三级像差理论与计算

合集下载

像差理论

像差理论

1.6像差理论1.6.1非理想光学系统和像差所谓理想光学系统,就是能够对任意大的空间以任意宽的光束成完善像的光学系统。

一个物体发出的光经过理想光学系统后将产生一个清晰的、与物貌完全相似的像。

理想光学系统具有下述性质:①光学系统物方一个点(物点)对应像方一个点(像点),这两个点称为共轭点。

②物方每条直线对应像方的一条直线,称共轭线;物方每个平面对应像方的一个平面,称为共轭面。

③主光轴上任一点的共轭点仍在主光轴上。

任何垂直于主光轴的平面,其共轭面仍与主光轴垂直。

④对垂直于主光轴的共轭平面,横向放大率为常量。

实际中不存在真正的理想光学系统,平面反射镜是个例外,但其横向放大率恒为1。

虽然在近轴区域共轴球面系统可近似地满足理想光学系统的要求,但是实际光学系统成像都是需要一定大小的成像空间以及光束孔径的,同时还由于成像光束多是由不同颜色的光组成(同一种介质的折射率随波长而异)。

所以实际的光学系统成像都不是理想的,存在着一系列缺陷,这就是像差。

像差是指在光学系统中由透镜材料的特性或折射率(或反射)表面的集合形状引起实际像与理想像的偏差。

用高斯公式、牛顿公式或近轴光线追迹计算得到的像的位置和大小可以作为理想像的位置和大小,而实际光线追迹计算得到的像的位置和大小相对于理想像的偏差就可以作为像差的量度。

描述像差可以用几何像差和波像差(又叫光程差),本设计主要使用几何像差。

1.6.2几何像差[2]几何像差主要有七种:其中单色像差有五种,即球差、彗差、像散、场曲和畸变;复色光成像像差有轴向色差和垂轴色差两种。

1.6.2.1球差如图1-8表示的是轴上有限远同一物点发出的不同孔径的光线通过系统后不再交于一点,成像不理想。

为了表示这些对称光线在光轴方向上的离散程度,我们用不同孔径的光线对理想像点'0A 的距离''0 1.0A A 、''0.85A A …表示,称为球差。

球差是球面像差的简称,是由光学系统的口径而引起的,是光学系统口径的函数。

第6章光线的光路计算及像差理论.

第6章光线的光路计算及像差理论.

细光束弧矢场曲:前后细光束交点离理想像平面 的距离。
畸变:主光线和理想像面交点与理想点的 垂轴距离;
轴外像差小结
宽 宽与上细上细光 光细下前光下畸光束束光光后束、轴前变束子弧束线光子前外 后:弧午 矢(的线上午后点 光主矢场 场交的下场光也 线光场曲 曲点交光曲线有 交线曲: :偏点线:交球点和的:上前离偏)上点像差(的理垂前下后主离像下的的点,想距轴后光光光主点细距沿沿宽像离距细线线线光)光离轴与轴光面;离光交交(线束垂。距细距束交;束点点(交轴垂离光离(点交离离上点距轴:束—与点理理下离离距宽(—前理离想想细光理)离光子:后想理像 像光线想)束午子:光像想平 平束)像像交轴午弧线点像面 面像平散点外彗矢)平的 的散像面(球差彗像面距 距X点x差差点离 离;的.。); 。 就是弧矢轴外球差。
物空间 n
法线
E
I
折射球面
像空间 n´
入射光线
B

-U
I
h
折射光线
U
A
A
光轴 O
C

r
B
-L

第四节 轴外像差 预备知识
了解成像光束光线的全貌,需要看光束在两 个平面——子午平面和弧矢平面上的分布情况。 子午平面:由轴外物点和光轴所确定的平面。 弧矢平面:过主光线且与子午平面垂直的平面。
子午光线 弧矢光线
sinU
可以证明,齐明点满足正弦条件。
等晕条件
实际由于球差存在,只能要求近轴轴外点具有和轴 上点相同的成像缺陷。此时称等晕成像,需要满足 的条件就比正弦条件降低了,称等晕条件。
前后光线的交点偏离主光线(垂轴距离):弧矢彗差
轴外点也有球差,宽光束(上下光线)交点(像点) 与细光束(上下光线)像点沿轴距离——子午轴外球差。

工程光学讲稿像差

工程光学讲稿像差

n
n'( >n)
UA O A'
物点位于球面旳球心处,即 L=r此时物点
发出旳全部光线将沿球面旳法线方向入射
,即入射角I=0根据折射定律,折射角也
C
-U
A,A'
I'=0,光线无偏折地经过球面,像点也将位
于球心处,即L'=r。
(3) sinI’-sinU=0,即I’=U,因为
L0
sin I' n sin I / n' n(L r)sinU / n'r
§6-2 轴上点旳球差
一、 球差定义及表达措施
1、轴向球差
由实际光线旳光路计算公式知,当物距L为定值时,像距L’与入射高 度h1及孔径角U有关,伴随孔径角旳不同,像距L‘是变化旳,即如图所示:
轴上点A点发出旳光束,对于光轴附近旳光用近轴光路计算公式,像点为 A0’(看作高斯像点),对于实际光线采用实际光计算公式,成像于A’1 (实际像)。
(sin I (L-r)sinU r)
故可得: L (n Ln') rn/nnn ' r
同I '理,U由sin I sUinU' '可得出
L ' 0A'
L' (n n')r / n'
I
-U AC
n
-I' n'( <n)
由上式拟定得共轭点,不论孔径角U多大,均不产生球差。由上式也可 得出,nL=n’L’ ,则垂轴放大率β=nL’/n’L=(n/n’)2
单色像差——光学系统对单色光成像时所产生旳像差。 几何像差: 球差、彗差、像散、场曲、畸变 。
色差——不同波长成像旳位置及大小都有所不同。

第六章 光线的光路计算及像差理论

第六章 光线的光路计算及像差理论
a ' z a a
下光线tgUb ( y h)
y ( L l )tgU
' z '
' z ' b
y ( L l )tgU
' b ' b '
3.折射平面和反射面的光路计算 折射平面远轴光线的光路计算公式: I U

sin I n sin I
'
n
'
U ' I ' L' LtgU tgU '
' 1 ' 2
' k 1
d k 1
校对公式:h lu l 'u ',J n 'u ' y ' nuy
' 求焦距公式:令1 , u1 , f ' h1 / uk l
轴外点近轴光线光路计算 (第二近轴光线光路计 算):求出理想像高。

初始数据:l z , u z y /(l z l1 ) 像高数据:y (l l )u
1
n
作业
1,2,11,12,17
路计算 2.轴外点沿主光线的细光束光路计算 3.子午面的空间光线光路计算
二、子午面内的光线光路计算: 1.近轴光线光路计算:求出理想像的位置
和大小

近轴光线光路计算
(第一近轴光线光路计算):求出理想像的位置
l r i u r n i' i n' u' u i i' i' l ' r (1 ) u'
第六章 光线的光路计算 及像差理论
实际光学系统与理想系统之间存在差异;实际像和 理想像之间的差异称为像差。

光路计算以及像差理论

光路计算以及像差理论

光路计算以及像差理论光路计算和像差理论是光学领域中重要的理论和计算方法,用于研究和描述光在光学系统中的传播和成像过程。

本文将详细介绍光路计算和像差理论的基本概念和原理,并进一步分析它们的应用和意义。

光路计算是指通过对光线的追踪和计算,来确定光线在光学系统中的传播路径和成像效果。

光线是一种理论上的模型,用于描述光的传播。

光线在光学系统中的传播路径可以通过光线传播的三个基本规律来描述:一是光线沿直线路径传播,即自由传播定律;二是光线在分界面上发生折射,即折射定律;三是光线在反射面上发生反射,即反射定律。

根据这些规律,可以利用向量法对光线进行计算和分析,确定其传播路径和成像位置。

光路计算主要用于分析和设计光学系统,如透镜组、反射镜、光纤等。

通过对光路的计算,可以确定图像的位置、放大倍率和畸变等参数。

例如,在透镜组中,可以通过光路计算来确定光线在透镜组中的光路和成像位置,进而优化透镜组的设计,并实现清晰准确的成像效果。

光路计算还可以应用于光学传感器和光学通信系统等领域。

在光学传感器中,可以通过光路计算来确定光源到传感器的传输路径和成像效果,从而提高传感器的灵敏度和分辨率。

在光学通信系统中,可以通过光路计算来确定光信号在光纤中的传输路径和衰减情况,从而优化光通信系统的传输性能和距离。

像差理论是描述光学系统成像质量的理论框架。

在光学系统中,由于折射、反射以及光学元件的形状等因素的影响,光线在成像过程中会发生一些畸变和偏差,导致最终成像结果与理想成像有差异,这种差异称为像差。

像差理论主要研究和描述这些差异的产生原因和影响程度。

常见的像差包括球面像差、色差、像散、畸变等。

球面像差是由于透镜的球面形状导致光线在透镜中的聚焦位置发生变化,使得不同位置的物体成像位置不同。

色差是由于光线的折射率随着波长的变化而变化,导致不同波长的光线成像位置发生偏差。

像散是由于光线在透镜中的色散效应导致不同波长的光线在成像后的位置不同。

工程光学-第6章 光线的光路计算及像差理论

工程光学-第6章 光线的光路计算及像差理论

第六章 光线的光路计算及像差理论
前后折射面过渡公式
′ −1 − d k ′ −1 ⎧lk = lk ⎪ ′ −1 ⎨uk = uk ⎪n = n′ k −1 ⎩ k
前后折射面校对公式
⎧h = lu = l ′u′ ⎨ ⎩nuy = n′u′y′ = J
系统焦距
′ = f ′ = h1 / u ′ l1 = ∞, u1 = 0 → lk
(1)无穷远处物体
第六章 光线的光路计算及像差理论
轴外点与轴上点的重要区别 光束相对于主光线失去了对称性
第六章 光线的光路计算及像差理论
(1)无穷远处物体 初始数据
上光线U a = U z , La = Lz + h / tan U z ⎫ ⎪ 主光线U z = ω , Lz ⎬ 下光线U b = U z , Lb = Lz − h / tan U z ⎪ ⎭
第六章 光线的光路计算及像差理论
2、目视光学系统 人眼响应波段:380~760nm 最灵敏波长:555nm 校正单色差:e光λ=546.1nm 校正色差:F光λ=486.1nm和C光λ=656.3nm 选择光学材料 nD , vD = ( nD − 1) / ( nF − nC ) 3、普通照相系统 一般照相乳胶对蓝光较灵敏,具体应根据实际照相底片参数而定 校正单色差:F光λ = 486.1nm 校正色差:D光λ=589.3nm和G′光 λ =434.1nm ′ − nD ) 选择光学材料 nF , vF = ( nF − 1) / ( nG
3、球差是入射高度和孔径角的函数(偶次)
重复轴上点远轴光线计算步骤 可得实际高
第六章 光线的光路计算及像差理论
(2)有限远处物体
初始数据
上光线 tan U a =(y - h)/(Lz - L),La = Lz + h/ tan U a ⎫ ⎪ 主光线 tan U z =y/(Lz - L),Lz ⎬ 下光线tanU b =(y + h)/(Lz - L),Lb = Lz + h/ tan U b ⎪ ⎭

像差理论概述

像差理论概述

相差理论概述这点东西呢,是比较初阶的,只能给您们一个概念性的认识,要对像差理论有比较全面的了解,还必须参看有关的教材。

谢谢日常使用的光学系统(简称镜头)由于受光学设计、加工工艺及装调技术等诸多因素的影响,要对一定大小的物体成理想象是不可能的,它实际所成的象与理想象总是有差异,这种成象的差异就称为镜头(或成象光学系统)的象差。

象差是由光学系统的物理条件(光学特性指标)所造成的。

从某种意义上来说,任何光学系统都存在有一定程度的象差,而且从理论上来讲总也不可能将它们完全消除。

肉眼和其他光能接收器也只具有一定的分辨能力,因此只要象差的数值小于一定的限度,我们就认为该系统的象差得到了矫正。

一、一级像差理论为了建立一个令人满意的像差理论,一个简单的方法就是从精确的光线追迹公式(请参考有关的书籍)着手,把其中每一角度的正弦函数按照麦克劳林定理展开成幂级数的形式,即sinθ=θ-θ3/3!+ θ5/5!- ……。

对于小角度,这个幂级数是一个迅速收敛的级数,每一项都比它的前一项小得多,这说明对近轴光线而言,因倾斜角很小,故在一级近似的情况下,除了第一项之外,其余各项都可以忽略不记。

二、三级像差理论如果在光线追迹公式中,把角的正弦函数全部用sinθ=θ-θ3/3!+ θ5/5!- ……,中的前两项代替,则所得的结果不论是什么形式的方程式,都代表三级理论的结果,这样方程式就可以对主要像差作出相当准确的说明了。

在这个理论中任何光线所产生的像差,即是相对于高斯公式所得的路径的偏差,可以用五个和(S1到S5)式来表示,这五个和叫作塞德耳和。

如果一个透镜的成像本领没有缺点,则这五个和全都应该为零。

但是没有一个光学系统能够同时满足所有的这些条件。

因此按照惯例,我们对每一个和分别考虑,如果其中某一个和为零,则与该和对应的像差就不存在。

例如,若轴上某一已知物点之塞德耳和S1=0,则相应像点之球差就不存在。

如果S2=0,则没有彗差。

第八章光学系统的像质评价和像差公式

第八章光学系统的像质评价和像差公式

第八章光学系统的像质评价和像差公式光学系统的像质评价和像差公式是研究光学系统成像质量的重要工具。

光学系统的像质评价主要通过像差公式来描述光学系统成像的误差,从而提供了评价光学系统成像质量的定量指标。

光学系统的像质评价可以从图像质量和像差两个方面进行。

图像质量是指图像的清晰度、对比度、分辨率等方面,是反映图像信息传递能力的指标。

而像差是指由于光学系统的结构、材料、制造等因素造成的光线偏差,导致图像不完美的情况。

像质评价的目标是通过对图像质量和像差的分析,得到一个综合的定量指标,从而评估光学系统的成像质量。

像差公式是描述光学系统成像误差的数学关系。

常见的像差公式有球差公式、彗差公式、像散公式、畸变公式等。

这些公式通过数学表达了光线经过光学系统后的成像位置与理想位置之间的差异,即描述了光学系统的误差情况。

这些公式的推导通常是基于几何光学的假设和光线传播的物理原理,可以对光线的传播路径进行建模和分析。

光学系统的像差公式一般可表示为:Δx=AΔy+B(Δy)²+C(Δρ)²+D(Δy)³+E(Δy)(Δρ)²+F(Δρ)³+...其中Δx是成像位置的偏差,Δy是入射光线的高度偏差,Δρ是入射光线的径向偏差。

A、B、C、D、E、F等系数则表示了不同像差的贡献程度。

不同的像差对成像质量的影响各不相同,有的像差会导致图像模糊、失真,有的像差会限制系统的分辨率等。

通过分析像差公式,可以得到不同像差与光学系统参数的关系。

这使得我们能够通过调整光学系统的设计参数来减小或消除像差,提高光学系统的成像质量。

例如,如果发现球差对成像质量的影响较大,可以通过改变光学系统的球面曲率来减小球差;如果发现像散对成像质量的影响较大,可以通过引入非球面透镜来减小像散。

像差公式为光学系统的设计和优化提供了理论基础和指导。

总结起来,光学系统的像质评价和像差公式是研究光学系统成像质量的重要工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6 Third-Order Aberration Theory and Calculation
•初级像差、高级像差
•两条近轴光线
•轴上点近轴光线(第一近轴光线)•近轴主光线(第二近轴光线)
一、光线追迹公式
•初始数据确定
•折射
•转面(过渡)
•终结公式
•傍轴光线、子午光线
•空间光线(球面、非球面)
•细光束(科丁顿方程)
傍轴光线•初始数据确定
•给定y和u,或
•折射
•转面(过渡)
•终结公式
•非球面
•二次圆锥曲面
二、像差计算公式
/l
•已知:
入瞳(尺寸、位置)Array
球差

•彗差
•正弦差(OSC)
•在光轴附近的区域
•正弦差——小视场宽光束的不对称性
(彗差)的量度
•畸变
•位置色差
•d光(0.5876μm)
•C光(0.6563μm)F光(0.4861μm)
•二级光谱
•色球差
•Rayleigh criterion
•An image will be “sensibly”perfect if there exists not more than one-quarter wavelength difference in optical path over the wave front with reference to a sphere centered at the selected image point.
•波面和参考球面之最大差别不超过λ/4时,此波面可看作是无缺陷的。

三、三级像差——面分布
•轴上点近轴光线(第一近轴光线)•近轴主光线(第二近轴光线)
•对每一个面:
•横向像差与轴向像差的转换
•赛得(Seidel)系数
•三级像差的面分布
•非球面的三级像差
•等效曲率
•等效四阶变形系数
•等效球面的贡献(C

e
•等效四阶变形系数的贡献(K)
四、三级像差分布——薄透镜、
光阑移动
•光阑移动方程(y
≠0)
p
•光阑与薄透镜重合(y
=0 )
p
•轴向像差
•三级像差表达式。

相关文档
最新文档