单片机延时计算

合集下载

单片机精确延时计算和中断定时

单片机精确延时计算和中断定时

单片机精确延时计算和中断定时单片机精确延时计算和定时中断一.延时1. 10ms延时程序(for循环嵌套)*************************************************************** ****** 文件名称:void delay_10ms()功能:10ms延时参数:单片机晶振12MHz*************************************************************** ****** void delay_10ms(){unsigned int i, j;for(i=0;i<10;i++){for(j=0;j<124;j++);}}i 和j 定义为int整型时,for循环执行时间为8个机器周期,当i 和j 定义为char 字符型时,for 循环执行时间3个机器周期。

“;”一个机器周期,每次调用for循环2个机器周期。

则执行本段延时程序是内循环时间t1=8*124+3个机器周期,其中“8”执行for循环指令时间;“124”为for循环次数;“3”为每次调用for循环指令的时间。

外循环t2=t1*10+8*10+3其中“10”为for循环次数;“8”为一次for循环指令调用和执行时间;“10”为调用for循环次数,3为调用for循环指令时间。

所以本程序延时t=((8*124)+3)*10+8*10+3=10033=10.033ms≈10ms。

注意:变量为整型时,每次调用for循环需要3个机器周期的调用时间,执行for循环判断需要8个机器周期的执行时间;字符型变量时,每次调用for循环需要2个机器周期的调用时间,执行for循环判断需要3个机器周期的执行时间。

程序运行到第一个断点所用时间0.00038900s,运行到第二个断点所用时间为0.01042800s,则执行delay_10ms()函数所用时间为0.010428-0.000389=0.010039s= 10.039ms≈10ms。

单片机 延时 计算

单片机 延时 计算

单片机延时计算单片机是一种集成电路,具有微处理器、存储器和输入输出接口等功能。

在单片机的应用中,延时计算是一项重要的操作。

延时计算指的是在程序中通过控制单片机的时钟信号来实现一定的时间延迟。

延时计算常用于控制设备的时间间隔、时序控制等方面。

在单片机中,延时计算可以通过软件延时和硬件延时两种方式实现。

软件延时是通过在程序中循环执行一定的指令次数来实现延时,而硬件延时是通过控制单片机的时钟频率来实现延时。

软件延时是一种简单常用的延时计算方法。

在软件延时中,我们可以使用循环来实现延时。

通过控制循环次数,可以实现不同的延时时间。

例如,我们可以使用一个循环来延时1毫秒,使用多个循环来延时更长的时间。

软件延时的精度相对较低,受到单片机的工作频率、指令执行速度等因素的影响。

硬件延时是一种更精确的延时计算方法。

在硬件延时中,我们可以通过改变单片机的时钟频率来控制延时时间。

通过控制时钟频率,可以实现微秒级别的延时。

硬件延时的精度相对较高,但需要对单片机的时钟系统进行配置和调整。

延时计算在单片机的应用中非常重要。

在控制设备的时间间隔方面,延时计算可以实现设备的周期性工作。

例如,可以通过延时计算来控制LED灯的闪烁频率,实现呼吸灯效果。

在时序控制方面,延时计算可以实现不同操作之间的时间间隔。

例如,可以通过延时计算来控制舵机的旋转角度和速度。

延时计算的实现方法有很多种,可以根据具体需求选择合适的方法。

在选择延时计算方法时,需要考虑延时的精度、可靠性和资源占用等因素。

同时,还需要根据单片机的工作频率和指令执行速度等参数进行调整和优化。

延时计算在单片机的应用中起着重要的作用。

通过延时计算,可以实现对设备的精确控制和时序管理。

延时计算的方法和技巧也是单片机程序设计中的重要内容之一。

通过深入了解和研究延时计算,可以提高单片机程序的可靠性和性能。

希望通过本文的介绍,读者对延时计算有更深入的了解和认识。

单片机延时

单片机延时

如果用软件延时的话,那么在执行延时程序的时候就不能作其它事了,如LED、按键扫描等。

用中断则可以实现多任务。

所以中断是个很好的资源,要充分利用秒=1000毫秒(ms) 1毫秒=1/1,000秒(s)1秒=1,000,000 微秒(μs) 1微秒=1/1,000,000秒(s)1秒=1,000,000,000 纳秒(ns) 1纳秒=1/1,000,000,000秒(s)1秒=1,000,000,000,000 皮秒(ps) 1皮秒=1/1,000,000,000,000秒(s)参考资料:资料用定时器延时,有时候显得有点麻烦,我们不如考虑软件精确延时,软件延时无非就是利用for或while多重循环。

以前用到延时函数时,都是从网上下载别人写好的延时子程序。

延时5ms,400ms,1s,……,这些延时函数的函数名中都清清楚楚地标明了延时的时间,可我一直不知道这些函数是如何编写的,确切地说,是如果根据延时时间来确定循环次数的。

如果是纳秒级的延时,可以通过示波器来观察波形,或者反汇编一下,计算一下指令执行时间,但如果延时时间相对较长,示波器便无能为力了。

这几天好好看了一下Keil调试,发现Keil的功能实在是太强大了。

利用Keil uVersion的调试就可以写出精确的软件延时程序。

以下是我的简单小结,文中所有程序都是在Xtal=11.0592MHZ下测试。

比如我需要一个400ms的延时,随便写了个两重循环,外层循环5次,内层循环暂且设为5000:void Delay400Ms(void){uchar i=5;unint j;while(i--){j=5000; //通过keil调试来确定循环次数while(j--);}}在main函数中调用Delay400Ms():void main(){while(1){P1=0;Delay400ms();P1=1;}}进入uVersion的调试状态,按F10进行单步,当黄色箭头指向Delay400ms ()这条语句时记下左边窗中Sys->sec的值,如图,是0.00042426。

单片机c延时时间怎样计算定稿版

单片机c延时时间怎样计算定稿版

单片机c延时时间怎样计算HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】C程序中可使用不同类型的变量来进行延时设计。

经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。

以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。

一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us循环外: 5us 子程序调用 2us + 子程序返回 2us + R7赋值 1us = 5us延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}三. 10ms延时子程序程序:void delay10ms(void){unsigned char i,j,k; for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--); }四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k; for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--) for(k=214;k>0;k--);}参考链接:/news/2010-04/2106.htm摘要实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。

·单片机晶振为12mhs延时1ms计算依据

·单片机晶振为12mhs延时1ms计算依据

一、单片机晶振的作用与原理单片机晶振是单片机系统中的一个重要部件,它通过振荡产生稳定的时钟信号,为单片机的运行提供基准。

在单片机系统中,晶振的频率对系统的稳定性、精度和速度有着重要的影响。

二、晶振频率为12MHz的延时计算在单片机系统中,为了实现延时操作,一般需要通过编程来控制计时器或者循环延时的方式来实现。

对于晶振频率为12MHz的单片机系统,延时1ms的计算依据如下:1. 首先需要计算出12MHz晶振的周期,即一个晶振振荡周期的时间。

12MHz晶振的周期为1/12MHz=0.0833us。

2. 接下来将1ms转换成晶振周期数。

1ms=1000us,将1000us除以0.0833us得到12000。

即延时1ms需要进行12000个晶振周期的振荡。

3. 最后根据单片机的指令周期和频率来确定代码延时的实现方法。

以常见的晶振频率为12MHz的单片机为例,根据单片机的指令周期(一般为1/12MHz=0.0833us)和延时周期数(12000),可以编写相应的延时函数或者循环来实现1ms的延时操作。

三、12MHz晶振延时1ms的应用场景在实际的单片机应用中,常常需要进行一定时间的延时操作,例如驱动液晶屏显示、控制外围设备响应等。

12MHz晶振延时1ms的应用场景包括但不限于:LED闪烁控制、按键消抖、舵机控制、多任务调度等。

四、晶振频率选择与延时精度的关系晶振频率的选择对延时精度有着直接的影响。

一般来说,晶振频率越高,对延时精度要求越高的应用场景,而对于一般的延时控制,12MHz的晶振已经能够满足大多数的要求。

延时的精度还受到单片机的指令执行速度的影响,需要在实际应用中进行综合考量与测试。

五、总结在单片机系统中,晶振的频率选择与延时操作密切相关,12MHz晶振延时1ms的计算依据可以帮助工程师们更好地进行单片机程序的设计与开发。

需要根据实际应用场景和需求来选择合适的晶振频率,并对延时精度进行充分的考量和测试,以确保单片机系统的稳定可靠性。

单片机延时计算

单片机延时计算

单片机延时计算1.10ms延时程序(for循环嵌套)********************************************************************* 文件名称:void delay_10ms()功能:10ms延时参数:单片机晶振12MHz********************************************************************* void delay_10ms(){unsigned inti,j;for(i=0;i<10;i++){for(j=0;j<124;j++);}}**i和j定义为int整型时,for循环执行时间为8个机器周期,当i和j定义为char 字符型时,for循环执行时间3个机器周期。

“;”一个机器周期,每次调用for循环2个机器周期。

**则执行本段延时程序是内循环时间t1=8*124+3个机器周期,其中“8”执行for 循环指令时间;“124”为for循环次数;“3”为每次调用for循环指令的时间。

外循环t2=t1*10+8*10+3其中“10”为for循环次数;“8”为一次for循环指令调用和执行时间;“10”为调用for循环次数,3为调用for循环指令时间。

**所以本程序延时t=((8*124)+3)*10+8*10+3=10033=10.033ms≈10ms。

注意:变量为整型时,每次调用for循环需要3个机器周期的调用时间,执行for 循环判断需要8个机器周期的执行时间;字符型变量时,每次调用for循环需要2个机器周期的调用时间,执行for循环判断需要3个机器周期的执行时间。

**程序运行到第一个断点所用时间0.00038900s,运行到第二个断点所用时间为0.01042800s,则执行delay_10ms()函数所用时间为0.010428-0.000389=0.010039s=10.039ms≈10ms。

单片机延时程序计算方法

单片机延时程序计算方法
例2 1秒延时子程序:
DEL:MOV R7,#10 ①
DEL1:MOV R6,#200 ②
DEL2:MOV R5,#248 ③
DJNZ R5,$ ④
DJNZ R6,DEL2 ⑤
DJNZ R7,DEL1 ⑥
RET ⑦
对每条指令进行计算得出精确延时时间为:
1+(1*10)+(1*200*10)+(2*248*200*10)+(2*200*10)+(2*10)+2
=[(2*248+3)*200+3]*10+3 ⑧
=998033μs≈1s
由⑧整理得:延时时间=[(2*第一层循环+3)*第二层循环+3]*第三层循环+3 ⑨
=50603μs
≈50ms
由⑥整理出公式(只限上述写法)延时时间=(2*内循环+3)*外循环+3 ⑦
详解:DEL这个子程序共有五条指令,现在分别就 每一条指令 被执行的次数和所耗时间进行分析。
第一句:MOV R7,#200 在整个子程序中只被执行一次,且为单周期指令,所以耗时1μs
MCS-51单片机的一个机器周期=6个状态周期=12个时钟周期。
MCS-51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1μs。
程序分析
例1 50ms 延时子程序:
DEL:MOV R7,#200 ①
DEL1:MOV R6,#125 ②
DEL2:DJNZ R6,DEL2 ③

单片机C51延时时间怎样计算

单片机C51延时时间怎样计算

单片机C51延时时间怎样计算计算单片机C51延时时间通常需要考虑以下几个因素:1. 单片机的工作频率:单片机的工作频率决定了每个时钟周期的时长。

时钟周期(T)为1 / 片内晶振频率。

例如,若单片机的晶振频率为11.0592MHz,则时钟周期为1 / 11.0592MHz ≈ 90.52ns。

2. 延时的时间要求:您需要计算的是具体的延时时间,例如1毫秒(ms),10毫秒(ms)等。

有了上述信息,我们可以使用下面的公式来计算延时时间:延时时间(单位:时钟周期)=(目标延时时间(单位:秒)/时钟周期(单位:秒))延时时间(单位:毫秒)=延时时间(单位:时钟周期)×1000下面是一个示例的代码来演示如何计算并实现一个1毫秒的延时:```c#include <reg51.h>//定义时钟周期#define CLOCK_PERIOD 100 // 以纳秒为单位//定义延时函数void delay_ms(unsigned int milliseconds)unsigned int i, j;for (i = 0; i < milliseconds; i++)for (j = 0; j < 120; j++) // 这里的120是根据实际测量得到的,可以根据硬件和软件环境适当微调//每次循环消耗的时间为120*100纳秒≈12微秒//因此,总延时时间为12*1000微秒=1毫秒}}//主函数void mainP1=0x00;//把P1引脚置为低电平while (1)delay_ms(1000); // 1秒的延时P1=~P1;//翻转P1引脚的电平}```上述代码中,我们通过嵌套循环实现了一个1毫秒的延时。

根据实际硬件和软件环境,您可能需要微调内层循环的次数以达到准确的1毫秒延时。

需要注意的是,单片机的延时准确性受到各种因素影响,包括时钟精度、环境温度等。

在实际应用中,如果对延时精度有较高要求,可能需要进一步进行校准或采用其他更精确的延时方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机延时计算
延时程序(for循环嵌套)
***
文件名称:void delay_10ms()功能:10ms延时参数:单片机晶振12MHz
***
void delay_10ms()
{
unsigned inti,j;
for(i=0;i<10;i++)
{
for(j=0;j<124;j++);
}
}
**i和j定义为int整型时,for循环执行时间为8个机器周期,当i和j定义为char 字符型时,for循环执行时间3个机器周期。

“;”一个机器周
期,每次调用for循环2个机器周期。

**则执行本段延时程序是内循环时间t1=8*124+3个机器周期,其中“8”执行for 循环指令时间;“124”为for循环次数;“3”为每次调用
for循环指令的时间。

外循环t2=t1*10+8*10+3其中“10”为for循环次数;“8”为一次for循环指令调用和执行时间;“10”为调用for循环
次数,3为调用for循环指令时间。

**所以本程序延时t=((8*124)+3)*10+8*10+3=10033=≈10ms。

注意:变量为整型时,每次调用for循环需要3个机器周期的调用时间,执行for 循环判断需要8个机器周期的执行时间;字符型变量时,每次调用for循环需要2个机器周期的调用时间,执行for循环判断需要3个机器周期的执行时间。

**程序运行到第一个断点所用时间,运行到第二个断点所用时间为,则执行delay_10ms()函数所用时间为。

由于断点的原因,执行P0=0xff;和P0=0xfe;指令也花费了时间所以这里时间是而不是上面计算出的。

相关文档
最新文档