新手常用单片机延时程序
STC12系列单片机C语言的延时程序

STC12系列单片机C语言的延时程序本举例所用CPU 为STC12C5412 系列12 倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。
共有三条延时函数说明如下:函数调用分两级:一级是小于10US 的延时,二级是大于10US 的延时//====================小于10US 的【用1US 级延时】====================//----------微秒级延时---------for(i=X;i>X;i--) 延时时间=(3+5*X)/12 提示(单位us, X 不能大于255)//================大于10US0;Ms--)for(i=26;i>0;i--);}i=[(延时值-1.75)*12/Ms-15]/4 如想延时60US 则i=[(60-1.75)*12/6-15]/4=25.375≈26; 修改i 的值=26,再调用上面的【10US 级延时函数】Delay10us(6); 则就精确延时60US;如果想延时64US 可以用这二种函数组合来用: Delay10us(6); for(i=9;i>X;i--) 共延时64US//============== 对于大于20Ms 的可用中断来实现程序运行比较好===============中断用定时器0, 1Ms 中断:void timer0(void) interrupt 1{ TL0=(0xffff-1000+2)% 0x100;TH0=(0xffff-1000+2)/0x100; //每毫秒执行一次if(DelayMs_1>0) DelayMs_1--;//大于20Ms 延时程序}函数调用void DelayMs(uint a)//延时 a 乘以1(ms)的时间。
{ DelayMs_1=a; while(DelayMs_1);}如果延时50Ms 则函数值为DelayMs(50)tips:感谢大家的阅读,本文由我司收集整编。
单片机延时500ms程序汇编

单片机延时500ms程序汇编一、概述在单片机编程中,延时操作是非常常见且重要的一部分。
延时可以使程序在执行过程中暂停一段时间,以确保输入输出设备能够正常工作,或者是为了保护其他设备。
本文将介绍如何使用汇编语言编写单片机延时500ms的程序。
二、延时原理在单片机中,延时操作通常通过循环来实现。
每个循环需要一定的时间,通过控制循环次数和循环体内的指令数量,可以实现不同长度的延时。
在汇编语言中,可以使用计数器来控制循环次数,从而实现精确的延时操作。
三、汇编语言编写延时程序接下来,我们将使用汇编语言编写延时500ms的程序。
1. 设置计数器初值在程序的开头我们需要设置计数器的初值,这个初值需要根据单片机的工作频率和所需的延时时间来计算。
假设单片机的工作频率为1MHz,那么在循环500次后,就能够达到500ms的延时。
我们需要将计数器的初值设为500。
2. 循环计数接下来,我们进入一个循环,在循环中进行计数操作。
每次循环结束时,都需要检查计数器的值,当计数器减至0时,表示已经达到了500ms的延时时间,可以退出循环。
3. 优化程序为了提高程序的执行效率,可以对计数器进行优化。
例如可以通过嵌套循环的方式,减少循环的次数,从而提高延时的精度和稳定性。
四、程序示例下面是一个简单的示例程序,演示了如何使用汇编语言编写延时500ms的程序。
```org 0x00mov r2, #500 ; 设置计数器初值为500delay_loop:djnz r2, delay_loop ; 进行计数ret ; 延时结束,退出程序```五、结语通过以上的示例程序,我们可以看到如何使用汇编语言编写单片机延时500ms的程序。
当然,实际的延时程序可能会更加复杂,需要根据具体的单片机型号和工作频率进行调整,但是思路是相似的。
在实际的编程中,需要根据具体的需求和硬件环境来进行调整和优化,以实现更加稳定和精确的延时操作。
希望本文对单片机延时程序的编写有所帮助,也欢迎大家在评论区提出宝贵意见和建议。
单片机延时程序

实验一单片机延时程序实验一、实验目的与要求:在使用4MH在外部晶体振荡器的PIC16F877A上用软件设计一个20ms的软件延时子程序。
另外,还要求用MPLAB的软件模拟器及其附带的软件工具窗口stopwatch观测延时程序执行的时间。
二、实验内容:1.硬件电路设计:本实验中用的是软件延时,利用循环来实现延时功能。
电路就用了单片机的原本电路。
没有用到其他的功能模块,单片机与ICD3相连接。
2.软件设计思路:单片机软件延时的前提和根底是每条指令的执行时间是固定的,且大局部指令的执行时间是一样的。
这要求对每条指令所花费的指令周期〔Tcy〕做到心中有数。
指令集中5条无条件跳转指令GOTO,CALL.RETURN,RETLW和RETFIE,由于它们必然引起程序跳转,造成流水线中断,因此肯定将占用2个指令周期。
而其他4条有可能引起程序跳转的条件跳转指令DECFSZ,INCFSZ,BTFSC和,BTFSS的执行时间,需要占用2个指令周期,当条件为假不发生跳转时,仅占用1个指令周期。
其余所有指令都只用1个指令周期。
每个指令周期Tcy的时间长度,计算方法:如果采用4MHz 的外部晶体〔fosc=4 MHz〕,那么PIC中档单片机的指令周期Tcy为1us,这是一个整数。
而采用其他频率的外部晶体时,指令周期时间将反比于外部晶体频率。
至于软件延时的构造和实现方法,其实可以采用任何指令和构造,因为只是通过执行指令消耗时间。
但通常情况下有两个选择延时程序构造的原那么:(1)执行指令周期数计算方便。
如果含有太多复杂的条件跳转循环等构造势必会造成指令周期的计算困难,甚至可能造成执行所造成的软件延时时间不等。
(2)不能占用太多的程序空间。
试想用20000个NOP指令来实现20ms的延时,显然是可以的,但是这样做浪费了整整一个页的程序存储器,得不偿失,而通过适当的循环构造,重复执行某些一样的程序是比拟合理的方法。
因此,软件延时程序一般采用以下方法:如果延时时间短〔微妙级别〕,可以连续插入几条NOP指令;如果延时时间长〔几个毫秒级别〕,那么可以使用双嵌套循环的方法来实现。
单片机几个典型延时函数

软件延时:(asm)晶振12MHZ,延时1秒程序如下:DELAY:MOV 72H,#100LOOP3:MOV 71H,#100LOOP1:MOV 70H,#47LOOP0:DJNZ 70H,LOOP0NOPDJNZ 71H,LOOP1MOV 70H,#46LOOP2:DJNZ 70H,LOOP2NOPDJNZ 72H,LOOP3MOV 70H,#48LOOP4:DJNZ 70H,LOOP4定时器延时:晶振12MHZ,延时1s,定时器0工作方式为方式1DELAY1:MOV R7,#0AH ;;晶振12MHZ,延时0.5秒AJMP DELAYDELAY2:MOV R7,#14H ;;晶振12MHZ,延时1秒DELAY:CLR EX0MOV TMOD,#01H ;设置定时器的工作方式为方式1MOV TL0,#0B0H ;给定时器设置计数初始值MOV TH0,#3CHSETB TR0 ;开启定时器HERE:JBC TF0,NEXT1SJMP HERENEXT1:MOV TL0,#0B0HMOV TH0,#3CHDJNZ R7,HERECLR TR0 ;定时器要软件清零SETB EX0RETC语言延时程序:10ms延时子程序(12MHZ)void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}1s延时子程序(12MHZ)void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}200ms延时子程序(12MHZ)void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}500ms延时子程序程序: (12MHZ)void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}下面是用了8.0000MHZ的晶振的几个延时程序(用定时0的工作模式1):(1)延时0.9MSvoid delay_0_9ms(void){TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/TH0=0xfd;TL0=0xa8;TR0=1; /*启动定时器*/while(TF0==0);TR0=0;}(2)延时1MSvoid delay_1ms(void){TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/ TH0=0xfd;TL0=0x65;TR0=1; /*启动定时器*/while(TF0==0);TR0=0;}(3)延时4.5msvoid delay_4_5ms(void){TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/ TH0=0xf4;TL0=0x48;TR0=1; /*启动定时器*/while(TF0==0);TR0=0;}。
Keil C51程序设计中几种精确延时方法

Keil C51程序设计中几种精确延时方法摘要实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。
本文从实际应用出发,讨论几种实用的编制精确延时程序和计算程序执行时间的方法,并给出各种方法使用的详细步骤,以便读者能够很好地掌握理解。
关键词Keil C51 精确延时程序执行时间引言单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。
单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。
有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内[2],否则,芯片无法工作。
用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。
因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。
实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。
1 使用定时器/计数器实现精确延时单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。
第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。
本程序中假设使用频率为12 MHz的晶振。
最长的延时时间可达216=65 536 μs。
若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。
在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。
51单片机延时函数

51单片机延时函数在嵌入式系统开发中,51单片机因其易于学习和使用、成本低廉等优点被广泛使用。
在51单片机的程序设计中,延时函数是一个常见的需求。
通过延时函数,我们可以控制程序的执行速度,实现定时器功能,或者在需要的时候进行延时操作。
本文将介绍51单片机中常见的延时函数及其实现方法。
一、使用for循环延时这种方法不精确,但是对于要求不高的场合,可以用来估算延时。
cvoid delay(unsigned int time){unsigned int i,j;for(i=0;i<time;i++)for(j=0;j<1275;j++);}这个延时函数的原理是:在第一个for循环中,我们循环了指定的时间次数(time次),然后在每一次循环中,我们又循环了1275次。
这样,整个函数的执行时间就是time乘以1275,大致上形成了一个延时效果。
但是需要注意的是,这种方法因为硬件和编译器的不同,延时时间会有很大差异,所以只适用于对延时时间要求不精确的场合。
二、使用while循环延时这种方法比使用for循环延时更精确一些,但是同样因为硬件和编译器的不同,延时时间会有差异。
cvoid delay(unsigned int time){unsigned int i;while(time--)for(i=0;i<1275;i++);}这个延时函数的原理是:我们先进入一个while循环,在这个循环中,我们循环指定的时间次数(time次)。
然后在每一次循环中,我们又循环了1275次。
这样,整个函数的执行时间就是time乘以1275,大致上形成了一个延时效果。
但是需要注意的是,这种方法因为硬件和编译器的不同,延时时间会有差异,所以只适用于对延时时间要求不精确的场合。
三、使用定时器0实现精确延时这种方法需要在单片机中开启定时器0,并设置定时器中断。
在中断服务程序中,我们进行相应的操作来实现精确的延时。
这种方法需要使用到单片机的定时器中断功能,相对复杂一些,但是可以实现精确的延时。
51单片机延时程序

void delay1s(void)
{
unsigned char h,i,j,k;
for(h=5;h>0;h--)
for(i=4;i>0;i--)
for(j=116;j>0;j--)
for(k=214;k>0;k--);
//
void delay(uint t)
{
for (;t>0;t--);
}
1ms延时子程序(12MHZ)
void delay1ms(uint p)//12mhz
{ uchar i,j;
for(i=0;i<p;i++)
{
for(j=0;j<124;j++)
{;}
在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。
}
void Delay10us( ) //12mhz
{
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
}
/*****************11us延时函数*************************/
Keil C51精确延时程序(C语言)

Keil C51精确延时程序程序说明如下:振荡频率:12MHz机器周期=12/振荡频率=12/12000000=1us#include <reg52.h>void delay1(unsigned char i){ while(--i);}说明:delay1程序为:延时时间=(2*i+2)*机器周期。
i=1~255。
void delay2(unsigned char i){ while(i--);}说明:delay2程序为:延时时间=(6*i+2)*机器周期。
i=1~255。
void main (void){unsigned char m;delay1(10); //赋值并调延时程序delay1说明:本句为赋值并调用Delayus1:延时时间=(1+2)*机器周期。
全部延时时间为:延时时间=(1+2+2*i+2)*机器周期。
i=1~255。
本例:延时时间=(1+2+2*10+2)*1us=25usdelay2(10); //赋值并调延时程序delay2说明:本句为赋值并调用Delayus2:延时时间=(1+2)*机器周期。
全部延时时间为:延时时间=(1+2+6*i+2)*机器周期。
i=1~255。
本例:延时时间=(1+2+6*10+2)*1us=65usm=10; //赋值,m=1~255while(--m) ; //计算,延时时间=2*m*机器周期说明:本两句为赋值并计算。
全部延时时间为:延时时间=(1+2*m)*机器周期。
m=1~255。
本例:延时时间=(1+2*10)*1us=25uswhile(1);}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_NOP_( );
}
/*****************11us延时函数*************************/
//
void delay(uint t)
{
for (;t0;t--);
}
1ms延时子程序(12MHZ)
void delay1ms(uint p)//12mhz
DELAY:CLR EX0
MOV TMOD,#01H ;设置定时器的工作方式为方式1
MOV TL0,#0B0H ;给定时器设置计数初始值
MOV TH0,#3CH
SETB TR0;开启定时器
HERE:JBC TF0,NEXT1
SJMP HERE
NEXT1:MOV TL0,#0B0H
MOVTH0,#3CH
DJNZ R7,HERE
CLR TR0;定时器要软件清零
SETB EX0
RET
C语言延时程序:
void delay_18B20(unsigned inti)
{
while(i--);
}
void Delay10us( )//12mhz
{
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
延时则应该注意晶振的频率是多大。
软件延时:(asm)
晶振12MHZ,延时1秒
程序如下:
DELAY:MOV 72H,#100
LOOP3:MOV 71H,#100
LOOP1:MOV 70H,#47
LOOP0JNZ 70H,LOOP0
NOP
DJNZ 71H,LOOP1
MOV 70H,#46
LOOP2JNZ 70H,LOOP2
NOP
DJNZ 72H,LOOP3
MOV 70H,#48
LOOP4JNZ 70H,LOOP4
定时器延时:
晶振12MHZ,延时1s,定时器0工作方式为方式1
DELAY1:MOV R7,#0AH ;;晶振12MHZ,延时0.5秒
AJMP DELAY
DELAY2:MOV R7,#14H ;;晶振12MHZ,延时1秒
新手常用单片机延时程序
单片机延时程序(适合初学者)
下面几个是单片机的延时程序(包括asm和C程序,都是我在学单片机的过
程中用到的),在单片机延时程序中应考虑所使用的晶振的频率,在51系列的单
片机中我们常用的是11.0592MHz和12.0000MHz的晶振,而在AVR单片机上
常用的有8.000MHz和4.000MH的晶振所以在网上查找程序时r(i=0;i
{
for(j=0;j124;j++)
{;}
}
}
函数功能:延时20ms的子程序tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!