MatLAB 随机数

合集下载

matlab 标准正态分布随机数

matlab 标准正态分布随机数

matlab 标准正态分布随机数在MATLAB中生成标准正态分布随机数是一个常见的需求,因为标准正态分布是统计学中非常重要的一个分布。

在MATLAB中,我们可以使用randn函数来生成符合标准正态分布的随机数。

接下来,我将介绍如何在MATLAB中使用randn函数生成标准正态分布随机数,并给出一些实际的例子来帮助大家更好地理解这个过程。

首先,让我们来了解一下标准正态分布。

标准正态分布又称为Z分布,是以0为均值、1为标准差的正态分布。

它的概率密度函数为:f(x) = (1/sqrt(2pi)) exp(-x^2/2)。

其中,x为随机变量的取值,exp()表示自然指数函数。

标准正态分布的概率密度函数曲线呈钟型,关于均值对称,左右尾部无限延伸,密度函数在均值附近取得最大值。

在MATLAB中,我们可以使用randn函数来生成符合标准正态分布的随机数。

randn函数的基本语法如下:r = randn(m,n)。

其中,m和n分别表示生成随机数的行数和列数。

如果省略n,则默认为1。

生成的随机数服从标准正态分布。

接下来,让我们通过一个简单的例子来演示如何在MATLAB中生成标准正态分布随机数。

假设我们需要生成100个符合标准正态分布的随机数,代码如下:```matlab。

r = randn(100,1);```。

上述代码将生成一个包含100个元素的列向量r,这些元素符合标准正态分布。

我们可以通过绘制直方图的方式来直观地展示这些随机数的分布情况,代码如下:```matlab。

hist(r,20);```。

运行上述代码后,我们可以得到一个直方图,通过直方图可以清晰地看出这些随机数的分布情况,直方图呈现出典型的钟型曲线。

除了生成符合标准正态分布的随机数外,我们还可以通过randn函数生成多维数组的随机数。

例如,我们可以生成一个3行4列的符合标准正态分布的随机数矩阵,代码如下:```matlab。

r = randn(3,4);```。

MATLAB产生各种分布的随机数

MATLAB产生各种分布的随机数

M A T L A B产生各种分布的随机数The final revision was on November 23, 2020MATLAB产生各种分布的随机数1,均匀分布U(a,b):产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n) 产生一个[a,b]均匀分布的随机数:unifrnd (a,b)2,0-1分布U(0,1)产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n)产生一个[0,1]均匀分布的随机数:rand4,二类分布binornd(N,P,mm,nn)如binornd(10,,mm,nn)即产生mm*nn均值为N*P的矩阵binornd(N,p)则产生一个。

而binornd(10,,mm)则产生mm*mm的方阵,军阵为N*p。

5,产生m*n阶离散均匀分布的随机数矩阵:unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵6,产生mm nn阶期望值为的指数分布的随机数矩阵:exprnd( ,mm, nn)此外,常用逆累积分布函数表函数名调用格式函数注释norminv X=norminv(P,mu,sigma) 正态逆累积分布函数expinv X=expinv(P,mu) 指数逆累积分布函数weibinv X=weibinv(P,A,B) 威布尔逆累积分布函数logninv X=logninv(P,mu,sigma) 对数正态逆累积分布函数Chi2inv X=chi2inv(P,A,B) 卡方逆累积分布函数Betainv X=betainv(P,A,B) β分布逆累积分布函数随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数 binornd格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。

R = binornd(N,P,m) %m指定随机数的个数,与R同维数。

matlab中随机数生成

matlab中随机数生成

matlab中随机数生成无题在MATLAB中,我们可以使用随机数生成函数来生成各种类型的随机数。

这些随机数可以用于模拟实验、数据分析、算法测试等方面。

在这篇文章中,我将介绍一些常用的随机数生成函数,并给出一些实际应用的例子。

一、rand函数rand函数用于生成0到1之间均匀分布的随机数。

例如,我们可以使用rand函数来模拟抛硬币的结果,生成0或1的随机数,其中0表示正面,1表示反面。

下面是一个示例代码:```matlabresult = rand(1, 100); % 生成100个0到1之间的随机数heads = sum(result < 0.5); % 统计正面的次数tails = sum(result >= 0.5); % 统计反面的次数fprintf('正面的次数:%d\n', heads);fprintf('反面的次数:%d\n', tails);```二、randn函数randn函数用于生成服从标准正态分布(均值为0,方差为1)的随机数。

这在统计学中经常用到。

我们可以使用randn函数来模拟一组身高数据,然后计算平均身高和标准差。

下面是一个示例代码:```matlabheights = randn(1, 1000) * 10 + 170; % 生成1000个身高数据,均值为170,标准差为10average_height = mean(heights); % 计算平均身高std_height = std(heights); % 计算标准差fprintf('平均身高:%f\n', average_height);fprintf('身高标准差:%f\n', std_height);```三、randi函数randi函数用于生成指定范围内的整数随机数。

例如,我们可以使用randi函数来模拟投掷骰子的结果,生成1到6之间的整数随机数。

matlab中0-1的随机数

matlab中0-1的随机数

在matlab中生成0-1之间的随机数是一种常见的操作,可以通过内置的随机数生成函数来实现。

生成0-1之间的随机数在模拟实验、统计分析、机器学习等方面具有重要的应用,因此掌握在matlab中生成0-1随机数的方法对于数据科学和工程领域的研究人员来说是非常重要的。

1. 使用rand函数生成均匀分布的随机数在matlab中可以使用rand函数来生成均匀分布的随机数,其语法为:```matlabr = rand(m, n)```其中m 和n 分别表示生成随机数的维度,m 表示行数,n 表示列数。

rand函数生成的随机数范围在0-1之间,且满足均匀分布。

2. 使用randn函数生成正态分布的随机数除了生成均匀分布的随机数外,matlab还可以使用randn函数来生成正态分布的随机数,其语法为:```matlabr = randn(m, n)```其中 m 和 n 同样表示生成随机数的维度,randn函数生成的随机数满足标准正态分布,即均值为0,方差为1。

3. 控制随机数的种子在生成随机数时,可以通过控制随机数的种子来保证生成的随机数是可重复的。

在matlab中可以使用rng函数来控制随机数的种子,其语法为:```matlabrng(seed)```其中 seed 表示随机数的种子,通过设置相同的种子可以确保每次生成的随机数是一样的。

在matlab中生成0-1之间的随机数有多种方法,包括使用rand函数生成均匀分布的随机数,使用randn函数生成正态分布的随机数,以及通过控制随机数的种子来保证随机数的可重复性。

这些方法为研究人员在数据分析和模拟实验中提供了便利,对于提高工作效率和保证实验结果的可靠性具有重要意义。

在实际应用中,生成0-1之间的随机数通常用于模拟实验、统计分析、概率建模、机器学习算法等领域。

通过生成符合特定分布的随机数,可以更好地模拟实际场景,并进行有效的数据分析与处理。

在matlab中,生成0-1之间的随机数的应用十分广泛,具有很高的实用价值。

matlab均匀分布随机数的生成函数

matlab均匀分布随机数的生成函数

matlab均匀分布随机数的生成函数在Matlab中,可以使用`rand`函数来生成均匀分布的随机数。

`rand`函数可以生成在区间[0,1)上的随机数。

我们可以使用以下方法将其转换为指定范围内的均匀分布随机数。

1.生成在范围内的均匀分布随机数```matlaba=1;%下界b=10;%上界n=1000;%随机数数量uniform_rand = a + (b-a) * rand(n,1);```以上代码将生成1000个在1到10之间均匀分布的随机数。

2.生成均匀分布的整数随机数```matlaba=1;%下界b=10;%上界n=1000;%随机数数量uniform_int_rand = randi([a b], n, 1);```以上代码将生成1000个在1到10之间的整数均匀分布的随机数。

3.生成多维的均匀分布随机数```matlaba=1;%下界b=10;%上界n=1000;%随机数数量m=2;%维度uniform_multi_dim_rand = repmat(a, n, m) + (repmat(b-a, n, m) .* rand(n,m));```以上代码将生成1000个在[a,b]范围内的2维均匀分布的随机数。

需要注意的是,`rand`函数生成的随机数是伪随机数,并且每次Matlab启动时生成的随机数序列都是相同的。

如果需要不同的随机数序列,可以使用`rng`函数设置随机数生成器的种子。

以上就是在Matlab中生成均匀分布随机数的几种常见方法。

根据需要的维度、范围及数量,可以选择合适的方法来生成所需的随机数。

MATLAB产生各种分布的随机数

MATLAB产生各种分布的随机数

MATLAB产生各种分布的随机数1,均匀分布U(a,b):产生m*n阶[a,b]均匀分布U(a,b)的随机数矩阵:unifrnd (a,b,m, n)产生一个[a,b]均匀分布的随机数:unifrnd (a,b)2,0-1分布U(0,1)产生m*n阶[0,1]均匀分布的随机数矩阵:rand (m, n)产生一个[0,1]均匀分布的随机数:rand4,二类分布binornd(N,P,mm,nn) 如binornd(10,0.5,mm,nn)即产生mm*nn均值为N*P的矩阵binornd(N,p)则产生一个。

而binornd(10,0.5,mm)则产生mm*mm的方阵,军阵为N*p。

5,产生m*n阶离散均匀分布的随机数矩阵:unidrnd(N,mm,nn)产生一个数值在1-N区间的mm*nn矩阵6,产生mm nn阶期望值为的指数分布的随机数矩阵:exprnd( ,mm, nn)此外,常用逆累积分布函数表函数名调用格式函数注释norminv X=norminv(P,mu,sigma) 正态逆累积分布函数expinv X=expinv(P,mu) 指数逆累积分布函数weibinv X=weibinv(P,A,B) 威布尔逆累积分布函数logninv X=logninv(P,mu,sigma) 对数正态逆累积分布函数Chi2inv X=chi2inv(P,A,B) 卡方逆累积分布函数Betainv X=betainv(P,A,B) β分布逆累积分布函数4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数 binornd格式 R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。

R = binornd(N,P,m) %m指定随机数的个数,与R同维数。

R = binornd(N,P,m,n) %m,n分别表示R的行数和列数例4-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 14.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数 normrnd格式 R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA的正态分布的随机数据,R可以是向量或矩阵。

matlab中随机数

matlab中随机数

matlab中随机数在MATLAB中,可以使用随机数函数来生成随机数。

MATLAB提供了多个用于生成不同类型随机数的函数,包括均匀分布随机数、正态分布随机数、泊松分布随机数等。

下面我将从不同角度介绍几种常用的随机数函数。

1. rand函数,该函数可以生成0到1之间的均匀分布随机数。

例如,rand(3,2)将生成一个3行2列的矩阵,其中的元素是0到1之间的随机数。

2. randn函数,该函数可以生成符合标准正态分布(均值为0,方差为1)的随机数。

例如,randn(3,2)将生成一个3行2列的矩阵,其中的元素是符合标准正态分布的随机数。

3. randi函数,该函数可以生成指定范围内的整数随机数。

例如,randi([1, 10], 3, 2)将生成一个3行2列的矩阵,其中的元素是1到10之间的随机整数。

4. randperm函数,该函数可以生成指定范围内的随机排列。

例如,randperm(10)将生成1到10的随机排列。

除了以上几个常用的随机数函数外,MATLAB还提供了其他一些函数来生成不同类型的随机数,如:exprnd函数,生成指数分布的随机数。

poissrnd函数,生成泊松分布的随机数。

binornd函数,生成二项分布的随机数。

normrnd函数,生成指定均值和方差的正态分布随机数。

此外,你还可以通过设置随机数种子来控制随机数的生成。

使用rng函数可以设置随机数种子,例如rng(123)将设置种子为123。

总结起来,MATLAB提供了丰富的随机数函数,可以根据需要生成不同类型的随机数。

以上是我从多个角度对MATLAB中的随机数进行了介绍,希望能够满足你的需求。

(完整版)Matlab各种随机数设置

(完整版)Matlab各种随机数设置

Matlab 各种随机数设置randn(伪随机正态分布数)Normally distributed pseudorandom numbersSyntaxr = randn(n)randn(m,n)randn([m,n])randn(m,n,p,...)randn([m,n,p,...])randn(size(A))r = randn(..., 'double')r = randn(..., 'single')Descriptionr = randn(n) returns an n-by-n matrix containing pseudorandom values drawn from the standard normal distribution. randn(m,n) or randn([m,n]) returns an m-by-n matrix. randn(m,n,p,...) or randn([m,n,p,...]) returns an m-by-n-by-p-by-... array. randn returns a scalar. randn(size(A)) returns an array the same size as A.r = randn(..., 'double') or r = randn(..., 'single') returns an array of normal values of the specified class.Note The size inputs m, n, p, ... should be nonnegative integers. Negative integers are treated as 0.The sequence of numbers produced by randn is determined by the internal state of the uniform pseudorandom number generator that underlies rand, randi, and randn. randn uses one or more uniform values from that default stream to generate each normal value. Control the default stream using its properties and methods.Note In versions of MATLAB prior to 7.7 (R2008b), you controlled the internal state of the random number stream used by randn by calling randn directly with the 'seed' or 'state' keywords.ExamplesGenerate values from a normal distribution with mean 1 and standard deviation 2.r = 1 + 2.*randn(100,1);Generate values from a bivariate normal distribution with specified mean vector and covariance matrix.mu = [1 2];Sigma = [1 .5; .5 2]; R = chol(Sigma);z = repmat(mu,100,1) + randn(100,2)*R;Replace the default stream at MATLAB startup, using a stream whose seed is based on clock, so that randn will return different values in different MATLAB sessions. It is usually not desirable to do this more than once per MATLAB session.RandStream.setDefaultStream ...(RandStream('mt19937ar','seed',sum(100*clock)));randn(1,5)Save the current state of the default stream, generate 5 values, restore the state, and repeat the sequence.defaultStream = RandStream.getDefaultStream;savedState = defaultStream.State;z1 = randn(1,5)defaultStream.State = savedState;z2 = randn(1,5) % contains exactly the same values as z1Normrnd (随机正态分布数)Normal random numbersSyntaxR = normrnd(mu,sigma)R = normrnd(mu,sigma,m,n,...)R = normrnd(mu,sigma,[m,n,...])DescriptionR = normrnd(mu,sigma) generates random numbers from the normal distribution with mean parameter mu and standard deviation parameter sigma. mu and sigma can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for mu or sigma is expanded to a constant array with the same dimensions as the other input.R = normrnd(mu,sigma,m,n,...) or R = normrnd(mu,sigma,[m,n,...]) generates an m-by-n-by-... array. The mu, sigma parameters can each be scalars or arrays of the same size as R.Examplesn1 = normrnd(1:6,1./(1:6))n1 =2.1650 2.31343.02504.0879 4.8607 6.2827n2 = normrnd(0,1,[1 5])n2 =0.0591 1.7971 0.2641 0.8717 -1.4462n3 = normrnd([1 2 3;4 5 6],0.1,2,3)n3 =0.9299 1.9361 2.96404.12465.0577 5.9864randperm (RandStream) (区域内的所有整数的随机分布)Random permutationrandperm(s,n)Descriptionrandperm(s,n) generates a random permutation of the integers from 1 to n. For example, randperm(s,6) might be [2 4 5 6 1 3]. randperm(s,n) uses random values drawn from the random number stream s.betarnd (贝塔分布)贝塔分布是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数SyntaxR = betarnd(A,B)R = betarnd(A,B,m,n,...)R = betarnd(A,B,[m,n,...])DescriptionR = betarnd(A,B) generates random numbers from the beta distribution with parameters specified by A and B. A and B can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for A or B is expanded to a constant array with the same dimensions as the other input.R = betarnd(A,B,m,n,...) or R = betarnd(A,B,[m,n,...]) generates an m-by-n-by-... array containing random numbers from the beta distribution with parameters A and B. A and B can each be scalars or arrays of the same size as R.Examplesa = [1 1;2 2];b = [1 2;1 2];r = betarnd(a,b)r =0.6987 0.61390.9102 0.8067r = betarnd(10,10,[1 5])r =0.5974 0.4777 0.5538 0.5465 0.6327r = betarnd(4,2,2,3)r =0.3943 0.6101 0.57680.5990 0.2760 0.5474Binornd (二项式分布)二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见分布函数表
Matlab中产生正态分布随机数的函数normrnd
功能:生成服从正态分布的随机数
语法:
R=normrnd(MU,SIGMA)
R=normrnd(MU,SIGMA,m)
R=normrnd(MU,SIGMA,m,n)
说明:
R=normrnd(MU,SIGMA):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数。

输入的向量或矩阵MU和SIGMA必须形式相同,输出R也和它们形式相同。

标量输入将被扩展成和其它输入具有相同维数的矩阵。

R=norrmrnd(MU,SIGMA,m):生成服从正态分布(MU参数代表均值,DELTA参数代表标准差)的随机数矩阵,矩阵的形式由m定义。

m是一个1×2向量,其中的两个元素分别代表返回值R中行与列的维数。

R=normrnd(MU,SIGMA,m,n):生成m×n形式的正态分布的随机数矩阵。

>> help normrnd
NORMRND Random arrays from the normal distribution.
R = NORMRND(MU,SIGMA) returns an array of random numbers chosen from a
normal distribution with mean MU and standard deviation SIGMA. The size
of R is the common size of MU and SIGMA if both are arrays. If either
parameter is a scalar, the size of R is the size of the other
parameter.
R = NORMRND(MU,SIGMA,M,N,...) or R = NORMRND(MU,SIGMA,[M,N,...])
returns an M-by-N-by-... array.
例:生成正态分布随机数。

>> a=normrnd(0,1)
a =
-1.4814
>> a=normrnd(0,1,1,6)
a =
1.1287 -0.2900 1.2616 0.4754 1.17 41 0.1269
>> a=normrnd(0,1,[1 6])
a =
0.1555 0.8186 -0.2926 -0.5408 -0.30 86 -1.0966
>> a=normrnd(10,2,2,3)
a =
13.6280 13.6090 11.0531
10.6240 8.5538 9.4795。

相关文档
最新文档