单片机延时程序分析#(优选.)

合集下载

单片机延时500ms程序汇编

单片机延时500ms程序汇编

单片机延时500ms程序汇编一、概述在单片机编程中,延时操作是非常常见且重要的一部分。

延时可以使程序在执行过程中暂停一段时间,以确保输入输出设备能够正常工作,或者是为了保护其他设备。

本文将介绍如何使用汇编语言编写单片机延时500ms的程序。

二、延时原理在单片机中,延时操作通常通过循环来实现。

每个循环需要一定的时间,通过控制循环次数和循环体内的指令数量,可以实现不同长度的延时。

在汇编语言中,可以使用计数器来控制循环次数,从而实现精确的延时操作。

三、汇编语言编写延时程序接下来,我们将使用汇编语言编写延时500ms的程序。

1. 设置计数器初值在程序的开头我们需要设置计数器的初值,这个初值需要根据单片机的工作频率和所需的延时时间来计算。

假设单片机的工作频率为1MHz,那么在循环500次后,就能够达到500ms的延时。

我们需要将计数器的初值设为500。

2. 循环计数接下来,我们进入一个循环,在循环中进行计数操作。

每次循环结束时,都需要检查计数器的值,当计数器减至0时,表示已经达到了500ms的延时时间,可以退出循环。

3. 优化程序为了提高程序的执行效率,可以对计数器进行优化。

例如可以通过嵌套循环的方式,减少循环的次数,从而提高延时的精度和稳定性。

四、程序示例下面是一个简单的示例程序,演示了如何使用汇编语言编写延时500ms的程序。

```org 0x00mov r2, #500 ; 设置计数器初值为500delay_loop:djnz r2, delay_loop ; 进行计数ret ; 延时结束,退出程序```五、结语通过以上的示例程序,我们可以看到如何使用汇编语言编写单片机延时500ms的程序。

当然,实际的延时程序可能会更加复杂,需要根据具体的单片机型号和工作频率进行调整,但是思路是相似的。

在实际的编程中,需要根据具体的需求和硬件环境来进行调整和优化,以实现更加稳定和精确的延时操作。

希望本文对单片机延时程序的编写有所帮助,也欢迎大家在评论区提出宝贵意见和建议。

51单片机技巧:精确延时

51单片机技巧:精确延时

在用C语言写程序时,初学者遇到的一个难题时精确延时程序的设计。

我刚开始用C语言写程序时同样遇到了这个问题,后来参考了一些文章和实际设计后才知道了精确延时程序的设计。

我现在就用两种方法来实现,一种是while()语句,另一种是for()语句,这两种语句均可产生汇编语句中的DJNZ语句,以12MHZ晶振为例(说明:在编写C程序时,变量尽量使用unsigned char,如满足不了才使用unsigned int):1.delay=99;while(--delay);产生的汇编代码为:000FH MOV 08H,#63H0012H DJNZ 08H,0012H这样产生的延时时间为:(99+1)×2us。

最小延时时间为2us,若加上对delay赋值语句,则最小为4us。

2.for(i=delay;i>0;i--);产生的汇编代码同while()语句。

下面来举例几个延时函数:一. 500ms延时子程序void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}产生的汇编代码:C:0x0800 7F0F MOV R7,#0x0FC:0x0802 7ECA MOV R6,#0xCAC:0x0804 7D51 MOV R5,#0x51C:0x0806 DDFE DJNZ R5,C:0806C:0x0808 DEFA DJNZ R6,C:0804C:0x080A DFF6 DJNZ R7,C:0802C:0x080C 22 RET计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}三. 10ms延时子程序void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}四. 1s延时子程序void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}以上的这先希望对大家有帮组,如有不足之处请指出,如有更好的方法也可以告诉我,大家一起分享第二部分关于单片机C语言的精确延时,网上很多都是大约给出延时值没有准确那值是多少,也就没有达到精确高的要求,而51hei给出的本函数克服了以上缺点,能够精确计数出要延时值且精确达到1us,本举例所用CPU为STC12C5412系列12倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。

51单片机delay()延时的用途和用法讲解

51单片机delay()延时的用途和用法讲解

{ unsigned int i; for(i=0;i<uiDelayShort;i++) { ; //一个分号相当于执行一条空语句 }
}
/* 注释八: * delay_long(unsigned int uiDelayLong)是大延时函数, * 专门用在上电初始化的大延时, * 此函数的特点是能实现比较长时间的延时,细分度取决于内嵌 for 循环的次数, * uiDelayLong 的数值的大小就代表里面执行了多少次 500 条空指令的时间。 * 数值越大,延时越长。时间精度不要刻意去计算,感觉差不多就行。 */ void delay_long(unsigned int uiDelayLong) {
unsigned int i; unsigned int j; for(i=0;i<uiDelayLong;i++) {
for(j=0;j<500;j++) //内嵌循环的空指令数量 { ; //一个分号相当于执行一条空语句 }
}பைடு நூலகம்}
void initial_myself() //初始化单片机 {
led_dr=0; //LED 灭 } void initial_peripheral() //初始化外围 {
delay()延时的用途讲解
(1)硬件平台:基于朱兆祺 51 单片机学习板。
(2)实现功能:让一个 LED 闪烁。
(3)源代码讲解如下:
#include "REG52.H"
void initial_myself(); void initial_peripheral();
void delay_short(unsigned int uiDelayshort); void delay_long(unsigned int uiDelaylong); void led_flicker();

单片机延时程序

单片机延时程序

实验一单片机延时程序实验一、实验目的与要求:在使用4MH在外部晶体振荡器的PIC16F877A上用软件设计一个20ms的软件延时子程序。

另外,还要求用MPLAB的软件模拟器及其附带的软件工具窗口stopwatch观测延时程序执行的时间。

二、实验内容:1.硬件电路设计:本实验中用的是软件延时,利用循环来实现延时功能。

电路就用了单片机的原本电路。

没有用到其他的功能模块,单片机与ICD3相连接。

2.软件设计思路:单片机软件延时的前提和根底是每条指令的执行时间是固定的,且大局部指令的执行时间是一样的。

这要求对每条指令所花费的指令周期〔Tcy〕做到心中有数。

指令集中5条无条件跳转指令GOTO,CALL.RETURN,RETLW和RETFIE,由于它们必然引起程序跳转,造成流水线中断,因此肯定将占用2个指令周期。

而其他4条有可能引起程序跳转的条件跳转指令DECFSZ,INCFSZ,BTFSC和,BTFSS的执行时间,需要占用2个指令周期,当条件为假不发生跳转时,仅占用1个指令周期。

其余所有指令都只用1个指令周期。

每个指令周期Tcy的时间长度,计算方法:如果采用4MHz 的外部晶体〔fosc=4 MHz〕,那么PIC中档单片机的指令周期Tcy为1us,这是一个整数。

而采用其他频率的外部晶体时,指令周期时间将反比于外部晶体频率。

至于软件延时的构造和实现方法,其实可以采用任何指令和构造,因为只是通过执行指令消耗时间。

但通常情况下有两个选择延时程序构造的原那么:(1)执行指令周期数计算方便。

如果含有太多复杂的条件跳转循环等构造势必会造成指令周期的计算困难,甚至可能造成执行所造成的软件延时时间不等。

(2)不能占用太多的程序空间。

试想用20000个NOP指令来实现20ms的延时,显然是可以的,但是这样做浪费了整整一个页的程序存储器,得不偿失,而通过适当的循环构造,重复执行某些一样的程序是比拟合理的方法。

因此,软件延时程序一般采用以下方法:如果延时时间短〔微妙级别〕,可以连续插入几条NOP指令;如果延时时间长〔几个毫秒级别〕,那么可以使用双嵌套循环的方法来实现。

新手常用单片机延时程序

新手常用单片机延时程序
_NOP_( );
_NOP_( );
}
/*****************11us延时函数*************************/
//
void delay(uint t)
{
for (;t0;t--);
}
1ms延时子程序(12MHZ)
void delay1ms(uint p)//12mhz
DELAY:CLR EX0
MOV TMOD,#01H ;设置定时器的工作方式为方式1
MOV TL0,#0B0H ;给定时器设置计数初始值
MOV TH0,#3CH
SETB TR0;开启定时器
HERE:JBC TF0,NEXT1
SJMP HERE
NEXT1:MOV TL0,#0B0H
MOVTH0,#3CH
DJNZ R7,HERE
CLR TR0;定时器要软件清零
SETB EX0
RET
C语言延时程序:
void delay_18B20(unsigned inti)
{
while(i--);
}
void Delay10us( )//12mhz
{
_NOP_( );
_NOP_( );
_NOP_( );
_NOP_( );
延时则应该注意晶振的频率是多大。
软件延时:(asm)
晶振12MHZ,延时1秒
程序如下:
DELAY:MOV 72H,#100
LOOP3:MOV 71H,#100
LOOP1:MOV 70H,#47
LOOP0JNZ 70H,LOOP0
NOP
DJNZ 71H,LOOP1
MOV 70H,#46
LOOP2JNZ 70H,LOOP2

C51单片机的几种常用延时程序设计2024

C51单片机的几种常用延时程序设计2024

引言概述:C51单片机是一种广泛应用于嵌入式系统中的微控制器,它具有高度集成化、易于编程和灵活性强等特点。

在C51单片机的软件开发过程中,延时程序设计是非常重要的一部分。

本文将介绍C51单片机中几种常用的延时程序设计方法,包括循环延时、定时器延时、外部中断延时等。

这些方法不仅可以满足在实际应用中对延时的需求,而且可以提高程序的稳定性和可靠性。

正文内容:一、循环延时1. 使用循环控制语句实现延时功能,例如使用for循环、while循环等。

2. 根据需要设置延时的时间,通过循环次数来控制延时的时长。

3. 循环延时的精度受到指令执行时间的影响,可能存在一定的误差。

4. 循环延时的优点是简单易用,适用于较短的延时时间。

5. 注意在循环延时时要考虑其他任务的处理,避免长时间的等待造成程序卡死或响应延迟。

二、定时器延时1. 使用C51单片机内置的定时器模块来实现延时。

2. 配置定时器的工作模式,如工作方式、定时器精度等。

3. 设置定时器的初值和重装值,控制定时器中断的触发时间。

4. 在定时器中断服务函数中进行延时计数和延时结束标志的设置。

5. 定时器延时的优点是精确可控,适用于需要较高精度的延时要求。

三、外部中断延时1. 在C51单片机上配置一个外部中断引脚。

2. 设置外部中断中断触发条件,如上升沿触发、下降沿触发等。

3. 在外部中断中断服务函数中进行延时计数和延时结束标志的设置。

4. 外部中断延时的优点是能够快速响应外部信号,适用于实时性要求较高的场景。

5. 注意在外部中断延时时要处理好外部中断的抖动问题,确保延时的准确性。

四、内部计时器延时1. 使用C51单片机内部的计时器模块来实现延时。

2. 配置计时器的工作模式,如工作方式、计时器精度等。

3. 设置计时器的初值和重装值,使计时器按照一定的频率进行计数。

4. 根据计时器的计数值进行延时的判断和计数。

5. 内部计时器延时的优点是能够利用单片机内部的硬件资源,提高延时的准确性和稳定性。

80C51单片机上电复位和复位延时的时序分析

80C51单片机上电复位和复位延时的时序分析

80C51单片机上电复位和复位延时的时序分析1.上电复位时序分析:当单片机通电时,其内部电路经过一系列的过程,最终实现上电复位。

具体的时序如下:a.当电源供电稳定后,单片机内部开始运行,在此之前,通过电源上的电感元件(电源滤波电感)将电源的浪涌电流限制在一定范围内,避免对器件造成损害。

b.在电源稳定后,单片机内部的复位电路开始工作,将复位引脚(RST)拉低。

复位引脚通常由一个上拉电阻连接到电源电压,当复位引脚被拉低时,单片机内部复位逻辑电路开始工作。

c.单片机内部的复位逻辑电路通过一系列的电路操作,包括对寄存器、内存等的清零操作,实现对整个系统的复位。

同时,系统时钟和各个外设模块(如定时器、串口等)被禁止,确保整个系统进入复位状态。

d.完成复位操作后,复位引脚会逐渐恢复高电平,此时单片机开始退出复位状态,系统可以开始正常运行。

2.复位延时时序分析:在单片机复位后,必须等待一段时间,直到内部电路完全稳定,才能恢复正常运行。

此时间段被称为复位延时。

具体的时序如下:a.当复位引脚恢复高电平时,复位逻辑电路停止工作,但系统内部的各个模块以及外设模块的电路需要一定时间来稳定,此时单片机处于复位延时状态。

b.在复位延时期间,系统时钟和各个外设模块仍然被禁止,保证系统内部不会发生意外的操作。

c.复位延时的具体时间取决于单片机的工作频率,通常在给定的单片机规格书中可以找到相关的参数或公式。

复位延时可以使用一个定时器或延时循环实现,保证系统稳定后再进行正常的操作。

总结:80C51单片机的上电复位和复位延时时序分析是单片机运行的基础,关系到系统的稳定性和可靠性。

通过了解上电复位和复位延时的时序分析,可以更好地理解单片机的工作原理,并合理地设计系统硬件电路和软件逻辑,保证系统的正常运行。

51单片机延时函数

51单片机延时函数

51单片机延时函数在嵌入式系统开发中,51单片机因其易于学习和使用、成本低廉等优点被广泛使用。

在51单片机的程序设计中,延时函数是一个常见的需求。

通过延时函数,我们可以控制程序的执行速度,实现定时器功能,或者在需要的时候进行延时操作。

本文将介绍51单片机中常见的延时函数及其实现方法。

一、使用for循环延时这种方法不精确,但是对于要求不高的场合,可以用来估算延时。

cvoid delay(unsigned int time){unsigned int i,j;for(i=0;i<time;i++)for(j=0;j<1275;j++);}这个延时函数的原理是:在第一个for循环中,我们循环了指定的时间次数(time次),然后在每一次循环中,我们又循环了1275次。

这样,整个函数的执行时间就是time乘以1275,大致上形成了一个延时效果。

但是需要注意的是,这种方法因为硬件和编译器的不同,延时时间会有很大差异,所以只适用于对延时时间要求不精确的场合。

二、使用while循环延时这种方法比使用for循环延时更精确一些,但是同样因为硬件和编译器的不同,延时时间会有差异。

cvoid delay(unsigned int time){unsigned int i;while(time--)for(i=0;i<1275;i++);}这个延时函数的原理是:我们先进入一个while循环,在这个循环中,我们循环指定的时间次数(time次)。

然后在每一次循环中,我们又循环了1275次。

这样,整个函数的执行时间就是time乘以1275,大致上形成了一个延时效果。

但是需要注意的是,这种方法因为硬件和编译器的不同,延时时间会有差异,所以只适用于对延时时间要求不精确的场合。

三、使用定时器0实现精确延时这种方法需要在单片机中开启定时器0,并设置定时器中断。

在中断服务程序中,我们进行相应的操作来实现精确的延时。

这种方法需要使用到单片机的定时器中断功能,相对复杂一些,但是可以实现精确的延时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一次课中,我们已经知道,程序中的符号R7、R6是代表了一个个的RAM单元,是用来放一些数据的,下面我们再来看一下其它符号的含义。

DELAY:MOV R7,#250;(6)
D1:MOV R6,#250 ;(7)
D2:DJNZ R6,D2 ;(8)
DJNZ R7,D1;(9)
RET ;(10)
〈单片机延时程序〉
MOV:这是一条指令,意思是传递数据。

说到传递,我们都很清楚,传东西要从一本人的手上传到另一本人的手上,也就是说要有一个接受者,一个传递者和一样东西。

从指令M OV R7,#250中来分析,R7是一个接受者,250是被传递的数,传递者在这条指令中被省略了(注意:并不是每一条传递指令都会省的,事实上大部份数据传递指令都会有传递者)。

它的意义也很明显:将数据250送到R7中去,因此执行完这条指令后,R7单元中的值就应当是250。

在250前面有个#号,这又是什么意思呢?这个#就是用来说明250就是一个被传递的东西本身,而不是传递者。

那么MOV R6,#250是什么意思,应当不用分析了吧。

DJNZ:这是另一条指令,我们来看一下这条指令后面跟着的两个东西,一个是R6,一个是D2,R6我们当然已知是什么了,查一下D2是什么。

D2在本行的前面,我们已学过,这称之为标号。

标号的用途是什么呢?就是给本行起一个名字。

DJNZ指令的执行过程是这样的,它将其后面的第一个参数中的值减1,然后看一下,这个值是否等于0,如果等于0,就往下执行,如果不等于0,就转移,转到什么地方去呢?可能大家已猜到了,转到第二个参数所指定的地方去(请大家用自已的话讲一下这条语句是怎样执行的)。

本条指令的最终执行结果就是,在原地转圈250次。

执行完了DJNZ R6,D2之后(也就是R6的值等于0之后),就会去执行下面一行,也就是DJNZ R7,D1,请大家自行分析一下这句话执行的结果。

(转去执行MOV R6,#25 0,同时R7中的值减1),最终DJNZ R6,D2这句话将被执行250*250=62500次,执行这么多次同一条指令干吗?就是为了延时。

一个问题:如果在R6中放入0,会有什么样的结果。

二、时序分析:
前面我们介绍了延时程序,但这还不完善,因为,我们只知道DJNZ R6,D2这句话会被执行62500次,但是执行这么多次需要多长时间呢?是否满足我们的要求呢?我们还不知道,所以下面要来解决这个问题。

先提一个问题:我们学校里什么是最重要的。

(铃声)校长能出差,老师能休息,但学校一日无铃声必定大乱。

整个学校就是在铃声的统一指挥下,步调一致,统一协调地工作着。

这个铃是按一定的时间安排来响的,我们能称之为“时序&#0;&#0;时间的次序”。

一个由人组成的单位尚且要有一定的时序,计算机当然更要有严格的时序。

事实上,计算机更象一个大钟,什么时候分针动,什么时候秒针动,什么时候时针动,都有严格的规定,一点也不能乱。

计算机要完成的事更复杂,所以它的时序也更复杂。

我们已知,计算机工作时,是一条一条地从ROM中取指令,然后一步一步地执行,我们规定:计算机访问一次存储器的时间,称之为一个机器周期。

这是一个时间基准,好象我们人用“秒”作为我们的时间基准一样,为什么不干脆用“秒”,多好,很习惯,学下去我们就会知道用“秒”反而不习惯。

一个机器周期包括12个时钟周期。

下面让我们算一下一个机器周期是多长时间吧。

设一个单片机工作于12M晶体震荡器,它的时钟周期是1/12(微秒)。

它的一个机器周期是12*(1/12)也就是1微秒。

(请计算一个工作于6M晶体震荡器的单片机,它的机器周期是多少)。

MCS-51单片机的所有指令中,有一些完成得比较快,只要一个机器周期就行了,有一些完成得比较慢,得要2个机器周期,还有两条指令要4个机器周期才行。

这也不难再解,不
是吗?我让你扫地的执行要完成总得比要你完成擦黑板的指令时间要长。

为了恒量指令执行时间的长短,又引入一个新的概念:指令周期。

所谓指令周期就是指执行一条指令的时间。

INTEL对每一条指令都给出了它的指令周期数,这些数据,大部份不需要我们去记忆,但是有一些指令是需要记住的,如DJNZ指令是双周期指令。

下面让我们来计算刚才的延时。

首先必须要知道晶体震荡器的频率,我们设所用晶体震荡器为12M,则一个机器周期就是1微秒。

而DJNZ指令是双周期指令,所以执行一次要2
个微秒。

一共执行62500次,正好125000微秒,也就是125毫秒。

练习:设计一个延时100毫秒的延时程序。

要点分析:1、一个单元中的数是否能超过255。

2、如何分配两个数。

三、复位电路
一、复位方式
⒈复位条件
RST引脚保持2个机器周期以上的高电平。

⒉复位电路
〈单片机复位电路〉
⒊复位后CPU状态
PC:0000H TMOD:00H
Acc:00H TCON:00H
B:00H TH0:00H
PSW:00H TL0:00H
SP:07H TH1:00H
DPTR:0000H TL1:00H
P0~P3:FFH SCON:00H
IP:×××00000B SBUF:不定
IE:0××00000B PCON:0×××0000B
任何单片机在工作之前都要有个复位的过程,复位是什么意思呢?它就象是我们上课之前打的预备铃。

预备铃一响,大家就自动地从操场、其它地方进入教室了,在这一段时间里,是没有老师干预的,对单片机来说,是程序还没有开始执行,是在做准备工作。

显然,准备工作不需要太长的时间,复位只需要5ms的时间就能了。

如何进行复位呢?只要在单片机的RST管脚上加上高电平,就能了,按上面所说,时间不少于5ms。

为了达到这个要求,能用很多种办法,这里供给一种供参考,见图1。

实际上,我们在上一次实验的图中已见到过了。

这种复位电路的工作原理是:通电时,电容两端相当于是短路,于是RST管脚上为高电平,然后电源通过电阻对电容充电,RST端电压慢慢下降,降到一定程序,即为低电平,单片机开始正常工作。

最新文件仅供参考已改成word文本。

方便更改。

相关文档
最新文档