数据挖掘导论教材配套教学PPT——认识数据挖掘

合集下载

数据挖掘导论第章vppt课件

数据挖掘导论第章vppt课件
10
数据集类型(三大类)
记录数据 数据矩阵(Data Matrix) 文本数据(Document Data ):每篇文档可以表示成一个文档-词矩 阵 事务数据(Transaction Data)
基于图形(Graph)的数据 World Wide Web 分子结构(Molecular Structures)
有序(Ordered)数据 空间数据(Spatial Data) 时间数据(Temporal Data) 序列数据(Sequential Data )
11
数据集类型1:记录数据: 数据矩阵
数据矩阵: 如果一个数据集中的所有数据对象都具有相同的数值属性集,则数据对
数值的
区 间
新值 = a×旧值+ b, 其中a、b是常数
(定量的)
比 率
新值= a ×旧值
华氏和摄氏温度标度零度的位置和1度的 大小(单位)不同
长度可以用米或英尺度量
8
用值的个数描述属性:离散vs.连续属性
离散属性(Discrete Attribute) 有限或无限可数 (countable infinite )个值 例: 邮政编码, 计数, 文档集的词 常表示为整数变量. 注意: 二元属性(binary attributes)是离散属性的特例
6
表2-2 不同的属性类型
属性类型
标 称 分类的
(定性的) 序 数

数值的

(定量的)
比 率
描述
例子
操作
标称属性的值仅仅只是不 同的名字,即标称值只提供 足够的信息以区分对象
(=,)
序数属性的值提供足够的 信息确定对象的序
(<,>)

数据挖掘基础 数据挖掘概念ppt课件

数据挖掘基础 数据挖掘概念ppt课件
数据挖掘的数据源包括数据库、数据仓库、Web或其他数据存储库。
层次聚类树树状图
A
B
C
D
E
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
在面对海量数据时,需要使用一定的算法,才能从中挖掘出有用的信息,下面介绍数 据挖掘中常用的算法。
1. 分类算法 (1) 决策树算法 决策树算法是一种典型的分类算法,首先利用已知分类的数据构造决策树,然后利用 测试数据集对决策树进行剪枝,每个决策树的叶子都是一种分类,最后利用形成的 决策树对数据进行分类。决策树的典型算法有ID3,C4.5,CART等。
1.1 数据挖掘概述
1.1.3 数据挖掘常用工具概述
第一章 数据挖掘概念
2. Clementine(SPSS) 软件 Clementine是SPSS所发行的一种资料探勘工具,集成了分类、聚类和关联规则
等算法,Clementine提供了可视化工具,方便用户操作。其通过一系列节点来执行 挖掘过程,这一过程被称作一个数据流,数据流上面的节点代表了要执行的操作。 Clementine的资料可视化能力包含散布图、平面图及Web分析。
1.1 数据挖掘概述
第一章 数据挖掘概念
1.1.3 数据挖掘常用工具概述
1. Weka软件
Weka(Waikato Environment for Knowledge Analysis)的全名是怀卡托智能 分析环境,是一款免费与非商业化的数据挖掘软件,基于Java环境下开源的机器学 习与数据挖掘软件。Weka的源代码可在其官方网站下载。它集成了大量数据挖掘算 法,包括数据预处理、分类、聚类、关联分析等。用户既可以使用可视化界面进行 操作,也可以使用Weka提供的接口,实现自己的数据挖掘算法。图形用户界面包括 Weka Knowledge Flow Environment和Weka Explorer。用户也可以使用Java语 言调用Weka提供的类库实现数据挖掘算法,这些类库存在于weka.jar中。

《数据挖掘入门》PPT课件

《数据挖掘入门》PPT课件

依存性和关联性,如果两个事物或者多个事物之间存在
一定的关联关系,那么其中一个事物就能够通过其他事
物预测到。
6.
人们希望在海量的商业交易记录中发现感兴趣
的数据关联关系,用以帮助商家作出决策。例如:
7.
面包 2% 牛奶 1.5% (占超市交易总数)
8.
2%和1.5%表明这两种商品在超市经营中的重要程度,
8. 模式解释:对在数据挖掘步骤中发现的模式 (知识)进行解释。通过机器评估剔除冗余或 无关模式,若模式不满足,再返回到前面某些 处理步骤中反复提取。
9. 知识评价:将发现的知识以用户能了解的方式 呈现给用户。其中也包括对知识一致性的检查, 以确信本次发现的知识不会与以前发现的知识 相抵触。
05.06.2021
精选ppt
10
什么是数据挖掘
1. 数据挖掘(从数据中发现知识) 从海量的数据中抽取感兴趣的(有价值的、隐含的、
以前没有用但是潜在有用信息的)模式和知识。
2. 其它可选择的名字 数据库中知识挖掘、知识提取、数据/模式分析、数据
考古、数据捕捞、信息获取、事务智能等。
3. 广义观点 数据挖掘是从存放在数据库、数据仓库中或其它信息
24
6,分类与预测 分类和预测是两种重要的数据分析方法,在商业上
的应用很多。分类和预测可以用于提取描述重要数据类 型或预测未来的数据趋势。
分类的目的是提出一个分类函数或分类模型(即分 类器)通过分类器将数据对象映射到某一个给定的类别 中。数据分类可以分为两步进行。第一步建立模型,用 于描述给定的数据集合。通过分析由属性描述的数据集 合来建立反映数据集合特性的模型。第二步是用模型对 数据对象进行分类。
05.06.2021

《数据挖掘技术》课件

《数据挖掘技术》课件

拆分时间序列成趋势、周期和随机成分,了解时间序列的特征。
2
时间序列预测
通过历史数据建模和预测,预测未来时间点的趋势和模式。
3
金融市场预测
应用时间序列挖掘来预测股票价格、汇率等金融指标。
大数据时代下的挖掘技术发展趋势
人工智能
深度学习、自然语言处理等在数 据挖掘中的应用。
云计算
通过弹性计算和分布式存储实现 大规模数据挖掘。
医疗诊断
利用医疗数据挖掘技术来辅助医生进行疾病诊断。
社交网络分析
挖掘社交网络中的关系和用户行为模式。
数据清洗、数据集成、数据转换和数据规约。
特征选择
评估特征的重要性,剔除冗余和无关特征,提高模型准确性。
数据质量
解决数据缺失、异常数据和噪声数据,保证数据的准确性和完整性。
聚类算法与分类算法
聚类算法
基于距离或相似性将数据划分为 不同的群集,发现数据的内在结 构。
分类算法
通过训练数据构建决策树,对新 的未知数据进行分类或预测。
物联网
连接设备和传感器的数据挖掘和 分析。
数据可视化技术与数据分析

可视化工具
使用图表、地图和仪表盘等可视化工具
数据分析
2
来展现数据。
通过统计分析和交互式探索来发现数据
的隐藏关系。
3
故事呈现
通过数据可视化技术将数据转化为有意 义的故事。
数据挖掘案例分析和应用实践
市场营销
通过分析客户购买数据来制定营销策略。
支持向量机
通过在特征空间中创建超平面将 不同类别的数据分隔开。
关联规则挖掘及其应用
1 频繁项集
发现同时出现频率较高的 商品或事物组合。

数据挖掘导论完整版中文PPT

数据挖掘导论完整版中文PPT
聚类分析:附加的问题与算法
第 9章
聚类分析:附加的问题与算法

在各种领域,针对不同的应用类型,已经开发了大 量聚类算法。在这些算法中没有一种算法能够适应 所有的数据类型、簇和应用。 事实上,对于更加有效或者更适合特定数据类型、 簇和应用的新的聚类算法,看来总是有进一步的开 发空间。 我们只能说我们已经有了一些技术,对于某些情况 运行良好。其原因是,在许多情况下,对于什么是 一个好的簇集,仍然凭主观解释。此外,当使用客 观度量精确地定义簇时,发现最优聚类问题常常是 计算不可行的。

基于网格的聚类

网格是一种组织数据集的有效方法,至少在低维空 间中如此。

其基本思想是,将每个属性的可能值分割成许多相 邻的区间,创建网格单元的集合。每个对象落入一 个网格单元,网格单元对应的属性区间包含该对象 的值。
存在许多利用网格进行聚类的方法,大部分方法是 基于密度的。

例子
基于网格的算法

DBSCAN多次运行产生相同的结果,而k均值通常 使用随机初始化质心,不会产生相同的结果。 DBSCAN自动地确定簇个数;对于k均值,簇个数 需要作为参数指定。然而,DBSCAN必须指定另 外两个参数:Eps和Minpts K均值聚类可以看作优化问题,即最小化每个点到 最近的质心的误差的平方和,并且可以看作一种统 计聚类的特例。DBSCAN不基于任何形式化模型 。
FCM的结构类似于K均值。 K均值可以看作FCM的 特例。 K均值在初始化之后,交替地更新质心和指派每个 对象到最近的质心。具体地说,计算模糊伪划分等 价于指派步骤。 与k均值一样,FCM可以解释为试图最小化误差的 平方和(SSE),尽管FCM基于SSE的模糊版本 。

数据挖掘概述PPT课件

数据挖掘概述PPT课件
还有很多案例都可以印证,现在的社会是一个 信息爆炸的社会。是在信息的潮流中随波逐流 还是“到中流击水,浪遏飞舟”?
第5页/共63页
数据挖掘技术的另一个产生动力 2.数据过量而知识贫乏 现代人了解古代的主要方式主要是通过前人留 下的记录,但是这些记录往往是零碎的、不完 全的。例如?
想象一下,如果后人希望了解现在人们的生活 状况,他们面临的已不再是信息缺失,而是需 要从浩如烟海的资料中有选择性的收集他们认 为有用的信息,若没有一定技术支持,其难度 恐怕可以用“浪里淘金”或“大海捞针”来形 容。
一、引例 例1。如果你在当当的购书网站并购买过书籍或音 像制品,以后再浏览该网站时经常看到类似的提示: “欢迎你,下面是我们给您推荐的新书和VCD。” 然后就可以在网页的某个位置看到几本新书或VCD 的名字及其相关链接。 网站怎么知道读者可能会对这些物品干兴趣?
这是因为网站采用了新的技术来了解顾客的潜在需求, 比如:网站从顾客的购买清单中发现你买的书与张三 买过的书有几本是相同的,但是还有些书张三已经买 了,而你却还没买,网站会据此认为你们的阅读偏好 相近,从而你会对那些书也干兴趣。
6
鲑鱼,尿布,啤酒
7
面包,茶,糖鸡蛋
8
咖啡,糖,鸡,鸡蛋
9
面包,尿布,啤酒,盐
10
茶,鸡蛋,小甜饼,尿布,啤酒
从这个销售数据中可以得出什么结论?
第2页/共63页
简单分析发现,有6个顾客买了啤酒,而其中5个人 买了尿布,或说,5个买了尿布的顾客都买了啤酒。
从数据挖掘的角度就是得到了如下的很强的关联规则:
第18页/共63页
则S2与S6之间的相异度为10,而相似度为1/11, 有min_d=2,max_d=29,因此,也可以定义相似度 为1-(10-2)/(29-2)=19/27。

数据挖掘ppt课件

数据挖掘ppt课件

2021精选ppt
12
实例——科学数据库
Internet已经成为最大的信息源,但缺乏集中统一 的管理机制, 信息发布具有自由性和任意性, 难于控 制和管理 • 分散、无序、无政府、变动、数量、包罗万象 • 真伪并存, 资源信息和非资源信息难于驾御 • 非规范、非结构 • 检索查全和查准提出新的挑战 • 多媒体、多语种、多类型信息的整合提出新的挑 战 • 跨国界数据传递和流动, 带来政治、文化新问题 • 集成多种(正式和非正式等)交流方式
2021精选ppt
5
中医临床数据——结构化数据采集
2021精选ppt
6
中医临床数据——非结构化数据采集
2021精选ppt
7
中医临床数据
2021精选ppt
8
中医临床数据——全文数据库
2021精选ppt
9
中医临床数据——结构化数据库
2021精选ppt
10
数据及数据分类
1)按照数据所属行业类别分类 科学数据,科学研究过程中产生的数据
12, M, 0, 5, 5, 0, 0, 0, ACUTE, 38.5, 2, 1, 0,15, -,-, 10700,4,0,normal, abnormal, +, 1080, 680, 400, 71, 59, F,-,ABPC+CZX,, 70, negative, n, n, n, BACTERIA, BACTERIA
15, M, 0, 3, 2, 3, 0, 0, ACUTE, 39.3, 3, 1, 0,15, -, -, 6000, 0,0, normal, abnormal, +, 1124, 622, 502, 47, 63, F, -,FMOX+AMK, , 48, negative, n, n, n, BACTE(E), BACTERIA

数据挖掘课件.

数据挖掘课件.

欺骗性检测和管理(1)

应用

广泛应用于医疗系统, 零售系统,信用卡服务, 电信(电 话卡欺骗行为), 等等. 利用历史性数据建立欺骗性行为模型并使用数据挖掘 帮助识别同类例子 汽车保险:检测出那些故意制造车祸而索取保险金的 人 来路不明钱财的追踪: 发现可疑钱财交易(美国财政部 的财政犯罪执行网) 医疗保险: 检测出潜在的病人,呼叫医生和证明人

了解应用领域:

相关的预备知识和应用目标

创建一个目标数据集:数据选择 数据清理和预加工(可能占用60%精力) 数据变换:

发现有用的特征,维/变量的变换,常量的表示
汇总,分类,关联,聚集

选择数据挖掘功能


选择挖掘算法 数据挖掘:搜索兴趣模式 模式评估和知识表达

可视化,变形,去掉冗余模式等等

其他应用


文本挖掘(新闻组,电子邮件,文件) 和WEB分 析 智能询问回答
市场分析和管理(1)

用于分析的数据从何来?

信用卡交易,信誉卡,折扣券,用户投诉电话,公众 生活方式调查。 找出具有相同特征(兴趣,收入水平,消费习惯等等) 的“模式”顾客群。 从单独银行账户向联合银行账户的转变。例如:结婚 不同产品之间的销售关联关系 在此关联信息上进行预测
数据挖掘功能(2)

分类和预测




找出描述并区分数据类和概念的模型(或函数)以便 能够使用模型预测类标记未知的对象类。 例如:依据气候划分国家类型或者依据每里的耗油量 划分汽车类型。 表示形式:判定树,分类规则,神经网络。 预测:预测某些未知的或空缺的数据值。 类标记未知:把数据聚类或分组成新的类,例如:把 房子聚类来找出房子的分布模式。 聚类依据以下原则:最大化类内的相似性和最小化类 间的相似性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年3月23日星期三
第7页,共65页
1.2.1 概念学习
清华大学出版社
1、传统角度(Classical View)
– 所有概念都有明确的定义。
2、概率角度(Probabilistic View)
– 对个别样本实例进行概括性描述,概括性说明构成了概率角度 中的概念。
3、样本角度(Exemplar View)
Yes
No
Yes
Yes
Yes
Yes
Yes
No
No
Good
Yes
Viral
Yes
Not good
Yes
Bacterial
Yes
Good
Yes
Viral
No
Unknown
No
Viral
Yes
Unknown
No
Bacterial
Yes
Not good
No
Bacterial
Yes
Not good
No
Viral
– 样本角度中的概念是将某个概念中的典型实例组成一个集合, 使用该集合来描述概念定义。
2022年3月23日星期三
第8页,共65页
清华大学出版社
1.2.2 归纳学习(Induction-Based Learning)
• 基于归纳的学习
– 机器学习方式 – 人类学习最重要方式之一
• 人类通过对事物的特定实例的观察,对所掌握的已有 经验材料研究。
2022年3月23日星期三
第5页,共65页
1.2 机器学习
1.2.1 概念学习
清华大学出版社
• 通过对大量实例进行训练,从中发现经验化规律的过程。 • 机器学习结果的通常表现形式为概念。 • 机器最擅长的是学习概念。 • 概念(Concept)
– 具有某些共同特征的对象、符号或事件的集合。
• 概念可以从三个不同的角度来看待
No
Good
Yes
Viral
Yes
Good
Yes
Viral
Yes
Not good
No
Bacterial
2022年3月23日星期三
第12页,共65页
决策树(Decision Tree)
清华大学出版社
• 倒立树,非叶子节点表示在一个属性上的分类检查, 叶子节点表示决策判断的结果,该结果选择了正确分 类较多实例的分类。
• 决策树有很多算法(第2章)
Sore-throat Yes Cooling-effect
Not good
Unknown Good
No
Cold Type=Viral (3/0)
Cold Type=Bacterial (4/1)
Cold Type=Viral (2/0)
Cold Type=Bacterial (1/0)
Acute-
onset 起病急
Sore-
throat 咽痛
Cooling-
effect 退热效果
Group Cold-type 群体发病 感冒类型
No
Yes
Yes
No
No
Not good
No
?
Yes
No
Yes
No
Yes
Good
No
?
2022年3月23日星期三
第14页,共65页
产生式规则
Sore-
throat 咽痛
Cooling-
effect 退热效果
Group 群体发病
Cold-type 感冒类型
1
Yes
2
No
3
Yes
4
Yes
5
No
6
No
7
No
8
Yes
9
Yes
10
Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
Yes
No
No
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
No
No
清华大学出版社
2022年3月23日星期三
第2页,共65页
1.1 数据挖掘定义
数据挖掘(Data Mining)
清华大学出版社
• 技术角度
– 利用一种或多种计算机学习技术,从数据中自动分析并提取信 息的处理过程。
– 目的是寻找和发现数据中潜在的有价值的信息、知识、规律、 联系和模式。
– 数据挖掘与计算机科学有关,一般使用机器学习、统计学、联 机分析处理、专家系统和模式识别等多种方法来实现。
【例1.1】
给定如表1.1所示的数据集T,使用有指导的学习方 法建立分类模型,对未知类别的实例进行分类。
表1.1 感冒诊断假想数据集
清华大学出版社
表1.1 感冒诊断假想数据集
序号
Increased -lym 淋巴细胞升高
Leukocytosis 白细胞升高
Fever 发烧
Acute-
onset 起病急
图1.1 感冒类型诊断C4.5决策树
2022年3月23日星期三
第13页,共65页
分类未知实例
清华大学出版社
• 分类模型建立和检验完成后,就可以实际投入使用,即 用该模型对未知分类的实例进行分类。
表1.2 未知分类的数据实例
序号
Increased -lym Leukocytosis Fever 淋巴细胞升高 白细胞升高 发烧
• 归纳学习
– 从归纳中获取和探索新知识,并以概念的形式表现出来的学习。
2022年3月23日星期三
第9页,共65页
清华大学出版社
1.2.3 有指导的学习(Supervised Learning)
• 定义
– 通过对大量已知分类或输出结果值的实例进行训练,调整分类 模型的结构,达到建立能够准确分类或预测未知模型的目的。 这种基于归纳的概念学习过程被称为有指导(监督)的学习。
• 学科角度
– 数据挖掘是一门交叉学科,涉及数据库技术、人工智能技术、 统计学、可视化技术、并行计算等多种技术。
2022年3月23日星期三

第4页,共65页
数据挖掘(Data Mining)
清华大学出版社
• 商业角度
– 商业智能信息处理技术;
– 围绕商业目标开展的,对大量商业数据进行抽取、 转换、分析和处理,从中提取辅助商业决策的关键 性数据,揭示隐藏的、未知的或验证已知的规律性 ,是一种深层次的商业数据分析方法。
• 数据实例(Instance)
– 用于有指导学习的样本数据
• 训练实例(Training Instance)
– 用于训练的实例
• 检验实例(Test Instance)
– 分类模型建立完成后,经过检验实例进行检验,判断模型是否 能够很好地应用在未知实例的分类或预测中。
2022年3月23日星期三
第10页,共65页
第1章 认识数据挖掘
数据挖掘定义 机器学习 数据查询 专家系统 数据挖掘过程/作用/技术/应用 Weka数据挖掘软件
本章目标
• 掌握数据挖掘的定义 • 了解机器学习中的基本方法
– 概念学习 – 归纳学习 – 有指导的学习 – 无指导的聚类
• 了解与数据挖掘有关的数据查询、专家系统 • 了解数据挖掘的过程、作用、技术、应用 • 掌握Weka数据挖掘软件的使用方法
相关文档
最新文档