北师大版数学九年级上册第二章各节练习题含答案
北师大版九年级上册数学第二章 一元二次方程含答案

北师大版九年级上册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解方程时,原方程应变形为( )A. B. C. D.2、若4x2-mxy+9y2是一个完全平方式,则m的值为( )A.6B.±6C.12D.±123、用配方法解方程时,原方程应变形为()A. B. C. D.4、用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=195、用配方法解一元二次方程x2-4x+3=0时可配方得()A.(x-2)2=7B.(x-2)2=1C.(x+2)2=1D.(x+2)2=26、用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1) 2=6B.(x+1) 2=9C.(x-1) 2=6D.(x-2) 2=97、用配方法解方程x2﹣4x+2=0,正确的是()A.(x﹣2)2=6B.(x+2)2=3C.(x﹣2)2=﹣2D.(x﹣2)2=28、用配方法解一元二次方程x2﹣6x﹣8=0,下列变形正确的是()A.(x﹣6)2=﹣8+36B.(x﹣6)2=8+36C.(x﹣3)2=8+9 D.(x﹣3)2=﹣8+99、方程(x﹣1)(x﹣3)=1的两个根是()A.x1=1,x2=3 B.x1=2,x2=4 C.x1=2+ , x2=2-D.x1=-2- , x2=-2+10、将方程x2+8x+9=0左边变成完全平方式后,方程是()A.(x+4)2=7B.(x+4)2=25C.(x+4)2=﹣9D.(x+4)2=﹣711、一元二次方程,用配方法解该方程,配方后的方程为()A. B. C. D.12、用配方法解一元二次方程-4x=5时,此方程可变形为().A. =1B. =1C. =9D. =913、用配方法解方程,下列变形正确的是()A. B. C. D.14、一元二次方程y2-4y+3=0配方后可化为()A. 2=3B. 2=0C. 2=2D. 2=115、将方程的左边配成完全平方式后所得的方程是( )A. B. C. D.二、填空题(共10题,共计30分)16、1月20日遵义市政府工作报告公布:全市生产总值约为1585亿元,经过连续两年增长后,预计将达到2180亿元.设平均每年增长的百分率为x,可列方程为________.17、已知,是一元二次方程的两个根,则________.18、如果2是一元二次方程x2+bx+2=0的一个根,那么常数b的值为________.19、若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=________.20、若关于x的一元二次方程(m-1)x2+5x+m2-1=0的一个根是0,则m的值是________.21、已知m,n是有理数,方程x2+mx+n=0有一个根是﹣2,则方程x2+mx+n=0的另一个根是________.22、已知a、b是方程x2﹣x﹣2=0的两个不相等实数根,则a•b的值是________ .23、如果一元二次方程x2+ax+b=0的两个根是3和﹣2,则a=________,b=________.24、已知a,b是一元二次方程x2﹣x﹣2=0的两根,则a+b=________.25、某商店以每件20元的价格购进一批商品,若每件商品售价a元,则每天可卖出(800﹣10a)件.如果商店计划每天恰好盈利8000元,根据题意所列方程为________.三、解答题(共5题,共计25分)26、解方程:x2﹣x﹣20=0.27、小红认为:当b2﹣4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式是x=.请你举出反例说明小红的结论是错误的.28、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?29、观察下表,确定一元二次方程x2﹣2x﹣2=0的一个近似根.x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 ﹣1.79 ﹣1.56 ﹣1.31 ﹣1.04 ﹣0.75 ﹣0.44 ﹣0.11 0.24 x2﹣2x﹣230、已知关于x的一元二次方程x2-(2k+1)x+4k-3=0,当Rt△ABC的斜边a= ,且两直角边b和c恰好是这个方程的两个根时,求△ABC的周长.参考答案一、单选题(共15题,共计45分)1、B2、D4、B5、B6、C7、D8、C9、C10、A11、D12、D13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
北师大版九年级上册数学第二章测试题及答案

北师大版九年级上册数学第二章测试题及答案(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( A )A .(x +2)2=9B .(x -2)2=9C .(x +2)2=1D .(x -2)2=12.若方程x 2-3kx +k +1=0的两根之积为2,则( D )A .k =2B .k =-1C .k =0D .k =13.关于x 的方程(m +1)x 2+2mx -3=0是一元二次方程,则m 的取值是( C )A .任意实数B .m ≠1C .m ≠-1D .m >14.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x 米,根据题意,可列方程为( B )A .x (x -10)=900B .x (x +10)=900C .10(x +10)=900D .2[x +(x +10)]=9005.菱形ABCD 的一条对角线长为6,边AB 的长为方程y 2-7y +10=0的一个根,则菱形ABCD 的周长为( B )A .8B .20C .8或20D .106.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实根,则k 的取值范围是( D )A .-12≤k <12B .k ≠0C .k <12且k ≠0D .-12≤k <12且k ≠0 第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.已知方程3x 2-9x +m =0的一个根是1,则m 的值 6 .8.已知关于x 的一元二次方程(m -2)x 2+3x +m 2-4=0的常数项为0,则m 的值为__-2 .9.已知x 为实数,且满足(x 2+3x )2+2(x 2+3x )-3=0,则x 2+3x 的值为 1 .10.三角形的两边长分别是3和4,第三边长是方程x 2-13x +40=0的根,则该三角形的周长为 12 .11.某种T 恤衫,平均每天销售40件,每件盈利20元.若每降价1元,则每天可多售出10件.如果每天盈利1 400元,那么每件应降价 6或10 元.12.(成都中考)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 21-x 22=10,则a = 214.三、(本大题共5小题,每小题6分,共30分)13.解方程:(1)(2017·兰州)2x 2-4x -1=0;解:原方程可化为(x -1)2=32, ∴x 1=1+62,x 2=1-62; (2)(山西中考)2(x -3)2=x 2-9.解:2(x -3)2-(x +3)(x -3)=0,(x -3)(2x -6-x -3)=0,(x -3)(x -9)=0,x -3=0或x -9=0,∴x 1=3,x 2=9.14.(巴中中考)定义新运算:对于任意实数m ,n 都有m ☆n =m 2n +n ,等式右边是常用的加法、减法、乘法及乘方运算,例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程2x 2-bx +a =0的根的情况.解:∵2☆a 的值小于0,∴22a +a =5a < 0,解得a < 0.在方程2x 2-bx +a =0中,Δ=(-b)2-8a ≥ -8a > 0,∴方程2x 2-bx +a =0有两个不相等的实数根.15.已知关于x 的方程x 2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.解:(1)依题意有Δ=22-4(a -2)> 0,解得a < 3;(2)依题意得1+2+a -2=0,解得a =-1,∴原方程为x 2+2x -3=0.∴x =-2±4-4× 1× (-3)2× 1=-2±162, 即x 1=1,x 2=-3,∴a =-1,方程的另一根为-3.16.一个直角三角形的斜边为4 5 cm ,两条直角边的长相差4 cm ,求这个直角三角形两条直角边的长.解:设其中一条较长的直角边长为x cm , 则另一条直角边长为(x -4) cm.根据题意,得x 2+(x -4)2=(45)2,解得x 1=-4(舍去),x 2=8.∴x -4=4.∴两条直角边的长分别为4 cm ,8 cm.17.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份的营业额的月平均增长率.解:3月份到5月份月增长是经过2次增长,平均月增长率是每次增长的百分数相同.设平均月增长率为x,则5月份的营业额是:3月份的营业额× (1+x)2,因此,应先求3月份的营业额.显然,3月份的营业额是2月份的营业额×(1+10%)=400(1+10%)=440,故依题意,得440(1+x)2=633.6,(1+x)2=1.44,两边直接开平方,得1+x=± 1.2,所以x1=0.2=20%,x2=-2.2(不合题意,舍去).故3月份到5月份的营业额的月平均增长率为20%.四、(本大题共3小题,每小题8分,共24分)18.(菏泽中考)某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20 000元?解:设销售单价为x,则:(x-360)[160+2(480-x)]=20 000,∴x2-920x+211 600=0,解得x1=x2=460.答:这种玩具的销售单价为460元时,厂家每天可获利润20 000元.19.(十堰中考)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足x21+x22=31+|x1x2|,求实数m的值.解:(1)Δ=b2-4ac=[-(2m+3)]2-4(m2+2)=12m+1,∵方程有实数根,∴12m+1≥ 0,解得m≥-1 12.(2)∵x1,x2是方程x2-(2m+3)x+m2+2=0的两个实数根,∴x1+x2=2m+3,x1x2=m2+2>0.∵x21+x22=31+x1x2,∴(x1+2)2-2x1x2=31+x1x2,∴(2m+3)2-2(m2+2)=31+m2+2,∴m2+12m-28=0,解得m1=2,m2=-14.∵m≥-112,∴m=2.20.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销(1)求y与x的函数表达式;(2)如果这种土特产的成本价是20元/kg,为使某一天的利润为780元,那么这一天的销售价应为多少元?(利润=销售总金额-成本)解:(1)∵y与x是一次函数关系.∴设y 与x 之间的函数表达式是y =kx +b(k ≠0).根据题意,得⎩⎨⎧20k +b =86,35k +b =56,解得⎩⎪⎨⎪⎧k =-2,b =126. 所以,所求的函数表达式是y =-2x +126.(2)设这一天的销售价为x 元/kg, 根据题意,得(x -20)(-2x +126)=780.整理,得x 2-83x +1 650=0,解得x 1=33,x 2=50.答:这一天的销售价应为33元/kg 或50元/kg.五、(本大题共2小题,每小题9分,共18分)21.已知关于x 的一元二次方程(a +c )x 2+2bx +a -c =0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.解:(1)△ABC 是等腰三角形.理由如下:∵x =-1是方程的根,∴将x =-1代入得(a +c)× (-1)2-2b +a -c =0,∴a +c -2b +a -c =0,∴a -b =0,∴a =b ,∴△ABC 是等腰三角形;(2)△ABC 是直角三角形.理由如下:∵方程有两个相等的实数根,∴Δ=(2b)2-4(a +c)(a -c)=0,∴4b 2-4a 2+4c 2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形.22.某单位于“三·八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是领队与旅行社导游收费标准的一段对话:领队:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2 700元. 请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人? 解:设该单位这次参加旅游的共有x 人,∵100× 25< 2 700,∴x > 25.依题意,得[100-2(x -25)]x =2 700,整理,得x 2-75x +1 350=0.解得x 1=30,x 2=45.当x =30时,100-2(x -25)=90> 70,符合题意.当x =45时,100-2(x -25)=60< 70,不符合题意,舍去.∴x =30.答:该单位这次参加旅游的共有30人.六、(本大题共12分)23.如图,在△ABC 中,AB =6 cm ,BC =7 cm ,∠ABC =30°,点P 从A 点出发,以1 cm/s 的速度向B 点移动,点Q 从B 点出发,以2 cm/s 的速度向C 点移动.如果P ,Q 两点同时出发:(1)经过几秒后△PBQ 的面积等于4 cm 2?(2)当△PBQ 的面积等于4 cm 2时,△PBQ 是什么形状的三角形?解:(1)如图,过点Q 作QE ⊥PB 于E ,则∠QEB =90°.∵∠ABC =30°,∴2QE =QB.∴S △PBQ =12·PB·QE. 设经过t s 后△PBQ 的面积等于4 cm 2,则PB =6-t ,QB =2t ,QE =t.根据题意,12·(6-t)·t =4. t 2-6t +8=0,t 1=2,t 2=4.当t =4时,2t =8,8> 7,不合题意舍去,所以t =2.答:经过2 s 后△PBQ 的面积等于4 cm 2.(2)∵△PBQ 的面积等于4 cm 2时,t =2,∴PB =6-t =6-2=4,QB =2t =4,∴QB =PB ,∴△PBQ 是等腰三角形.。
北师大版九年级上册数学第二章一元二次方程(解析版)

第二章一元二次方程一、单选题1.下列各方程中,一定是关于X的一元二次方程的是()A. 2x2+3=2x (5+x)B, ax2+c=0C.(a+1)炉+6升1=0D. (^2+l) x2- 3x+l=0【答案】D【解析】4.*+3=M5+、)整理得,10x-3=0,故不是一元二次方程;B.当a=0时,。
炉+。
=0不是一元二次方程:C.当a=-l时,(什1濡+6升1=0不是一元二次方程:D. aa2>0,二届+1 翔,匚d+lM -3x+l = 0 是一元二次方程:故选D.2.关于工的一元二次方程(。
-1)/+»/_] = 0的一个根是0,则。
值为()A. 1B. -1C. 1 或—1D. i【答案】B【解析】把0代入原方程,再根据原方程是一元二次方程,得到关于a的方程及不等式,解之即可.解:根据题意得:解得:a=-\.故选:B.3.下列说法不正确的是()A.方程工2=%有一根为0B.方程/一1=0的两根互为相反数C.方程(x-l)2-l = 0的两根互为相反数D.方程N—x + 2 = 0无实数根【答案】C【解析】解:A./=x,移项得:x2—x = 0,因式分解得:x(x-l)=0,解得x=0或x=l,所以有一根为0,此选项正确;B. ?-1 = 0,移项得:W=i,宜接开方得:x=l或x=-l,所以此方程的两根互为相反数,此选项正确:C. *-1)2-1 = 0,移项得:(X -1>=1,直接开方得:x-l=l或解得x=2或x=0,两根不互为相反数,此选项错误:D./ 7+2 = 0,找出a=l, b=-l, c=2,则二=l-8=-7V0,所以此方程无实数根,此选项正确.所以说法错误的选项是C.故选C.4.用配方法解一元二次方程2/—3x —1=0,配方正确的是().A. 3 工一一4)1716B.3丫X- -4J【答案】A【解析】按照配方法的步骤进行求解即可得答案.解:2X 2-3X -1 = 0移项得2/—3x = l ,,3 1二次项系数化1的厂--A = 一,3 配方得Y-二X + 2 1716故选:A本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边:(2)把二次项的 系数化为1:(3)等式两边同时加上一次项系数一半的平方.5 .关于x 的一元二次方程(m-l )x?-2mx + m+l = 0,下列说法正确的是().【答案】C【解析】根据一元二次方程判别式的性质分析,即可得到答案.(m-l )x 2 - 2mx+ m + l = O 的判别式为: X —— 13 7=-+ 3 4;A.方程无实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根无法确定△二(一2〃。
北师大版数学九年级上册 第二章:一元二次方程 测试和答案

北师大版数学九上第二章:一元二次方程测试及答案一.选择题:(每小题3分共36分)1.下列方程中是关于x的一元二次方程的是()A.x=x2﹣3B.ax2+bx+c=0C. D.3x2﹣2xy﹣5y2=0【答案】A解选项A,由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;选项B,当a=0时,该方程不是一元二次方程,故本选项错误;选项C,该方程不是整式方程,故本选项错误;选项D,该方程属于二元二次方程,故本选项错误;故选A.2.用配方法解下列方程时,配方有错误的是()A.化为B.化为C.化为D.化为【答案】B解A项,根据配方法,知A项正确;B项,系数化为1得,根据配方法得,故B 项错误;C项,根据配方法,知C项正确;D项,根据配方法,知D项正确.故选B.3.下列实数中,是方程 的根的是( )A.1B.2C.3D.4【答案】B解移项得x 2=4,开方得x=±2, ∴x 1=2,x 2=-2.故选B .4.下列方程没有实数根的是( )A.x²+ 4x = 10B.3x² + 8x - 3 = 0C.x² - 2x + 3 = 0D.(x - 2)(x - 3) = 12【答案】C解:A 、方程变形为:x 2+4x−10=0,△=42−4×1×(−10)=56>0,所以方程有两个不相等的实数根,故A 选项不符合题意;B 、△=82−4×3×(−3)=100>0,所以方程有两个不相等的实数根,故B 选项不符合题意;C 、△=(−2)2−4×1×3=−8<0,所以方程没有实数根,故C 选项符合题意;D 、方程变形为:x 2−5x−6=0,△=52−4×1×(−6)=49>0,所以方程有两个不相等的实数根,故D 选项不符合题意.故选:C .5.用公式法解一元二次方程243x x -=时,下列计算24b ac -的结果中,正确的是( ) A .4B .28C .20D .4-【答案】B解:原方程可变形为2430x x --=,可知1a =,4b =-,3c =-,所以224(4)41(3)161228b ac -=--⨯⨯-=+=.故选B .6.一元二次方程 的根为( )A.0B.3C.0或﹣3D.0或3【答案】C解方程x(x+3)=0,可得x=0或x+3=0,解得:x 1=0,x 2=−3.故选C.7.若等腰三角形的底和腰是方程 的两个根,则这个三角形的周长为() A.9 B.12 C.9或12 D.不能确定【答案】B解方程 得x 1=2,x 2=5,∵三角形为等腰三角形,∴腰为5,底为2,(腰为2,底为5舍去)故周长为12,故选B.8.已知关于 的一元二次方程 没有实数根,则实数 的取值范围是()A. B. C. D.【答案】A解根据题意得△=(-2)2-4m <0,解得m >1.故选A .9.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台,设二、三月份每月的平均增长率为x ,根据题意列出的方程是( )A .20021x +()=2500B .200(1+x )+20021x +()=2500 C .20021x ()-=2500 D .200+200(1+x )+20021x +()=2500 【答案】B解由题意可得,200(1+x)+200(1+x) ²=2500,故选B.10.如图,由点()141P ,,()0A a ,,()0B a ,,()014a <<确定的PAB △的面积是18,则a 的值是( ).A .3B .5C .12D .3或12【答案】D 解:过点P 作PH x ⊥轴交于点H ,∵点()141P ,,()0A a ,,()0B a ,, ∴OB=OA=a ,AH=14,PH=1,∵PAB ABO PAH OBPH S S S S ∆∆∆=--梯形, ∴2111(1)141(14)18222a a a +⨯⨯--⨯⨯-=, ∴230156a a +=-解得:3a =或12,故选:D .11.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( )A .5个B .6个C .7个D .8个【答案】B解设这个航空公司共有x 个飞机场,依题意得1x(x 1)152-=, 解得16x =,25x =-(不符合题意,舍去),所以这个航空公司共有6个飞机场.故选B .12.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是( )A .a b c ==B .a b =C .b c =D .a c =【答案】D解把x=−1代入方程20(a 0)++=≠ax bx c 得出a−b+c=0,∴b=a+c ,∵方程有两个相等的实数根,∴△=24b ac -=22()()4=0a c ac a c --=+,∴a=c ,故选D .二、填空题:(每小题3分共36分)13.已知关于x 的方程x 2-2ax+1=0有两个相等的实数根,则a=____.【答案】1±解:∵关于x 的方程x 2-2ax+1=0有两个相等的实数根, ∴△=(-2a )2-4×1×1=0,解得:a=±1. 故答案为:±1. 14.(鞍山中考)对于实数a ,b ,我们定义一种运算“※”为:a ※b=a 2-ab ,例如:1※3=12-1×3.若x ※4=0,则_____【答案】x=0或4.【解析】试题解析:∵x ※4=0,240x x ∴-=,∴x (x −4)=0,∴x =0,x −4=0,∴x =0或4,故答案为:∴x =0或4.15.一个两位数,个位上的数字是十位上的数字的2倍,且这个数等于个位上的数字的平方,设十位上的数字为x ,则列方程为____.【答案】2102(2)x x x +=解设十位是x,则个位是2x ,所以这个数是10x+2x ,列出方程2102(2)x x x +=.16.如图,在△ABC 中,AC =50 cm ,BC =40 cm ,∠C =90°,点P 从点A 开始沿AC 边向点C 以2 cm/s 的速度匀速移动,同时另一点Q 从点C 开始以3 cm/s 的速度沿着射线CB 匀速移动,当△PCQ 的面积等于300 cm 2时,运动时间为__________.【答案】5s解设x 秒后,△PCQ 的面积等于300cm 2,有:(50-2x )×3x=300, ∴x 2-25x+50=0,∴x 1=5,x 2=20.当x=20s 时,CQ=3x=3×20=60>BC=40,即x=20s 不合题意,舍去. 答:5秒后,△PCQ 的面积等于300cm 2.三、解答题:(共52分)17.解方程:(1)267-=-x x ;(2)2523x x -=-【答案】(1)x 1,x 2.(2)x 1=13,x 2=-2. 解(1)267-=-x x2670x x -+=a=1,b=-6,c=7,△=(-6)2-4×1×7=8>0,∴∴x 1,x 2.(2)2523+-=-x x23520x x +-=(3x-1)(x+2)=0∴3x-1=0或x+2=0,解得x 1=13,x 2=-2. 18.已知三角形的两边长分别为3和7,第三边长是方程x(x-7)-10(x-7)=0的一个根,求这个三角形的周长.【答案】17.解:x (x −7)−10(x −7)=0,(x −7)(x −10)=0,x−7=0,x−10=0,x1=7,x2=10,分为两种情况:①当三边为3、7、7时,符合三角形三边关系定理,这个三角形的周长为3+7+7=17;②当三边为3、7、10时,3+7=10,不符合三角形三边关系定理,此时不能组成三角形;所以这个三角形的周长为17.19.哈市某专卖店销售某品牌服装,设服装进价为80元,当每件服装售价为240元时,月销售为200件,该专卖店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每件价格每下降10元时,月销售量就会增加20件,设每件服装售价为x(元),该专卖店的月利润为y(元).(1)求出y与x的函数关系式(不要求写出x的取值范围);(2)该专卖店要获得最大月利润,售价应定为每件多少元?最大利润是多少?【答案】(1)y=−2x2+840x−54400;(2)售价应定为每件210元,最大利润是33800元. 【解析】解(1)每件服装的利润为x−80元,月销售量为 200+2402010x-⨯,所以月利润:y=(x-80)⋅( 200+2402010x-⨯)=(x−80)(680−2x)=−2x2+840x−54400,所以函数关系式为y=−2x2+840x−54400;(2)y=−2x2+840x−54400=−2(x−210)2+33800所以当x=210时,y最大=33800 .即售价应定为每件210元,最大利润是33800元.答:售价应定为每件210元,最大利润是33800元.20.如图,某农科站有一块长方形试验田,面积为,现要将其分为,,,四个区,其中区为正方形,区的长是,宽是,那么区的面积是多少?【答案】区的面积是100平方米.解:设区正方形的边长为,则矩形的长为,宽为,所以,整理,得,解得,(舍去),所以,答:区的面积是100平方米.21.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2015年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车.(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车进货量不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?【答案】(1)该商城4月份卖出125辆自行车;(2)该商城应购进A型车34辆,B型车13辆.解:(1)设前4个月自行车销量的月平均增长率为a,根据题意列方程:264(1)100a +=,解得1225%a =-(不合题意,舍去),225%a =.100(125%)125⨯+=(辆).答:该商城4月份卖出125辆自行车.(2)设进B 型车x 辆,则进A 型车300001000500x -辆, 根据题意得不等式组 3000010002 2.8500x x x -剟, 解得12.515x 剟,自行车辆数为整数,所以1315x 剟. 销售利润300001000(700500)(13001000)500x W x -=-⨯+-. 整理得10012000W x =-+,∵W 随着x 的增大而减小,∴当13x =时,销售利润W 的最大值. 此时,30000100034500x -=. 所以该商城应购进A 型车34辆,B 型车13辆.22.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?【答案】小赵的设计符合要求.按他的设计养鸡场的面积是143米2.解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为y 米,长为(y +2)米,根据题意得2y +(y +2)=35解得y=11.因此小王设计的长为y +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). 23.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30.解(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥,解这个不等式,得56x ≤,答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件,根据题意,得()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令%a y =,整理这个方程,得21030y y -=, 解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =,即a 的值是30.。
北师大版九年级上册数学第二章 一元二次方程含答案

北师大版九年级上册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解方程x²-4x-1=0,方程应变形为( )A.(x+2) 2=3B.(x+2)²=5C.(x-2)²=3D.(x-2)²=52、用配方法解一元二次方程2x2﹣x﹣l=0时,配方正确的是()A.(x﹣)2=B.(x+ )2=C.(x﹣)2=D.(x+ )2=3、一元二次方程x2-4x-1=0配方后可变形成()A.(x+2) 2=3B.(x-2) 2=3C.(x+2) 2=5D.(x-2) 2=54、用配方法解方程时,原方程应变形为()A. B. C. D.5、将一元二次方程x2+2 x+1=0左边配方成完全平方式之后,右边的常数应该是()A.2B.1C.D.6、已知实数a、b、c满足.则代数式ab+ac的值是( ).A.-2B.-1C.1D.27、用配方法解方程x 2+2x﹣3=0,下列配方结果正确的是()A. B. C. D.8、把方程x2﹣6x+3=0化成(x﹣m)2=n的形式,则m、n的值是()A.3,12B.﹣3,12C.3,6D.﹣3,69、用配方法解下列方程时,配方有错误的是()A. 化为B. 化为C. 化为D.化为10、方程mx2﹣4x+1=0(m<0)的根是()A. B. C. D.11、用配方法解方程y2-6y+7=0,得(y+m)2=n,则( )A.m=3,n=2B.m=-3,n=2C.m=3,n=9D.m=-3,n=-712、用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1) 2=6B.(x+1) 2=9C.(x-1) 2=6D.(x-2) 2=913、已知方程x2﹣6x+q=0配方后是(x﹣p)2=7,那么方程x2+6x+q=0配方后是()A.(x﹣p)2=5B.(x+p)2=5C.(x﹣p)2=9D.(x+p)2=714、用公式法解方程(x+2)2=6(x+2)﹣4时,b2﹣4ac的值为()A.52B.32C.20D.﹣1215、已知两圆的半径R、r分别为方程x2-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是( )A.外离B.内切C.相交D.外切二、填空题(共10题,共计30分)16、九年级(3)班全体同学在圣诞节将自己的贺卡向本班其他同学各赠送一张,全班共互赠了1980张,若全班共有x名学生,则根据题意列出的方程是________。
北师大版九年级数学上册 第二章 一元二次方程练习题含答案

北师大版九年级数学上册 第二章 一元二次方程 2.1.1 一元二次方程同步练习题1.(3分)下列方程是一元二次方程的是( )A .x 2-1=yB .6x 2=5C .x 2=1xD .3x 3-4x 2-1=0 2.若关于x 的方程(k +1)x 2+2kx -3=0是一元二次方程,则k 的取值范围是( )A .任意实数B .k ≠-1C .k >-1D .k >03. 将方程3x(x -1)=5(x +2)化为一元二次方程的一般形式,正确的是( )A .4x 2-4x +5=0B .3x 2-8x -10=0C .4x 2+4x -5=0D .3x 2+8x +10=04. 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( )A .x(5+x)=6B .x(5-x)=6C .x(10-x)=6D .x(10-2x)=65. 下列方程中一定是关于x 的一元二次方程的是( )A .ax 2+bx +c =0 B .x -1x =0 C .2x +3=2x(x -1) D .x 2+2x =x 2-1 6. 某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .100(1+x)2=81B .100(1-x)2=81C .100(1-x%)2=81D .100x 2=817.在一次九年级学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x 名,据题意可列方程为( )A .x(x +1)=253B .x(x -1)=253C .2x(x -1)=253D .x(x -1)=253×28. 若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=________.9. 若一元二次方程2x2+mx=3x+2中不含x的一次项,则m=________.10. 方程x2+1=-2(1-3x)化为一元二次方程的一般形式后,二次项系数为________,一次项系数为________,常数项为________.11. 两个连续奇数的平方和为2890.设这两个奇数中较小的一个数为x,则可列方程为.12. 若ax2-5x+3=0是关于x的一元二次方程,则不等式3a+6>0的解集是______________.13.已知关于x的一元二次方程(m-1)x2+5x+m2-1=0的常数项为零,则m的值为________.14.现有一块长80 cm,宽60 cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1 500 cm2的无盖的长方体盒子,根据题意可列出方程为.15. 把下列方程化成一元二次方程的一般形式,并写出它的二次项系数,一次项系数和常数项.(1)3x2=5x-1;(2)(x+2)(x-1)=6;(3)4-7x2=0.16. 关于x的方程(m2-9)x2+(m-3)x+2m=0.(1)当m为何值时,它是一元一次方程?并求出一元一次方程的解;(2)当m为何值时,它是一元二次方程?17. 如图,在一块长为22米、宽为17米的矩形地面上修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,请列出方程,并将其化成一元二次方程的一般形式.18. 某超市销售一种品牌童装,平均每天可售出30件,每件盈利40元.为加快资金周转,超市采取降价措施,每件童装每降价2元,平均每天就多售出6件.要使平均每天销售童装利润为1000元,那么每件童装应降价多少元?(列方程,并化为一般形式,不解答)19. 根据下列问题,列出关于x的方程,并将其化为一元二次方程的一般形式.(1) 如果一个直角三角形的两条直角边边长之和为14cm,面积为24cm2,求它的两条直角边的长;(2) 有一个三位数,它的个位数字比十位数字大3,十位数字比百位数字小2,三个数字的平方和的9倍比这个三位数小20,求这个三位数;(3) 如图,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,求金色纸边的宽.答案:1—7 BBBBC BD8. 29. 310. 1 -6 311. x 2+(x +2)2=289012. a>-2且a≠013. -114. (80-2x)(60-2x)=150015. (1)化成一般形式为3x 2-5x +1=0,二次项系数为3,一次项系数为-5,常数项为1(2)化成一般形式为x 2+x -8=0,二次项系数为1,一次项系数为1,常数项为-8(3)化成一般形式为-7x 2+4=0,二次项系数为-7,一次项系数为0,常数项为416. (1)当m =-3时,原方程是一元一次方程,方程的解为x =-1;(2)当m≠±3时,原方程是一元二次方程.17. 解:根据题意,可以列出方程(22-x)(17-x)=300,化成一般形式为: x 2-39x +74=0.18. 解:设每件童装应降价x 元,则每天销售童装的件数为(30+3x)件,每件利润为(40-x)元.则有(30+3x)(40-x)=1 000,化成一般形式为3x 2-90x -200=0.19. (1)设其中一条直角边的长为x cm ,另一条直角边的长为(14-x) cm ,则12x(14-x)=24,化成一般形式为x2-14x+48=0;(2)设十位数字为x,个位数字为x+3,百位数字为x+2,则9[x2+(x+3)2+(x +2)2]=100(x+2)+10x+(x+3)-20,化成一般形式为9x2-7x-22=0;(3)设金色纸边的宽为x cm,则挂图的长为(80+2x)cm,宽为(50+2x)cm,则(80+2x)(50+2x)=5400,化成一般形式为x2+65x-350=0.。
北师大版九年级数学上册--第二单元2.1 认识一元二次方程 练习题(含答案)

2.1 认识一元二次方程一、判断题(下列方程中是一元二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)( )1. 5x 2+1=0 ( )2. 3x 2+x1+1=0( )3. 4x 2=ax(其中a 为常数) ( )4. 2x 2+3x=0( )5. 5132+x =2x ( )6. 22)(x x + =2x( )7. |x 2+2x |=4二、填空题1. 一元二次方程的一般形式是____________________。
2. 将方程-5x 2+1=6x 化为一般形式为____________________。
3. 将方程(x+1)2=2x 化成一般形式为____________________。
4. 方程2x 2=-8化成一般形式后,一次项系数为__________,常数项为__________。
5. 方程5(x 2-2x+1)=-32x+2的一般形式是____________________,其二次项是__________,一次项是__________,常数项是__________。
6. 若ab ≠0,则a 1x 2+b 1x=0的常数项是__________。
7. 如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a 的取值范围是_______。
8. 关于x 的方程(m -4)x 2+(m+4)x+2m+3=0,当m_____时,是一元二次方程,当m_____时,是一元一次方程。
9、若方程2231kx x x +=+是一元二次方程,则k 的取值范围是。
10、方程214y y --=-化为一般形式后,二次项系数是 ,一次项系数是,常数项是。
11、 若2950ax x -+=是一元二次方程,则不等式360a +>的解集是。
三、选择题1. 下列方程中,不是一元二次方程的是( )A. 2x 2+7=0B. 2x 2+23x+1=0C. 5x 2+x1+4=0 D. 3x 2+(1+x) 2+1=0 2. 方程x 2-2(3x -2)+(x+1)=0的一般形式是( )A. x 2-5x+5=0B. x 2+5x+5=0C. x 2+5x -5=0D. x 2+5=0 3. 一元二次方程7x 2-2x=0的二次项、一次项、常数项依次是( )A. 7x 2,2x,0B. 7x 2,-2x ,无常数项C. 7x 2,0,2xD. 7x 2,-2x,0 4. 方程x 2-3=(1-2)x 化为一般形式,它的各项系数之和可能是( )A.2B.-2C.32-D.3221-+5. 若关于x 的方程a(x -1)2=2x 2-2是一元二次方程,则a 的值是( )A. 2B. -2C. 0D. 不等于2 6. 关于x 2=-2的说法,正确的是( )A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C.x 2=-2是一个一元二次方程D.x 2=-2是一个一元二次方程,但不能解 7、下列方程中,不是整式方程的是( )A .21523x x +=B 3720x +-=C .2213x x+=D .1725x -=8、下列各方程中一定是关于x 的一元二次方程的是( ) A .234x x m =+B .280ax -=C .20x y +=D .560xy x -+=9、若方程2(1)1m x -+=是关于x 的一元二次方程,则m 的取值范围是()A .1m ≠B .m ≥0C .0m ≥且1m ≠D .m 为任意实数 10、下列各方程中属于一元二次方程的是( )(1)214yy -= (2)22t = (3)213x =(40= (5)325x x -= (6)22(1)20x x ++-=A .(1)(2)(3)B .(2)(3)(4)C .(1)(2)(6)D .(1)(2)11、关于x 的一元二次方程22(32)0x m x n n ---=中,二次项系数、一次项系数、常数项分别是( ) A.1,3mn ,22mn n - B.1,3m -,22mn n - C.1,m -,2n - D.1,3m ,22mn n -四、填表2.1 认识一元二次方程参考答案一、1.√ 2.× 3.√ 4.√ 5.√ 6.√ 7.√二、1. ax 2+bx+c=0(a ≠0) 2. 5x 2+6x -1=0 3. x 2+1=0 4. 0 85. 5x 2-22x+3=0;5x 2;-22x ;36. 07. ≠18. ≠4 =49.3k ≠ 10.1,4-,1 11.答案:2a >-且0a ≠三、1.C 2.A 3.D 4.C 5.D 6.D 7. C 8.A 9.C 10.D 11.B。
北师大版九年级上册数学第二章测试题(附答案)

北师大版九年级上册数学第二章测试题(附答案)北师大版九年级上册数学第二章测试题(附答案)1.下列关于x的方程中,一定是一元二次方程的为()A。
x^2-2=(x+3)^2 B。
ax^2+bx+c=0 C。
x^2+3x+1=0 D。
2x+1=02.方程-5x^2=1的一次项系数是()A。
3 B。
1 C。
-1 D。
03.若关于x的一元二次方程x^2+5x+m^2-1=0的常数项为1,则m等于()A。
1 B。
2 C。
1或-1 D。
04.一元二次方程(x-5)^2=x-5的解是()A。
x=5 B。
x=6 C。
x=0 D。
没有解5.一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是()A。
5% B。
10% C。
15% D。
20%6.某商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是()A。
9% B。
10% C。
11% D。
12%7.一元二次方程x^2-2x=0的根是()A。
2 B。
0 C。
0和2 D。
1和-18.已知α、β是方程x^2-2x-1=0的两个根,则α^2-β^2的值为()A。
-5 B。
2 C。
0 D。
-29.方程2x^2-6x-5=0的二次项系数、一次项系数、常数项分别为()A。
6、2、5 B。
2、-6、5 C。
2、-6、-5 D。
-2、6、510.用配方法解方程x^2-2x-3=0时,配方后所得的方程为()A。
(x-1)^2=4 B。
(x-1)^2=5 C。
(x-2)^2=4 D。
(x-2)^2=511.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的p%,则新品种花生亩产量的增长率为()泥,经销店可以获得50元的利润。
现在厂家降低了售价,经销店可以选择维持售价不变,或者降低售价以吸引更多客户。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元二次方程2.1 认识一元二次方程 同步练习题1.下列方程中是关于x 的一元二次方程的是( )A .x 2+1x =0 B .(x -1)2=(x +3)(x -2)+1 C .x =x 2 D .ax 2+bx +c =02.方程(m -1)x 2+mx +1=0是关于x 的一元二次方程,则m 的值为( ) A .任何实数 B .m≠0 C .m≠1 D.m≠-13.方程2(x +2)+8=3x(x -1)的一般形式为________________,二次项系数是________,一次项系数是________,常数项是________.4.把下列关于x 的一元二次方程化为一般形式,并写出它的二次项系数、一次项系数和常数项. (1)3x 2=5x -3;(2)(x +2)(x -2)+3x =4.5.设一个奇数为x ,与相邻奇数的积为323,所列方程正确的是( ) A .x(x +2)=323 B .x(x -2)=323C .x(x +1)=323D .x(x -2)=323或x(x +2)=3236.(1)一块长方形菜地的面积是150 m 2,如果它的长减少5 m ,那么菜地就变成正方形,若设原菜地的长为x m ,则可列方程为________________________________________________;(2)已知如图所示的图形的面积为24,根据图中的条件,可列方程为__________________.7.根据下列问题,列出关于x 的方程,并将其化为一般形式. (1)正方体的表面积为36,求正方体的边长x ;(2)在新春佳节到来之际,九(6)班所有的同学准备送贺卡相互祝贺,所有同学送完后共送了1 980张,求九(6)班的同学人数x.8.已知长方形宽为x cm ,长为2x cm ,面积为24 cm 2,则x 最大不超过( )A .1B .2C .3D .49.根据下列表格中的对应值,判断方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)D .3.25<x<3.26 10.已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =______. 11.已知关于x 的一元二次方程(k -1)x 2+x +k 2-1=0有一个根为0,则k 的值为________.12.方程(m -1)xm 2+1+2mx -3=0是关于x 的一元二次方程,则m 的值为( ) A .m =±1 B .m =-1 C .m =1 D .m≠1 13.若方程(k -1)x 2+kx =1是关于x 的一元二次方程,则k 的取值范围是( ) A .k ≠1 B .k ≥0 C .k ≥0且k ≠1 D .k 为任意实数 2A .解的整数部分是0,十分位是5B .解的整数部分是0,十分位是8C .解的整数部分是1,十分位是1D .解的整数部分是1,十分位是215.若关于x 的方程x 2+(m +1)x +12=0的一个实数根的倒数恰是它本身,则m 的值是( )A .-52 B.12 C .-52或12 D .116.已知关于x 的方程(m 2-4)x 2+(m -2)x +4m =0,当m ____________时,它是一元二次方程,当m________时,它是一元一次方程.17.已知关于x 的一元二次方程m(x -1)2=-3x 2+x 的二次项系数与一次项系数互为相反数,则m 的值为多少?18. 有这样的题目:把方程12x 2-x =2化为一元二次方程的一般形式,并写出它的二次项系数,一次项系数和常数项.现在把上面的题目改编成下面的两个小题,请回答问题:(1)下面式子中是方程12x 2-x =2化为一元二次方程的一般形式的是________.(只填写序号) ①12x 2-x -2=0,②-12x 2+x +2=0,③x 2-2x =4,④-x 2+2x +4=0,⑤3x 2-23x -43=0.(2)方程12x 2-x =2化为一元二次方程的一般形式后,它的二次项系数,一次项系数和常数项之间具有什么关系?2.1答案: 1. C 2. C3. 3x 2-5x -12=0 3 -5 -124. (1) 一般形式是3x 2-5x +3=0,二次项系数是3,一次项系数是-5,常数项是3.(2) 一般形式是x 2+3x -8=0,二次项系数是1,一次项系数是3,常数项是-8. 5. D6. (1) x(x -5)=150. (2) (x +1)2-1=24.7. (1)6x 2=36,一般形式为6x 2-36=0.(2)x(x -1)=1 980,一般形式为x 2-x -1 980=0. 8. D 9. C 10. 6 11. -1 12. B 13. C 14. C 15. C16. ≠±2 =-217. 整理方程,得(m +3)x 2-(2m +1)x +m =0,由题意,得m +3-(2m +1)=0,解得m =2.18. (1) ①②④⑤(2) 若设它的二次项系数为a(a≠0),则一次项系数为-2a ,常数项为-4a.(即满足二次系数∶一次项系数∶常数项=1∶-2∶-4即可)2.2 用配方法求解一元二次方程同步课堂练习1.用配方法解方程3x 2-6x +1=0,则方程可变形为( )A .(x -3)2=13 B .3(x -1)2=13 C .(3x -1)2=1 D .(x -1)2=232.小明同学解方程6x 2-x -1=0的简要步骤如下:解:6x 2-x -1=0,两边同时除以6第一步x 2-16x -16=0,移项第二步x 2-16x =16,配方第三步(x-19)2=16+19,两边开方第四步x -19=±518,移项第五步x 1=19+106,x 2=19-106.上述步骤,发生第一次错误是在( )A .第一步B .第二步C .第三步D .第四步 3.用配方法解下列方程时,配方有错误的是( ) A .x 2-2x -99=0化为(x -1)2=100B .2x 2-7x -4=0化为(x -74)2=8116C .x 2+8x +9=0化为(x +4)2=25D .3x 2-4x -2=0化为(x -23)2=1094.用配方法解一元二次方程ax 2+bx +c =0(a≠0),此方程可变形为( )A.⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2B.⎝ ⎛⎭⎪⎫x +b 2a 2=4ac -b 24a 2C.⎝ ⎛⎭⎪⎫x -b 2a 2=b 2-4ac 4a 2D.⎝ ⎛⎭⎪⎫x -b 2a 2=4ac -b 24a 25.一个一元二次方程的二次项是2x 2,它经过配方整理得(x +12)2=1,那么它的一次项和常数项分别是( )A .x ,-34B .2x ,-12C .2x ,-32D .x ,-326.若代数式16x 2+kxy +4y 2是完全平方式,则k 的值为( ) A .8 B .16 C .-16 D .±167. 若代数式2x 2-6x +b 可化为2(x -a)2-1,则a +b =________.8.把方程2x 2+4x -1=0配方后得(x +m)2=k ,则m =________,k =________. 9.若代数式2x 2-5x 与-2x +3的值互为相反数,则x 的值为____________. 10.三角形两边的长是2和5,第三边的长是方程15x 2-75x +2=0的根,则该三角形的周长为________.11.已知a 为实数,则代数式2a 2-12a +27的最小值为________.12.已知实数m ,n 满足m -n 2=1,则代数式m 2+2n 2+4m -1的最小值等于_______. 13.读诗词解题(通过列方程式),算出周瑜去世时的年龄: 大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?14. 用配方法把代数式3x-2x2-2化为a(x+m)2+n的形式,并说明不论x取何值时,这个代数式的值总是负数,并求出当x取何值时,这个代数式的值最大.15. 一个正方形蔬菜园需修整并用篱笆围住.修整蔬菜园的费用是15元/平方米,而购买篱笆材料的费用是30元/米,这两项支出一共为3 600元.求此正方形蔬菜园的边长.2.2答案:1---6 DCCAC D 7. 58. 1 329. 12或310. 12 11. 3 12. 413. 设这个两位数的十位数字为x ,则个位数字为(x +3),这个两位数为10x +(x +3),依题意得10x +(x +3)=(x +3)2,解得x 1=2,x 2=3,∴这个两位数是25或36,又∵周瑜已过而立之年,∴周瑜去世时36岁.14. 3x -2x 2-2=-2(x -34)2-78,∵-2(x -34)2≤0,∴-2(x -34)2-78<0,∴不论x 取何值时,这个代数式的值总是负数.当x =34时,这个代数式的值最大,最大值为-78.15. 设此正方形蔬菜园的边长为x 米,由题意可得15x 2+30×4x=3 600,解得x 1=12,x 2=-20(舍).故此正方形蔬菜园的边长为12米.2.3 用公式法求解一元二次方程基础题知识点1 用求根公式求解一元二次方程1.利用求根公式求方程5x 2+12=6x 的根时,a 、b 、c 的值分别是( )A .5,12,6B .5,6,12C .5,-6,12D .5,-6,-122.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( ) A .x =12±122-3×42B .x =-12±122×3×42×3C .x =12±122+3×42D .x =-(-12)±(-12)2-4×3×42×33.解方程: (1)x 2+1=3x ; (2)3x 2+2x +1=0.知识点2 利用根的判别式判定一元二次方程的根的情况4.已知关于x的一元二次方程3x2+4x-5=0,下列说法正确的是( )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定5.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是( )A.a<1 B.a>1C.a≤1 D.a≥16.若关于x的一元二次方程x2-3x+m=0有两个相等的实数根,则m=____________.知识点3 方案设计的实际问题7.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( )A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9008.如图,某小区规划在一块长30 m、宽20 m的长方形土地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草,要使每一块花草的面积都为78 m2,那么通道宽应设计成多少米?设通道宽为x m,则由题意列得方程为( )A.(30-x)(20-x)=78B .(30-2x)(20-2x)=78C .(30-2x)(20-x)=6×78D .(30-2x)(20-2x)=6×789.如图,小明家有一块长1.50 m ,宽1 m 的矩形地毯,为了使地毯美观,小明请来工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍,则花色地毯的宽为____________m.中档题10.一元二次方程x 2+22x -6=0的根是( ) A .x 1=x 2= 2 B .x 1=0,x 2=-2 2 C .x 1=2,x 2=-3 2 D .x 1=-2,x 2=3 211.方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围是( )A .m>52B .m ≤52且m ≠2C .m ≥3D .m ≤3且m ≠212.在实数范围内定义一种运算“*”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为____________.13.用公式法解方程:(1)(x-1)(1+2x)=2;(2)x2-2x+1=-32x.14.(泰州中考)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.15.(新疆中考)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?综合题16.(淄博中考)关于x的一元二次方程(a-6)x2-8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2-32x-7x2-8x+11的值.2.3参考答案1.C 2.D3.(1)将原方程化为一般形式,得x 2-3x +1=0,∵a =1,b =-3,c =1,∴b 2-4ac =(-3)2-4×1×1=5>0.∴x =-(-3)±52×1.∴x 1=3+52,x 2=3-52.(2)∵a =3,b =2,c =1,∴b 2-4ac =4-4×3×1=-8<0.∴原方程没有实数根.4.B 5.B 6.94 7.B 8.C 9.0.25 10.C 11.B 12.x 1=-1+52,x 2=-1-5213.(1)方程化为一般式,得2x 2-x -3=0,x =-(-1)±(-1)2-4×2×(-3)2×2,x 1=-1,x 2=32.(2)方程化为一般式,得x 2+22x +1=0,x =-22±(22)2-4×1×12×1,x 1=1-2,x 2=-2-1.14.(1)∵b 2-4ac =(2m)2-4×1×(m 2-1)=4>0,∴方程有两个不相等的实数根.(2)将x =3代入原方程,得9+6m +m 2-1=0,解得m 1=-2,m 2=-4. 15.设AB 的长度为x 米,则BC 的长度为(100-4x)米.根据题意,得(100-4x)x =400,解得x 1=20,x 2=5.则100-4x =20或100-4x =80.∵80>25,∴x 2=5舍去.∴AB =20,BC =20.答:羊圈的边长AB ,BC 分别是20米,20米. 16.(1)∵关于x 的一元二次方程(a -6)x 2-8x +9=0有实根,∴a -6≠0,Δ=(-8)2-4×(a -6)×9≥0.解得a ≤709且a ≠6.∴a 的最大整数值为7.(2)①当a =7时,原一元二次方程变为x 2-8x +9=0,∴Δ=(-8)2-4×1×9=28.∴x =-(-8)±282,即x =4±7.∴x 1=4+7,x 2=4-7.②∵x 是一元二次方程x 2-8x +9=0的根,∴x 2-8x =-9.∴2x 2-32x -7x 2-8x +11=2x 2-32x -7-9+11=2x 2-16x +72=2(x 2-8x)+72=2×(-9)+72=-292.2.4用因式分解法求解一元二次方程一.选择题(共10小题)1.如果一个等腰三角形的两边长分别为方程x 2﹣5x +4=0的两根,则这个等腰三角形的周长为( )A .6B .9C .6或9D .以上都不正确2.已知3是关于x 的方程x 2﹣(m +1)x +2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A .7 B .10 C .11 D .10或113.解方程(5x ﹣1)2=3(5x ﹣1)的适当方法是( ) A .开平方法 B .配方法 C .公式法D .因式分解法4.若分式的值为0,则x 的值为( )A .3或﹣2B .3C .﹣2D .﹣3或25.已知x为实数,且满足(x2+x+1)2+2(x2+x+1)﹣3=0,那么x2+x+1的值为()A.1 B.﹣3 C.﹣3或1 D.﹣1或36.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对7.使分式的值等于零的x是()A.6 B.﹣1或6 C.﹣1 D.﹣68.一元二次方程2x(x﹣3)=5(x﹣3)的根为()A.x=B.x=3 C.x1=3,x2=﹣ D.x1=3,x2=9.已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根10.三角形的两边长是3和4,第三边长是方程x2﹣12x+35=0的根,则三角形的周长为()A.12 B.13 C.14 D.12或14二.填空题(共5小题)11.方程3x(x﹣1)=2(x﹣1)的解为.12.若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.13.如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是.14.关于x的一元二次方程(k﹣1)x+6x+8=0的解为.15.对任意实数a,b,若(a2+b2)(a2+b2﹣1)=12,则a2+b2=.三.解答题(共5小题)16.解方程:①2x2﹣4x﹣7=0(配方法);②4x2﹣3x﹣1=0(公式法);③(x+3)(x﹣1)=5;④(3y﹣2)2=(2y﹣3)2.17.解下列方程:(1)9(y+4)2﹣49=0(2)2x2+3=7x(配方法);(3)2x2﹣7x+5=0 (公式法)(4)x2=6x+16(5)2x2﹣7x﹣18=0(6)(2x﹣1)(x+3)=4.18.用适当的方法解下列方程:(1)x2﹣5x﹣6=0;(2)(1﹣x)2﹣1=;(3)8x(x+2)=3x+6;(4).19.阅读下面的例题与解答过程:例.解方程:x2﹣|x|﹣2=0.解:原方程可化为|x|2﹣|x|﹣2=0.设|x|=y,则y2﹣y﹣2=0.解得y1=2,y2=﹣1.当y=2时,|x|=2,∴x=±2;当y=﹣1时,|x|=﹣1,∴无实数解.∴原方程的解是:x1=2,x2=﹣2.在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;(2)x2﹣2x﹣4|x﹣1|+5=0.20.现定义一种新运算:“※”,使得a※b=4ab(1)求4※7的值;(2)求x※x+2※x﹣2※4=0中x的值;(3)不论x是什么数,总有a※x=x,求a的值.用因式分解法求解一元二次方程一.选择题(共10小题)1.(2017•新区一模)如果一个等腰三角形的两边长分别为方程x2﹣5x+4=0的两根,则这个等腰三角形的周长为()A.6 B.9 C.6或9 D.以上都不正确2.(2016•荆门)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或113.(2016秋•兰州期中)解方程(5x﹣1)2=3(5x﹣1)的适当方法是()A.开平方法B.配方法C.公式法D.因式分解法4.(2016秋•利川市校级月考)若分式的值为0,则x的值为()A.3或﹣2 B.3 C.﹣2 D.﹣3或25.(2016春•长兴县月考)已知x为实数,且满足(x2+x+1)2+2(x2+x+1)﹣3=0,那么x2+x+1的值为()A.1 B.﹣3 C.﹣3或1 D.﹣1或36.(2015•安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对7.(2015•东光县校级二模)使分式的值等于零的x是()A.6 B.﹣1或6 C.﹣1 D.﹣68.(2015春•绍兴期末)一元二次方程2x(x﹣3)=5(x﹣3)的根为()A.x=B.x=3 C.x1=3,x2=﹣ D.x1=3,x2=9.(2015春•下城区期末)已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根10.(2013秋•惠安县期中)三角形的两边长是3和4,第三边长是方程x2﹣12x+35=0的根,则三角形的周长为()A.12 B.13 C.14 D.12或14二.填空题(共5小题)11.(2017•德州)方程3x(x﹣1)=2(x﹣1)的解为12.(2016•磴口县校级二模)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2= 13.(2016秋•滨州月考)如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是14.(2015秋•南江县期末)关于x的一元二次方程(k﹣1)x+6x+8=0的解为15.(2015春•婺城区期末)对任意实数a,b,若(a2+b2)(a2+b2﹣1)=12,则a2+b2=三.解答题(共5小题)16.解方程:①2x2﹣4x﹣7=0(配方法);②4x2﹣3x﹣1=0(公式法);③(x+3)(x﹣1)=5;④(3y﹣2)2=(2y﹣3)2.17.解下列方程:(1)9(y+4)2﹣49=0(2)2x2+3=7x(配方法);(3)2x2﹣7x+5=0 (公式法)(4)x2=6x+16(5)2x2﹣7x﹣18=0(6)(2x﹣1)(x+3)=4.18.用适当的方法解下列方程:(1)x2﹣5x﹣6=0;(2)(1﹣x)2﹣1=;(3)8x(x+2)=3x+6;(4).19.(2015春•沙坪坝区期末)阅读下面的例题与解答过程:例.解方程:x2﹣|x|﹣2=0.解:原方程可化为|x|2﹣|x|﹣2=0.设|x|=y,则y2﹣y﹣2=0.解得y1=2,y2=﹣1.当y=2时,|x|=2,∴x=±2;当y=﹣1时,|x|=﹣1,∴无实数解.∴原方程的解是:x1=2,x2=﹣2.在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;(2)x2﹣2x﹣4|x﹣1|+5=0.20.(2015秋•平南县月考)现定义一种新运算:“※”,使得a※b=4ab(1)求4※7的值;(2)求x※x+2※x﹣2※4=0中x的值;(3)不论x是什么数,总有a※x=x,求a的值.用因式分解法求解一元二次方程参考答案与试题解析一.选择题(共10小题)1.B.2.D.3.D.4.A.5.A.6.B.7.A.8.D.9.D.10.A.二.填空题(共5小题)11.1或.12.:6.13.3.14.x1=4,x2=﹣1.15.4.三.解答题(共5小题)16.解:①x2﹣2x=x2﹣2x+1=(x﹣1)2=x﹣1=±∴x1=1+,x2=1﹣.②a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.③方程整理得:x2+2x﹣8=0(x+4)(x﹣2)=0∴x1=﹣4,x2=2.④(3y﹣2+2y﹣3)(3y﹣2﹣2y+3)=0 (5y﹣5)(y+1)=0∴y1=1,y2=﹣1.17.解:(1)方程变形得:(y+4)2=,开方得:y+4=±,解得:y1=﹣,y2=﹣;(2)方程整理得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,开方得:x﹣=±,解得:x1=3,x2=;(3)这里a=2,b=﹣7,c=5,∵△=49﹣40=9,∴x=,解得:x1=2.5,x2=1;(4)方程整理得:x2﹣6x﹣16=0,即(x+2)(x﹣8)=0,解得:x1=﹣2,x2=8;(5)这里a=2,b=﹣7,c=﹣18,∵△=47+144=191,∴x=;(6)方程整理得:2x2+5x﹣7=0,即(2x+7)(x﹣1)=0,解得:x1=﹣3.5,x2=1.18.解:(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x1=6,x2=﹣1.(2)(1﹣x)2﹣1=,(1﹣x)2=+1,(1﹣x)2=,1﹣x=,∴x1=1﹣=﹣,x2=1+=.(3)8x(x+2)=3x+6,8x(x+2)﹣3(x+2)=0,(x+2)(8x﹣3)=0,∴x1=﹣2,x2=.(4).y2﹣5=20,y2=25,y=±5,即y1=5,y2=﹣5.19.解:(1)原方程可化为|x|2﹣2|x|=0,设|x|=y,则y2﹣2y=0.解得y1=0,y2=2.当y=0时,|x|=0,∴x=0;当y=2时,∴x=±2;∴原方程的解是:x1=0,x2=﹣2,x3=2.(2)原方程可化为|x﹣1|2﹣4|x﹣1|+4=0.设|x﹣1|=y,则y2﹣4y+4=0,解得y1=y2=2.即|x﹣1|=2,∴x=﹣1或x=3.∴原方程的解是:x1=﹣1,x2=3.20.解:(1)4※7=4×4×7=112;(2)由新运算的定义可转化为:4x2+8x﹣32=0,解得x1=2,x2=﹣4;(3)∵由新运算的定义得4ax=x,∴(4a﹣1)x=0,∵不论x取和值,等式恒成立,∴4a﹣1=0,即.2.6 应用一元二次方程利润问题与增降率问题同步课时练习题1.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( ) A.(3+x)(4-0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15 D.(x+1)(4-0.5x)=152. 某商品的售价为100元,连续两次降价x%后售价降低了36元,则x 为( )A .8B .20C .36D .183. 某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x 2)=196B .50+50(1+x 2)=196C .50+50(1+x)+50(1+x)2=196D .50+50(1+x)+50(1+2x)=1964. 股票每天的涨跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x)2=1110 B .(1+x)2=109 C .1+2x =1110 D .1+2x =1095. 制造一种产品,原来每件成本价是500元,销售价为625元,经市场预测,该产品销售价为第一个月降低20%,第二个月比第一个月提高6%,为使两月后的销售利润与原来的销售利润一样,该产品的成本价平均每月应降低( )A .5%B .10%C .20%D .25%6. 某种文化衫,平均每天销售40件,每件盈利20元,若每件降价1元,则每天可多售出10件.如果每天要盈利1 080元,每件应降价________元.7.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价为a 元,则可卖出(350-10a)件,但物价局限定每件商品的利润不能超过进价的25%,商店计划要赚400元,需要卖出________件商品,每件商品的售价为________元.8. 某市为了更好地吸引外资,决定改善城市容貌,绿化环境.计划用两年时间,将绿地面积增加44%,则这两年平均每年绿地面积的增长率为___________.9. 李先生将10 000元存入银行,一年到期后取出2 000元购买电脑,余下8 000元及利息又存入银行,如果两次存款的年利率不变,一年到期后本息和是8 925元,则存款的年利率为________.10. 某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y=-x210+710x+710,如果把利润看作是销售额减去成本费和广告费,那么当年利润为16万元时,广告费x为________万元.11. 小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元,请问她购买了多少件这种服装?12. 在一次“春风行动”捐款活动中,某单位第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?13. 某地2014年为做好“精准扶贫”,投入资金1 280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1 600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1 000户(含第1 000户)每户每天奖励8元,1 000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?14. 毕业在即,某商店抓住商机,准备购进一批纪念品.若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1 200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2 500元,问第二周每个纪念品的销售价格为多少元?15. 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为________万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)答案:1---5 ABCBB6. 2或147. 100 258. 20%9. 5%10. 311. ∵80×10=800元<1 200元,∴小丽买的服装数大于10件.设她购买了x 件这种服装,根据题意,得x[80-2(x-10)]=1 200.解得x1=20,x2=30.∵1 200÷30=40<50,∴x2=30不合题意,舍去.答:她购买了20件这种服装.12. (1)设捐款增长率为x,则10 000·(1+x)2=12 100,解得x1=0.1=10%,x2=-2.1(不合题意,舍去),∴捐款增长率为10%.(2)12 100×(1+10%)=13 310(元),∴第四天该单位能收到13 310元的捐款.13. (1)设该地投入异地安置资金的年平均增长率为x,根据题意,得1 280(1+x)2=1 280+1 600,解得x1=0.5=50%,x2=-2.5(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%.(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得1 000×8×400+(a-1 000)×5×400≥5 000 000,解得a≥1 900,答:今年该地至少有1 900户享受到优先搬迁租房奖励.14. (1)设学生纪念品的成本为x元,根据题意,得50x+10(x+8)=440.解得x=6.∴x+8=6+8=14.答:学生纪念品的成本为6元,教师纪念品的成本为14元.(2)第二周单价降低x元后,这周销售的销量为(400+100x)个,由题意得400×(10-6)+(10-x-6)(400+100x)+(4-6)[1 200-400-(400+100x)]=2 500,整理,得x2-2x+1=0.解得x1=x2=1.则10-1=9(元).答:第二周每个纪念品的销售价格为9元.15. (1)26.8.(2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为28-[27-0.1(x -1)]=(0.1x +0.9)(万元).当0<x≤10,根据题意得x·(0.1x+0.9)+0.5x =12,整理得x 2+14x -120=0,解得x 1=-20(不合题意,舍去),x 2=6;当x>10时,根据题意得x·(0.1x+0.9)+x =12,整理得x 2+19x -120=0,解得x 1=-24(不合题意,舍去),x 2=5,因为5<10,所以x 2=5舍去.综上可知,需要售出6部汽车.第二章一元二次方程第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列方程中是关于x 的一元二次方程的是( ) A .x 2+1x2=0 B .ax 2+bx +c =0C .(x -1)(x +2)=1D .3x 2-2xy -5y 2=02.已知关于x 的方程(4-a )xa 2-3a -2-ax -5=0是一元二次方程,则它的一次项系数是( )A .-1B .1C .4D .4或-13.用配方法解一元二次方程x 2-6x -10=0时,下列变形正确的是( ) A .(x +3)2=1 B .(x -3)2=1 C .(x +3)2=19 D .(x -3)2=194.若2x +1与2x -1互为倒数,则实数x 的值为( ) A .±12 B .±1 C .±22D .± 25.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a <2B .a >2C .a <2且a ≠1D .a <-2 6.若关于x 的方程x 2+2x -3=0与2x +3=1x -a有一个解相同,则a 的值为( )A .1B .1或-3C .-1D .-1或37.某品牌服装原价为173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173(1+x %)2=127B .173(1-2x %)=127C .173(1-x %)2=127D .127(1+x %)=1738.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 的两条边的长,则△ABC 的周长为( )A .7B .10C .11D .10或119.若a 满足不等式组⎩⎪⎨⎪⎧2a -1≤1,1-a 2>2,则关于x 的方程(a -2)x 2-(2a -1)x +a+12=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .以上三种情况都有可能10.定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax 2+bx +c =0(a ≠0)满足a -b +c =0,那么我们称这个方程为“美好”方程.若一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( )A .方程有两个相等的实数根B .方程有一根等于0C .方程两根之和等于0D .方程两根之积等于0 请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.在估算一元二次方程x 2+12x -15=0的根时,小彬列表如下:由此可估算方程x 2+12x -15=0的一个根x 的范围是________. 12.若(m 2+n 2)(1-m 2-n 2)+6=0,则m 2+n 2的值为________.13.某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克,且10≤x ≤18)之间的函数关系如图1所示,该经销商想要每天获得150元的销售利润,销售价应定为多少?列出关于x 的方程是__________________.(不需化简和解方程)图114.某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是____________.15.已知x1,x2为方程x2+4x+2=0的两实数根,则x13+14x2+5=________.16.对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:①若a+c=0,则方程ax2+bx+c=0必有实数根;②若b2+4ac<0,则方程ax2+bx+c=0一定有实数根;③若a-b+c=0,则方程ax2+bx+c=0一定有两个不相等的实数根;④若方程ax2+bx+c=0有两个实数根,则方程cx2+bx+a=0一定有两个实数根.其中正确的有________(填序号).三、解答题(共72分)17.(6分)用适当的方法解下列方程:(1)(x+1)(x-2)=x-2;(2)(2x+1)2=x2+2.18.(6分)已知m是方程x2-2x-2=0的根,且m>0,求代数式m2-1m+1的值.19.已知关于x的一元二次方程x(x-2)=x-2①与一元一次方程2x+1=2a-x②.(1)若方程①的一个根是方程②的根,求a的值;(2)若方程②的根不小于方程①两根中的较小根且不大于方程①两根中的较大根,求a的取值范围.20.(8分)已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?21.(10分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过3.4亿元?22.(10分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是________吨;(2)若该经销店计划获得9000元的月利润而且尽可能地扩大销售量,则售价应定为每吨多少元?23.(12分)某住宅小区在住宅建设时留下一块1798平方米的矩形空地,准备建一个矩形的露天游泳池,设计图如图2所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其他三侧各保留2米宽的道路及1米宽的绿化带.(1)请你计算出游泳池的长和宽;(2)已知贴1平方米瓷砖需费用50元,若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,共需要费用多少元?图224.(12分)如图3,在矩形ABCD中,AB=6 cm,AD=2 cm,点P以2 cm/s 的速度从顶点A出发沿折线A-B-C向点C运动,同时点Q以1 cm/s的速度从顶点C出发向点D运动,当其中一个动点到达末端停止运动时,另一点也停止运动.(1)问两动点运动几秒后,四边形PBCQ的面积是矩形ABCD面积的49;(2)问是否存在某一时刻使得点P与点Q之间的距离为 5 cm.若存在,请求出运动所需的时间;若不存在,请说明理由.图3答案1.C 2.B 3.D 4.C 5.C 6.C 7.C 8.D 9.C 10.C11.1.1<x <1.2 12.313.(x -10)(-2x +60)=150 [解析] 设y 与x 之间的函数表达式为y =kx +b ,把(10,40),(18,24)代入,得⎩⎪⎨⎪⎧10k +b =40,18k +b =24,解得⎩⎪⎨⎪⎧k =-2,b =60,∴y 与x 之间的函数表达式为y =-2x +60(10≤x ≤18),∴W =(x -10)(-2x +60),当销售利润为150元时,可得(x -10)(-2x +60)=150.14.(3+x)(4-0.5x)=15 15.-43 16.①②17.解:(1)(x +1)(x -2)-(x -2)=0, (x -2)(x +1-1)=0, x -2=0或x +1-1=0, 所以x 1=2,x 2=0. (2)3x 2+4x -1=0,Δ=42-4×3×(-1)=28,x =-4±272±3=-2±73,所以x 1=-2+73,x 2=-2-73.18.解:x 2-2x -2=0,x 2-2x =2,x 2-2x +1=3, (x -1)2=3,x =±3+1. ∵m >0,∴m =3+1.∴m2-1m+1=m-1= 3.19.解:(1)解方程①,得x1=1,x2=2,解方程②,得x=2a-1 3.当2a-13=1时,a=2;当2a-13=2时,a=72.综上所述,a的值是2或7 2 .(2)由题可知,1≤2a-13≤2,解得2≤a≤72.20.解:(1)证明:∵在方程x2-(t-1)x+t-2=0中,Δ=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)设方程的两个根分别为m,n.∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.21.解:(1)设该企业从2015年到2017年利润的年平均增长率为x.L根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2015年到2017年利润的年平均增长率为20%.(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2018年的利润能超过3.4亿元.22.解:(1)60(2)解法一:设每吨售价下降10x(0<x<16)元.由题意,可列方程(260-100-10x)(45+7.5x)=9000,化简,得x2-10x+24=0,解得x1=4,x2=6.所以当售价定为每吨200元或220元时,该经销店的月利润均为9000元.当售价定为每吨200元时,销量更大,所以售价应定为每吨200元.解法二:设售价定为每吨x元.由题意,可列方程(x-100)(45+260-x10×7.5)=9000.化简,得x2-420x+44000=0,解得x1=200,x2=220.因为要尽可能地扩大销售量,所以售价应定为每吨200元.23.解:(1)设游泳池的宽为x米,则长为2x米.根据题意,得。