matlab 产生随机数命令大全

合集下载

MATLAB产生各种分布的随机数

MATLAB产生各种分布的随机数

M A T L A B产生各种分布的随机数The final revision was on November 23, 2020MATLAB产生各种分布的随机数1,均匀分布U(a,b):产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b)2,0-1分布U(0,1)产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n)产生一个[0,1]均匀分布的随机数:rand4,二类分布binornd(N,P,mm,nn)如binornd(10,,mm,nn)即产生mm*nn均值为N*P的矩阵binornd(N,p)则产生一个。

而binornd(10,,mm)则产生mm*mm的方阵,军阵为N*p。

5,产生m*n阶离散均匀分布的随机数矩阵:unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵6,产生mm nn阶期望值为的指数分布的随机数矩阵:exprnd( ,mm, nn)此外,常用逆累积分布函数表函数名调用格式函数注释norminv X=norminv(P,mu,sigma) 正态逆累积分布函数expinv X=expinv(P,mu) 指数逆累积分布函数weibinv X=weibinv(P,A,B) 威布尔逆累积分布函数logninv X=logninv(P,mu,sigma) 对数正态逆累积分布函数Chi2inv X=chi2inv(P,A,B) 卡方逆累积分布函数Betainv X=betainv(P,A,B) β分布逆累积分布函数随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数 binornd格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。

R = binornd(N,P,m) %m指定随机数的个数,与R同维数。

matlab中0-1的随机数

matlab中0-1的随机数

在matlab中生成0-1之间的随机数是一种常见的操作,可以通过内置的随机数生成函数来实现。

生成0-1之间的随机数在模拟实验、统计分析、机器学习等方面具有重要的应用,因此掌握在matlab中生成0-1随机数的方法对于数据科学和工程领域的研究人员来说是非常重要的。

1. 使用rand函数生成均匀分布的随机数在matlab中可以使用rand函数来生成均匀分布的随机数,其语法为:```matlabr = rand(m, n)```其中m 和n 分别表示生成随机数的维度,m 表示行数,n 表示列数。

rand函数生成的随机数范围在0-1之间,且满足均匀分布。

2. 使用randn函数生成正态分布的随机数除了生成均匀分布的随机数外,matlab还可以使用randn函数来生成正态分布的随机数,其语法为:```matlabr = randn(m, n)```其中 m 和 n 同样表示生成随机数的维度,randn函数生成的随机数满足标准正态分布,即均值为0,方差为1。

3. 控制随机数的种子在生成随机数时,可以通过控制随机数的种子来保证生成的随机数是可重复的。

在matlab中可以使用rng函数来控制随机数的种子,其语法为:```matlabrng(seed)```其中 seed 表示随机数的种子,通过设置相同的种子可以确保每次生成的随机数是一样的。

在matlab中生成0-1之间的随机数有多种方法,包括使用rand函数生成均匀分布的随机数,使用randn函数生成正态分布的随机数,以及通过控制随机数的种子来保证随机数的可重复性。

这些方法为研究人员在数据分析和模拟实验中提供了便利,对于提高工作效率和保证实验结果的可靠性具有重要意义。

在实际应用中,生成0-1之间的随机数通常用于模拟实验、统计分析、概率建模、机器学习算法等领域。

通过生成符合特定分布的随机数,可以更好地模拟实际场景,并进行有效的数据分析与处理。

在matlab中,生成0-1之间的随机数的应用十分广泛,具有很高的实用价值。

matlab中生成测试模型的命令

matlab中生成测试模型的命令

matlab中生成测试模型的命令
在MATLAB中,可以使用以下命令生成测试模型:
- `rand()`:生成在0和1之间的随机数。

- `randi(n)`:生成一个介于1和n之间的随机整数。

- `randn()`:生成符合标准正态分布的随机数。

- `linspace(start, end, n)`:生成从start到end之间的n个等间距的数字。

- `zeros(m, n)`:生成一个大小为m×n的全零矩阵。

- `ones(m, n)`:生成一个大小为m×n的全1矩阵。

- `eye(n)`:生成一个大小为n×n的单位矩阵。

- `magic(n)`:生成一个大小为n×n的幻方矩阵。

- `hilb(n)`:生成一个Hilbert矩阵,即下三角元素为1/(i+j-1)的矩阵。

- `toeplitz(c, r)`:生成一个以c为第一列,以r为第一行的Toeplitz矩阵。

除了上述命令,MATLAB还提供了许多其他的生成测试模型的函数,可以根据具体需求选择使用。

matlab随机数生成(全部函数)

matlab随机数生成(全部函数)

matlab 全部的随机数函数(一)Matlab内部函数a.基本随机数Matlab中有两个最基本生成随机数的函数。

1.rand()生成(0,1)区间上均匀分布的随机变量。

基本语法:rand([M,N,P ...])生成排列成M*N*P... 多维向量的随机数。

如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。

一些例子:rand(5,1) %生成5个随机数排列的列向量,一般用这种格式rand(5) %生成5行5列的随机数矩阵rand([5,4]) %生成一个5行4列的随机数矩阵生成的随机数大致的分布。

x=rand(100000,1);hist(x,30);由此可以看到生成的随机数很符合均匀分布。

(视频教程会略提及hist()函数的作用) 2.randn()生成服从标准正态分布(均值为0,方差为1)的随机数。

基本语法和rand()类似。

randn([M,N,P ...])生成排列成M*N*P... 多维向量的随机数。

如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。

一些例子:randn(5,1) %生成5个随机数排列的列向量,一般用这种格式randn(5) %生成5行5列的随机数矩阵randn([5,4]) %生成一个5行4列的随机数矩阵生成的随机数大致的分布。

x=randn(100000,1);hist(x,50);由图可以看到生成的随机数很符合标准正态分布。

b.连续型分布随机数如果你安装了统计工具箱(Statistic Toolbox),除了这两种基本分布外,还可以用Matlab内部函数生成符合下面这些分布的随机数。

3.unifrnd()和rand()类似,这个函数生成某个区间内均匀分布的随机数。

基本语法unifrnd(a,b,[M,N,P,...])生成的随机数区间在(a,b)内,排列成M*N*P... 多维向量。

如果只写M,则生成M*M矩阵;如果参数为[M,N]可以省略掉方括号。

MATLAB产生各种分布的随机数

MATLAB产生各种分布的随机数

MATLAB产生各种分布的随机数1,均匀分布U(a,b):产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n)产生一个[a,b]均匀分布的随机数:unifrnd (a,b)2,0-1分布U(0,1)产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n)产生一个[0,1]均匀分布的随机数:rand4,二类分布binornd(N,P,mm,nn) 如binornd(10,0.5,mm,nn)即产生mm*nn均值为N*P的矩阵binornd(N,p)则产生一个。

而binornd(10,0.5,mm)则产生mm*mm的方阵,军阵为N*p。

5,产生m*n阶离散均匀分布的随机数矩阵:unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵6,产生mm nn阶期望值为的指数分布的随机数矩阵:exprnd( ,mm, nn)此外,常用逆累积分布函数表函数名调用格式函数注释norminv X=norminv(P,mu,sigma) 正态逆累积分布函数expinv X=expinv(P,mu) 指数逆累积分布函数weibinv X=weibinv(P,A,B) 威布尔逆累积分布函数logninv X=logninv(P,mu,sigma) 对数正态逆累积分布函数Chi2inv X=chi2inv(P,A,B) 卡方逆累积分布函数Betainv X=betainv(P,A,B) β分布逆累积分布函数4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数 binornd格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。

R = binornd(N,P,m) %m指定随机数的个数,与R同维数。

R = binornd(N,P,m,n) %m,n分别表示R的行数和列数例4-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 14.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数 normrnd格式 R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA的正态分布的随机数据,R可以是向量或矩阵。

(完整版)Matlab各种随机数设置

(完整版)Matlab各种随机数设置

Matlab 各种随机数设置randn(伪随机正态分布数)Normally distributed pseudorandom numbersSyntaxr = randn(n)randn(m,n)randn([m,n])randn(m,n,p,...)randn([m,n,p,...])randn(size(A))r = randn(..., 'double')r = randn(..., 'single')Descriptionr = randn(n) returns an n-by-n matrix containing pseudorandom values drawn from the standard normal distribution. randn(m,n) or randn([m,n]) returns an m-by-n matrix. randn(m,n,p,...) or randn([m,n,p,...]) returns an m-by-n-by-p-by-... array. randn returns a scalar. randn(size(A)) returns an array the same size as A.r = randn(..., 'double') or r = randn(..., 'single') returns an array of normal values of the specified class.Note The size inputs m, n, p, ... should be nonnegative integers. Negative integers are treated as 0.The sequence of numbers produced by randn is determined by the internal state of the uniform pseudorandom number generator that underlies rand, randi, and randn. randn uses one or more uniform values from that default stream to generate each normal value. Control the default stream using its properties and methods.Note In versions of MATLAB prior to 7.7 (R2008b), you controlled the internal state of the random number stream used by randn by calling randn directly with the 'seed' or 'state' keywords.ExamplesGenerate values from a normal distribution with mean 1 and standard deviation 2.r = 1 + 2.*randn(100,1);Generate values from a bivariate normal distribution with specified mean vector and covariance matrix.mu = [1 2];Sigma = [1 .5; .5 2]; R = chol(Sigma);z = repmat(mu,100,1) + randn(100,2)*R;Replace the default stream at MATLAB startup, using a stream whose seed is based on clock, so that randn will return different values in different MATLAB sessions. It is usually not desirable to do this more than once per MATLAB session.RandStream.setDefaultStream ...(RandStream('mt19937ar','seed',sum(100*clock)));randn(1,5)Save the current state of the default stream, generate 5 values, restore the state, and repeat the sequence.defaultStream = RandStream.getDefaultStream;savedState = defaultStream.State;z1 = randn(1,5)defaultStream.State = savedState;z2 = randn(1,5) % contains exactly the same values as z1Normrnd (随机正态分布数)Normal random numbersSyntaxR = normrnd(mu,sigma)R = normrnd(mu,sigma,m,n,...)R = normrnd(mu,sigma,[m,n,...])DescriptionR = normrnd(mu,sigma) generates random numbers from the normal distribution with mean parameter mu and standard deviation parameter sigma. mu and sigma can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for mu or sigma is expanded to a constant array with the same dimensions as the other input.R = normrnd(mu,sigma,m,n,...) or R = normrnd(mu,sigma,[m,n,...]) generates an m-by-n-by-... array. The mu, sigma parameters can each be scalars or arrays of the same size as R.Examplesn1 = normrnd(1:6,1./(1:6))n1 =2.1650 2.31343.02504.0879 4.8607 6.2827n2 = normrnd(0,1,[1 5])n2 =0.0591 1.7971 0.2641 0.8717 -1.4462n3 = normrnd([1 2 3;4 5 6],0.1,2,3)n3 =0.9299 1.9361 2.96404.12465.0577 5.9864randperm (RandStream) (区域内的所有整数的随机分布)Random permutationrandperm(s,n)Descriptionrandperm(s,n) generates a random permutation of the integers from 1 to n. For example, randperm(s,6) might be [2 4 5 6 1 3]. randperm(s,n) uses random values drawn from the random number stream s.betarnd (贝塔分布)贝塔分布是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数SyntaxR = betarnd(A,B)R = betarnd(A,B,m,n,...)R = betarnd(A,B,[m,n,...])DescriptionR = betarnd(A,B) generates random numbers from the beta distribution with parameters specified by A and B. A and B can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for A or B is expanded to a constant array with the same dimensions as the other input.R = betarnd(A,B,m,n,...) or R = betarnd(A,B,[m,n,...]) generates an m-by-n-by-... array containing random numbers from the beta distribution with parameters A and B. A and B can each be scalars or arrays of the same size as R.Examplesa = [1 1;2 2];b = [1 2;1 2];r = betarnd(a,b)r =0.6987 0.61390.9102 0.8067r = betarnd(10,10,[1 5])r =0.5974 0.4777 0.5538 0.5465 0.6327r = betarnd(4,2,2,3)r =0.3943 0.6101 0.57680.5990 0.2760 0.5474Binornd (二项式分布)二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

matlab中生成0到1之间的高斯分布的随机数

matlab中生成0到1之间的高斯分布的随机数

在MATLAB中生成0到1之间的高斯分布的随机数可以通过以下步骤实现:1. 导入MATLAB工具箱在MATLAB中进行任何操作之前,需要确保已经导入了Statistics and Machine Learning Toolbox工具箱,因为高斯分布的生成函数位于该工具箱中。

2. 使用randn函数生成高斯分布随机数在MATLAB中,可以使用randn函数来生成服从标准正态分布(均值为0,标准差为1)的随机数。

对生成的随机数进行线性变换,以使其均值为μ,标准差为σ。

具体操作如下:```matlabmu = 0; 均值sigma = 1; 标准差n = 1000; 生成1000个随机数r = mu + sigma.*randn(n,1); 生成均值为mu,标准差为sigma的高斯分布随机数```在这段代码中,mu表示所需的高斯分布的均值,sigma表示所需的高斯分布的标准差,n表示生成随机数的个数。

通过randn函数生成的随机数将被线性变换为均值为μ,标准差为σ的高斯分布随机数。

3. 调整生成的随机数范围如果需要将生成的随机数范围限定在0到1之间,可以通过线性变换的方法实现。

具体来说,可以使用MATLAB中的min和max函数来实现对随机数范围的调整,如下所示:```matlabr_adj = (r - min(r)) / (max(r) - min(r)); 调整随机数范围为0到1之间```通过这段代码,生成的随机数r将被调整为范围在0到1之间的r_adj。

总结通过以上步骤,就可以在MATLAB中生成0到1之间的高斯分布的随机数。

首先使用randn函数生成服从标准正态分布的随机数,然后通过线性变换调整均值和标准差,最终通过调整随机数范围实现生成0到1之间的高斯分布随机数。

这样的操作可以很好地满足实际需求,并且在MATLAB中具有很高的灵活性和可操作性。

生成高质量的高斯分布随机数在统计学、工程学以及计算机科学等领域中都具有重要的应用。

matlab产生随机数的方法

matlab产生随机数的方法

matlab产生随机数的方法第一种方法是用 random 语句,其一般形式为y = random('分布的英文名',A1,A2,A3,m,n),表示生成 m 行 n 列的m × n 个参数为 ( A1 , A2 , A3 ) 的该分布的随机数。

例如:(1) R = random('Normal',0,1,2,4): 生成期望为 0,标准差为 1 的(2 行 4 列)2× 4 个正态随机数(2) R = random('Poisson',1:6,1,6): 依次生成参数为 1 到 6 的(1 行 6 列)6 个 Poisson 随机数第二种方法是针对特殊的分布的语句:一.几何分布随机数(下面的 P,m 都可以是矩阵)R = geornd(P) (生成参数为 P 的几何随机数)R = geornd(P,m) (生成参数为 P 的× m 个几何随机数)1 R = geornd(P,m,n) (生成参数为 P 的 m 行 n 列的m × n 个几何随机数)例如(1) R = geornd(1./ 2.^(1:6)) ( 生成参数依次为 1/2,1/2^2,到 1/2^6 的 6 个几何随机数)(2) R = geornd(0.01,[1 5]) (生成参数为 0.01 的(1行5列)5 个几何随机数).二.Beta 分布随机数R = betarnd(A,B) (生成参数为 A,B 的 Beta 随机数)R = betarnd(A,B,m) (生成× m 个数为 A,B 的 Beta 随机数)1R = betarnd(A,B,m,n) (生成 m 行 n 列的m × n 个数为 A,B 的 Beta 随机数).三.正态随机数R = normrnd(MU,SIGMA) (生成均值为 MU,标准差为 SIGMA 的正态随机数)R = normrnd(MU,SIGMA,m) (生成1× m 个正态随机数)R = normrnd(MU,SIGMA,m,n) (生成 m 行 n 列的m × n 个正态随机数)例如(1) R = normrnd(0,1,[1 5]) 生成 5 个正态(0,1) 随机数(2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为[1,2,3;4,5,6], 方差为 0.1 的2× 3 个正态随机数.四.二项随机数:类似地有R = binornd(N,P) R = binornd(N,P,m) R = binornd(N,p,m,n) 例如n = 10:10:60; r1 = binornd(n,1./n) 或 r2 = binornd(n,1./n,[1 6]) (都生成参数分别为1 1 ), L, ( 60, ) 的6个二项随机数.(10,10 60五.自由度为 V 的χ 2 随机数:R = chi2rnd(V) R = chi2rnd(V R = chi2rnd(V,m),m,n)六.期望为 MU 的指数随机数(即Exp 随机数):1MUR = exprnd(MU) R = exprnd(MU,m) R = exprnd(MU,m,n)七.自由度为 V1, V2 的 F 分布随机数:R = frnd(V1,V2) R = frnd(V1, V2,m) R = frnd(V1,V2,m,n)八.Γ ( A, λ ) 随机数:R = gamrnd(A,lambda) R = gamrnd(A,lambda,m) R = gamrnd (A,lambda,m,n)九.超几何分布随机数:R = hygernd(N,K,M) R = hygernd(N,K,M,m) R =hygernd(N,K,M,m,n)十.对数正态分布随机数R = lognrnd(MU,SIGMA) R = lognrnd(MU,SIGMA,m) R = lognrnd(MU,SIGMA,m,n)十一.负二项随机数:R = nbinrnd(r,p) R = nbinrnd(r,p,m) R = nbinrnd(r,p,m,n)十二.Poisson 随机数:R = poissrnd(lambda) R = poissrnd(lambda,m) R =poissrnd(lambda,m,n)例如,以下 3 种表达有相同的含义:lambda = 2; R =poissrnd(lambda,1,10)(或 R = poissrnd(lambda,[1 10]) 或 R = poissrnd(lambda(ones(1,10)))十三.Rayleigh 随机数:R = raylrnd(B) R = raylrnd(B,m) R = raylrnd(B,m,n)十四.V 个自由度的 t 分布的随机数:R = trnd(V) R = trnd(V,m) R = trnd(V,m,n)42十五.离散的均匀随机数:R = unidrnd(N) R = unidrnd(N,m) R = unidrnd(N,m,n)十六.[A,B] 上均匀随机数R = unifrnd(A,B) R = unifrnd(A,B,m) R = unifrnd(A,B,m,n)例如 unifrnd(0,1:6)与 unifrnd(0,1:6,[1 6]) 都依次生成[0,1] 到[0,6]的6个均匀随机数.:十七.Weibull 随机数R = weibrnd(A,B) R = weibrnd(A,B,m) R = weibrnd(A,B,m,n)MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab产生随机数
Matlab() 随机数生成方法:
第一种方法是用 random 语句,其一般形式为
y = random('分布的英文名
',A1,A2,A3,m,n),
表示生成 m 行 n 列的 m × n 个参数为 ( A1 , A2 , A3 ) 的该分布的随机数。

例如:
(1) R = random('Normal',0,1,2,4): 生成期望为 0,标准差为 1 的(2 行 4 列)2× 4 个正态随机数
(2) R = random('Poisson',1:6,1,6): 依次生成参数为 1 到 6 的(1 行 6 列)6 个 Poisson 随机数
第二种方法是针对特殊的分布的语句:
一.几何分布随机数(下面的 P,m 都可以是矩阵)
R = geornd(P) (生成参数为 P 的几何随机数)
R = geornd(P,m) (生成参数为 P 的× m 个几何随机数)
1 R = geornd(P,m,n) (生成参数为 P 的 m 行 n 列的 m × n 个几何随机数)
例如
(1) R = geornd(1./ 2.^(1:6)) ( 生成参数依次为 1/2,1/2^2,到 1/2^6 的 6 个几何随机数)
(2) R = geornd(0.01,[1 5]) (生成参数为 0.01 的(1行5列)5 个几何随机数).
二.Beta 分布随机数
R = betarnd(A,B) (生成参数为 A,B 的 Beta 随机数)
R = betarnd(A,B,m) (生成× m 个数为 A,B 的 Beta 随机数)

R = betarnd(A,B,m,n) (生成 m 行 n 列的 m × n 个数为 A,B 的 Beta 随机数).
三.正态随机数
R = normrnd(MU,SIGMA) (生成均值为 MU,标准差为 SIGMA 的正态随机数)R = normrnd(MU,SIGMA,m) (生成 1× m 个正态随机数)
R = normrnd(MU,SIGMA,m,n) (生成 m 行 n 列的 m × n 个正态随机数)例如
(1) R = normrnd(0,1,[1 5]) 生成 5 个正态(0,1) 随机数
(2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为[1,2,3;4,5,6], 方差为 0.1 的 2× 3 个正态随机数.
四.二项随机数:类似地有
R = binornd(N,P) R = binornd(N,P,m) R = binornd(N,p,m,n) 例如
n = 10:10:60; r1 = binornd(n,1./n) 或 r2 = binornd(n,1./n,[1 6]) (都生成参数分别为
1 1 ), L, ( 60, ) 的6个二项随机数.
(10,
10 60
五.自由度为 V 的χ 2 随机数:
R = chi2rnd(V) R = chi2rnd(V R = chi2rnd(V
,m)
,m,n)
六.期望为 MU 的指数随机数(即
Exp 随机数):
1
MU
R = exprnd(MU) R = exprnd(MU,m) R = exprnd(MU,m,n)
七.自由度为 V1, V2 的 F 分布随机数:
R = frnd(V1,V2) R = frnd(V1, V2,m) R = frnd(V1,V2,m,n)
八.Γ ( A, λ ) 随机数:
R = gamrnd(A,lambda) R = gamrnd(A,lambda,m) R = gamrnd (A,lambda,m,n)
九.超几何分布随机数:
R = hygernd(N,K,M) R = hygernd(N,K,M,m) R =
hygernd(N,K,M,m,n)
十.对数正态分布随机数
R = lognrnd(MU,SIGMA) R = lognrnd(MU,SIGMA,m) R = lognrnd(MU,
SIGMA,m,n)
十一.负二项随机数:
R = nbinrnd(r,p) R = nbinrnd(r,p,m) R = nbinrnd(r,p,m,n)
十二.Poisson 随机数:
R = poissrnd(lambda) R = poissrnd(lambda,m) R =
poissrnd(lambda,m,n)
例如,以下 3 种表达有相同的含义:lambda = 2; R =
poissrnd(lambda,1,10)
(或 R = poissrnd(lambda,[1 10]) 或 R = poissrnd(lambda(ones(1,10)))
十三.Rayleigh 随机数:
R = raylrnd(B) R = raylrnd(B,m) R = raylrnd(B,m,n)
十四.V 个自由度的 t 分布的随机数:
R = trnd(V) R = trnd(V,m) R = trnd(V,m,n)
42
十五.离散的均匀随机数:
R = unidrnd(N) R = unidrnd(N,m) R = unidrnd(N,m,n)
十六.[A,B] 上均匀随机数
R = unifrnd(A,B) R = unifrnd(A,B,m) R = unifrnd(A,B,m,n)
例如 unifrnd(0,1:6)与 unifrnd(0,1:6,[1 6]) 都依次生成[0,1] 到[0,6]的6个均匀随机数.:
十七.Weibull 随机数
R = weibrnd(A,B) R = weibrnd(A,B,m) R = weibrnd(A,B,m,n)
MATLAB中产生高斯白噪声的两个函数
MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。

WGN 用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。

1. WGN:产生高斯白噪声
y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。

y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。

y = wgn(m,n,p,imp,state) 重置RANDN的状态。

在数值变量后还可附加一些标志性参数:
y = wgn(…,POWERTYPE) 指定p的单位。

POWERTYPE可以是'dBW', 'dBm'或'linear'。

线性强度(linear power)以瓦特(Watt)为单位。

y = wgn(…,OUTPUTTYPE) 指定输出类型。

OUTPUTTYPE可以是'real'或'complex'。

2. AWGN:在某一信号中加入高斯白噪声
y = awgn(x,SNR) 在信号x中加入高斯白噪声。

信噪比SNR以dB为单位。

x的强度假定为0dBW。

如果x是复数,就加入复噪声。

y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。

y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。

y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。

POWERTYPE可以是'dB'或'linear'。

如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。

如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER以瓦特为单位。

注释
1. 分贝(decibel, dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对单位。

例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电平的单位通常就以分贝表示,即事先取一个电压或电流作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。

2. 分贝瓦(dBW, dB Watt):指以1W的输出功率为基准时,用分贝来测量的功率放大器的功率值。

3. dBm (dB-milliWatt):即与1milliWatt(毫瓦)作比较得出的数字。

0 dBm = 1 mW
10 dBm = 10 mW
20 dBm = 100 mW
也可直接用randn函数产生高斯分布序列,例如:
y=randn(1,2500);
y=y/std(y);
y=y-mean(y);
a=0.0128;
b=sqrt(0.9596);
y=a+b*y;。

相关文档
最新文档