1. At 1 or -1 an exact linear relationship exists between the variable and the response. For positive values, as the variable increases so does the response, while the opposite is true negative values. For a correlation coefficient of 0 no relationship exists and a value of 0.3 is deemed as significant correlation [6].Figure 11: Coefficient of correlation for each variableThe two ply variables with a negative coefficient 45° (p45) and -45° (p135) indicates that by reducing their magnitude this will increase the buckling force.SUMMARY AND CONCLUSIONSThe study of analysis methods with respect to buckling concluded that consistent peak buckling capacities for quasi-static loading scenarios that are typically experienced during panel testing can be accurately achieved through either nonlinear static or nonlinear dynamic analyses. For dynamic analysis suitable loading rates and out of plane damping magnitudes are required to produce convergence in the peak buckling capacity. However in the prediction of peak elastic stresses, the nonlinear static method produced significantly higher axial shortening magnitudes and correspondingly larger peak stress when no initial perturbations were included. The inclusion of a full wave length perturbation with a magnitude of 0.1 mm in the nonlinear static model reduced the buckled shortening length to that of approximately 50% of the non perturbed model. In comparison the dynamic model experienced no reduction in the shortening length with the same perturbation. It is considered that the differences between these twoanalysis methods may be due to dynamic effects allowing the transient models to better evolve modes that mimic critical initial perturbations with lower energy states.The COCOMAT panel (without variable variance) gave a reasonable estimate of the peak buckling load of 137 kN compared to the test peak of approximately 117 kN. The panel stochastically analysed predicted a mean buckling load at collapse of 114 kN, this compares well with the test of 117 kN.The stochastic analysis of the panel using LS-OPT considered the theoretical variance of 11 variables with respect to the peak buckling load and concluded that while nine of the variables had significant effect on the axial capacity the three variables that represented 47% of the total variability were easily controlled in the manufacturing process. These variables were three of the four ply orientation angles (0°, 45° and -45°). Further work expected on this topic is to determine the effects of higher order Metamodels on the stochastic results and progress the understanding on the differences between nonlinear static and dynamic analysis methods for quasi-static loadings.REFERENCES1.R. Degenhardt, R. Rolfes, R. Zimmerman and K. Rohwer, “COCOMAT –Improved MAT erial Exploitation at Safe Design of CO mposite AirframeStructures by Accurate Simulation of CO llapse,” Comp. Struct., 73, 178-178,2006.2.COCOMAT Home Page, www.cocomat.de, 2007.3.LS-DYNA Keyword User's Manual Version 971, Livermore SoftwareTechnology Corporation, Livermore, 2006.4. A. C. Orifci, R. S. Thomson, A. J. Gunnion, R. Degenhardt, H. Abramovichand J. Bayandor, "Benchmark finite element simulations of postbucklingcomposite stiffened panels”, In: Proceedings of the Eleventh AustralianInternational Aerospace Congress (AIAC-11), Melbourne, 13-17 March 2005.5. C. C. Chamis and G. H. Abumeri, "Probabilistic dynamic buckling ofcomposite shell structures”, Composites Part A: Applied Science andManufacturing 36, 10, 2004.6.LS-OPT User's Manual Version 3.1, Livermore Software TechnologyCorporation, Livermore, 2006.。

相关文档
最新文档