数据挖掘导论
数据挖掘导论

数据挖掘导论数据挖掘导论是一门研究如何从大量数据中提取有用信息的学科。
它结合了统计学、机器学习和数据库技术,旨在发现数据中的模式、关联和趋势,并利用这些信息来做出预测和决策。
在数据挖掘导论中,我们首先需要了解数据挖掘的基本概念和流程。
数据挖掘的流程通常包括问题定义、数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用等步骤。
每个步骤都有其独特的目标和方法。
数据挖掘导论中的一个重要概念是数据预处理。
数据预处理是指对原始数据进行清洗、集成、转换和规约的过程。
清洗数据可以去除噪声和异常值,集成数据可以将多个数据源合并为一个一致的数据集,转换数据可以将数据转换为适合挖掘的形式,规约数据可以减少数据的维度和存储空间。
特征选择是数据挖掘导论中的另一个关键步骤。
特征选择是指从所有可用的特征中选择最具预测能力的特征。
通过特征选择,我们可以减少模型的复杂性,提高模型的准确性和可解释性。
模型构建是数据挖掘导论中的核心步骤。
模型构建可以使用各种机器学习算法,如决策树、支持向量机、神经网络等。
这些算法可以根据数据的特征和目标来构建预测模型。
在构建模型时,我们需要将数据集划分为训练集和测试集,以便评估模型的性能。
模型评估是数据挖掘导论中的另一个重要步骤。
模型评估可以使用各种指标来评估模型的性能,如准确率、召回率、F1值等。
通过模型评估,我们可以选择最佳的模型,并对其进行优化和改进。
最后,数据挖掘导论中的模型应用是将构建好的模型应用于实际问题中。
模型应用可以帮助我们做出预测和决策,解决实际的业务问题。
例如,我们可以利用数据挖掘技术来预测用户购买行为、分析市场趋势、优化运营策略等。
总之,数据挖掘导论是一门重要的学科,它可以帮助我们从大量数据中提取有用信息,并做出预测和决策。
通过掌握数据挖掘导论的基本概念和技术,我们可以更好地利用数据来解决实际问题,提高决策的准确性和效率。
数据挖掘导论

数据挖掘导论数据挖掘是一种通过从大量数据中发现模式、关联和趋势来提取实用信息的过程。
它涉及使用计算机技术和统计学方法来分析和解释数据,以便从中获取有关未来趋势和行为的洞察力。
在本文中,我们将介绍数据挖掘的基本概念、技术和应用。
1. 数据挖掘的基本概念数据挖掘是从大量数据中提取实用信息的过程。
它主要包括以下几个方面的内容:1.1 数据预处理数据预处理是数据挖掘的第一步,它涉及数据清洗、数据集成、数据变换和数据规约。
数据清洗是指处理数据中的噪声和缺失值,以确保数据的质量。
数据集成是将来自不同数据源的数据合并到一个统一的数据集中。
数据变换是将数据转换为适合进行挖掘的形式,例如将数据编码为数值型。
数据规约是通过减少数据集的大小来提高挖掘效率。
1.2 数据挖掘技术数据挖掘技术包括分类、聚类、关联规则挖掘和异常检测等。
分类是将数据分为不同的类别,例如将客户分为高价值和低价值客户。
聚类是将数据分为相似的组,例如将顾客分为不同的市场细分。
关联规则挖掘是发现数据中的相关关系,例如购买某种商品的人也会购买另一种商品。
异常检测是发现数据中的异常值,例如检测信用卡欺诈行为。
1.3 模型评估和选择在数据挖掘过程中,需要评估和选择不同的模型来解释数据。
常用的评估指标包括准确率、召回率和F1值等。
准确率是指分类模型预测正确的样本比例,召回率是指分类模型正确预测为正类的样本比例,F1值是准确率和召回率的调和平均值。
2. 数据挖掘的应用领域数据挖掘在各个领域都有广泛的应用,以下是一些常见的应用领域:2.1 金融领域在金融领域,数据挖掘可以用于信用评分、风险管理和欺诈检测等。
通过分析客户的历史交易数据和个人信息,可以预测客户的信用风险,并为银行和金融机构提供决策支持。
2.2 零售领域在零售领域,数据挖掘可以用于市场细分、商品推荐和销售预测等。
通过分析顾客的购买历史和偏好,可以将顾客分为不同的市场细分,并向他们推荐适合的商品。
同时,数据挖掘还可以预测销售量,匡助零售商合理安排库存和采购计划。
数据挖掘导论(完整版)

数据挖掘导论(完整版)⼀分类算法
KNN
神经⽹络
⽀持向量机
适⽤于⾼维数据
决策树
gini系数
熵系数
⼆聚类算法
K-均值
基于原型,划分类型
不适⽤密度差别⼤,形状差异⼤
DBSCAN
基于密度
三关联⽅法
apriori
剪枝
⽀持度
置信度
FR-growth
四组合⽅法
bagging
原理:有放回抽样,63%
random forest
boosting
原理:迭代,修改权重
五数据预处理
缺失值
重复值
异常值 -- 离群点
特征提取(维归约) -- PCA
特征选择
离散化&⼆元化 -- 某些分类算法的要求
变量变换
标准化 -- 某些算法的要求,KNN
简单函数变化(log)
四变量特征
连续/离散
定量/定性
nominal 标称、ordinal 序数、internal 区间、 ratio ⽐率。
数据挖掘导论

数据挖掘导论数据挖掘是一种通过分析大量数据来发现隐藏在其中模式、关联和趋势的过程。
它结合了统计学、机器学习和数据库技术,旨在从大数据集合中提取有价值的信息。
在本文中,我们将介绍数据挖掘的基本概念、方法和应用,并探讨其在不同领域的应用。
一、数据挖掘的基本概念1.1 数据挖掘的定义数据挖掘是指从大量数据中发现、提取、分析和解释潜在的、有价值的模式、关联和趋势的过程。
它可以帮助人们发现隐藏在数据中的规律,从而做出更准确的预测和决策。
1.2 数据挖掘的过程数据挖掘的过程通常包括以下几个步骤:(1)问题定义:明确挖掘的目标和需求。
(2)数据采集:收集和获取相关数据。
(3)数据预处理:清洗、集成、转换和规范化数据。
(4)特征选择:从原始数据中选择最具代表性的特征。
(5)模型构建:选择合适的模型和算法进行建模。
(6)模型评估:评估模型的性能和准确度。
(7)模型优化:对模型进行调优和改进。
(8)模型应用:将模型应用于实际问题中,得出有价值的结论。
1.3 数据挖掘的方法数据挖掘的方法包括:(1)分类:将数据分为不同的类别或标签。
(2)聚类:将数据分为相似的组别。
(3)关联规则挖掘:发现数据中的关联关系。
(4)预测:根据已有数据预测未来的趋势和结果。
(5)异常检测:发现数据中的异常或离群值。
二、数据挖掘的应用2.1 金融领域数据挖掘在金融领域的应用非常广泛。
它可以帮助银行和金融机构进行信用评估、风险管理和欺诈检测。
通过分析客户的历史交易数据和个人信息,可以预测客户的信用风险,并及时采取相应的措施。
2.2 零售业数据挖掘在零售业中的应用也非常重要。
通过分析顾客的购买历史和行为模式,可以进行个性化推荐和定价策略。
此外,数据挖掘还可以帮助零售商预测销售趋势,优化库存管理和供应链。
2.3 健康医疗数据挖掘在健康医疗领域的应用越来越多。
通过分析患者的病历数据和基因组数据,可以预测疾病的风险和治疗效果。
此外,数据挖掘还可以帮助医院进行资源调配和病例分析。
数据挖掘-数据挖掘导论

2
数据
数据库 管理
数据仓库
数据挖掘
数据智能 分析
解决方案
图-- 数据到知识的演化过程示意描述
随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人 们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务, 业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技 术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供 其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的 知识”。为有效解决这一问题,自二十世纪 9 年代开始,数据挖掘技术逐步发展起 来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将 这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各 业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视 为是数据管理与分析技术的自然进化产物,如图-- 所示。
)。事实上, 一部人类文明发展史,就是在各种活动中,知识的创造、交流,再创造不断积累的 螺旋式上升的历史。
客观世界 客观世界
收集
数据 数据
分析
信息 信息
深入分析
知识 知识
决策与行动
图-- 人类活动所涉及数据与知识之间的关系描述
计算机与信息技术的发展,加速了人类知识创造与交流的这种进程,据德国《世 界报》的资料分析,如果说 ( 世纪时科学定律(包括新的化学分子式,新的物理关 系和新的医学认识)的认识数量一百年增长一倍,到本世纪 / 年代中期以后,每五 年就增加一倍。这其中知识起着关键的作用。当数据量极度增长时,如果没有有效 的方法,由计算机及信息技术来帮助从中提取有用的信息和知识,人类显然就会感 到像大海捞针一样束手无策。据估计,目前一个大型企业数据库中数据,约只有百 分之七得到很好应用。因此目前人类陷入了一个尴尬的境地,即“丰富的数据”( *)而“贫乏的知识0('
数据挖掘导论

数据挖掘导论数据挖掘导论是一门研究如何从大规模数据中发现隐藏模式、提取有用信息的学科。
它涵盖了多个领域,包括统计学、机器学习、数据库技术和人工智能等。
本文将详细介绍数据挖掘导论的基本概念、方法和应用。
一、数据挖掘导论的基本概念数据挖掘导论的核心概念包括数据预处理、数据挖掘任务、数据挖掘过程和模型评估等。
1. 数据预处理数据预处理是数据挖掘的第一步,它包括数据清洗、数据集成、数据转换和数据规约等操作。
数据清洗是指去除噪声和异常值,数据集成是指将多个数据源的数据整合在一起,数据转换是指将数据转换为适合挖掘的形式,数据规约是指减少数据的维度和规模。
2. 数据挖掘任务数据挖掘任务包括分类、聚类、关联规则挖掘、异常检测和预测等。
分类是指将数据分为不同的类别,聚类是指将数据分为相似的群组,关联规则挖掘是指发现数据中的关联关系,异常检测是指发现与大部分数据不符的异常值,预测是指根据历史数据预测未来的趋势。
3. 数据挖掘过程数据挖掘过程包括问题定义、数据收集、数据预处理、模型构建、模型评估和模型应用等步骤。
问题定义是指明确挖掘的目标和需求,数据收集是指获取相关的数据,模型构建是指选择合适的算法和模型进行挖掘,模型评估是指对挖掘结果进行评估,模型应用是指将挖掘结果应用于实际问题中。
4. 模型评估模型评估是判断挖掘模型的好坏的过程,常用的评估指标包括准确率、召回率、精确率和F1值等。
准确率是指分类正确的样本占总样本的比例,召回率是指分类正确的正例占所有正例的比例,精确率是指分类正确的正例占所有分类为正例的样本的比例,F1值是准确率和召回率的调和平均值。
二、数据挖掘导论的方法数据挖掘导论使用了多种方法和算法,包括决策树、神经网络、支持向量机、关联规则挖掘和聚类分析等。
1. 决策树决策树是一种基于树状结构的分类模型,它通过一系列的判断条件将数据分为不同的类别。
决策树的优点是易于理解和解释,但容易过拟合。
2. 神经网络神经网络是一种模拟人脑神经元网络的模型,它通过训练学习数据的模式和规律。
数据挖掘导论

数据挖掘导论数据挖掘是一种从大量数据中发现有价值信息的过程,它涉及到多个领域,包括统计学、机器学习和数据库管理等。
数据挖掘技术可以帮助我们发现隐藏在数据背后的模式、关联和趋势,从而为决策和预测提供支持。
在数据挖掘导论中,我们将介绍数据挖掘的基本概念、技术和应用。
本课程将涵盖以下内容:1. 数据挖掘概述:- 数据挖掘的定义和目标- 数据挖掘的应用领域- 数据挖掘的过程和步骤2. 数据预处理:- 数据清洗:处理缺失值、异常值和噪声- 数据集成:合并多个数据源的数据- 数据变换:对数据进行规范化、离散化和归一化等操作- 数据规约:通过抽样和维度约简减少数据量3. 数据挖掘技术:- 分类:使用已知类别的样本训练模型,对新样本进行分类- 聚类:将相似的数据对象归为一类- 关联规则挖掘:发现数据项之间的关联关系- 预测:基于已有的数据预测未来的趋势和结果4. 数据挖掘算法:- 决策树算法:通过树状结构进行分类和预测- 神经网络算法:模拟人脑神经元的工作原理进行学习和预测- 支持向量机算法:通过找到最优超平面对数据进行分类- 关联规则挖掘算法:如Apriori算法和FP-Growth算法等5. 数据挖掘应用:- 金融领域:风险评估、信用评分和欺诈检测等- 市场营销:客户细分、推荐系统和市场预测等- 医疗健康:疾病诊断、药物发现和基因分析等- 社交网络:用户行为分析、社交推荐和舆情分析等数据挖掘导论课程旨在帮助学生了解数据挖掘的基本概念和技术,并能够应用这些技术解决实际问题。
通过学习本课程,学生将掌握数据挖掘的基本原理和方法,了解数据挖掘在不同领域的应用,并具备使用数据挖掘工具进行数据分析和模型建立的能力。
本课程的评估方式包括课堂作业、实验报告和期末考试。
通过课堂作业和实验报告,学生将有机会运用所学知识解决实际问题,并展示他们的分析和建模能力。
期末考试将检验学生对数据挖掘概念和技术的理解程度。
数据挖掘导论是数据科学和人工智能领域的重要基础课程,对于从事数据分析、人工智能研究和决策支持等工作的人员具有重要意义。
数据挖掘导论第一二章_924

2.3.4特征创建
常常可以由原来的属性创建新的属性集,更有效地捕获数据集中的重要信息。三种创建新属性的相关方法:特征提取、映射数据到新的空间和特征构造。
特征提取(feature extraction):由原始数据数据创建新的特征集称作特征提取。最常用的特征提取技术都是高度针对具体领域的。因此,一旦数据挖掘用于一个相对较新的领域,一个关键任务就是开发新的特征和特征提取方法。
首先定义测量误差和数据收集错误,然后进一步考虑涉及测量误差的各种问题:噪声、伪像、偏倚、精度和准确度。最后讨论可能同时涉及测量和数据收集的数据质量问题:离群点、遗漏和不一致值、重复数据。
测量误差(measurement error)指测量过程中导致的问题。
数据收集错误(data collection error)指诸如遗漏数据对象或属性值,或不当的包含了其他数据对象等错误。
过滤方法(filter approach):使用某种独立于数据挖掘任务的方法,在数据挖掘算法运行前进行特征选择。
包装方法(wrapper approach):这些方法将目标数据挖掘算法作为黑盒,使用类似于前面介绍的理想算法,但通常不枚举所有可能的子集来找出最佳属性子集。
过滤方法和包装方法唯一的不同是它们使用了不同的特征子集评估方法。对于包装方法,子集评估使用目标数据挖掘算法;对于过滤方法,子集评估技术不同于目标数据挖掘算法。搜索策略可以不同,但是计算花费应当较低,并且应当找到最优或近似最优的特征子集。通常不可能同时满足这两个要求,因此需要这种权衡。搜索的一个不可缺少的组成部分是评估步骤,根据已经考虑的子集评价当前的特征子集。这需要一种评估度量,针对诸如分类或聚类等数据挖掘任务,确定属性特征子集的质量。对于过滤方法,这种度量试图预测实际的数据挖掘算法在给定的属性集上执行的效果如何;对于包装方法,评估包括实际运行目标数据挖掘应用,子集评估函数就是通常用于度量数据挖掘结果的判断标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
No
10 No
S in g le 9 0 K
Yes
10
R e fu n d M a rita l T a x a b le S ta tu s In c o m e C h e a t
No
S in g le 7 5 K
?
Yes
M a rrie d 5 0 K
?
No
M a rrie d 1 5 0 K ?
数据挖掘导论
Pang-ning Tan, Michael Stieinbach, and Vipin Kumar著 Pearson Education LTD. 范明 等译 人民邮电出版社
14.03.2020
数据挖掘:概念与技术
2
主要参考书
Jiawei Han, Micheline Kamber and Jian Pei Data Mining: Concepts and Techniqus (third Edition), Monrgan Kaufmann Publishers Inc., 2012
S in g le 7 0 K
No
4 Yes
M a rrie d 1 2 0 K
No
5 No
D iv o rc e d 9 5 K
Yes
6 No
M a rrie d 6 0 K
No
7 Yes
D iv o rc e d 2 2 0 K
No
8 No
S in g le 8 5 K
Yes
9 No
M a rrie d 7 5 K
What is Data Mining?
–Certain names are more prevalent in certain US locations (O’Brien, O’Rurke, O’Reilly… in Boston area)
–Group together similar documents returned by search engine according to their context (e.g. Amazon rainforest, ,)
4,000,000 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000
500,000 0 1995
14.03.2020
The Data Gap
1996
1997
1998
1999
数据挖掘:概念与技术
10
什么是数据挖掘
许多不同定义 本书定义 在大型数据存储库中,自动地发现有用信息的过程。 Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns
14.03.2020
数据挖掘:概念与技术
18
数据挖掘的起源
数据挖掘是多学科交叉领域
利用了来自如下一些领域的思想:
统计学的抽样、估计和假设 检验
人工智能、模式识别和机器 学习的搜索算法、建模技术 和学习理论
数据库系统提供有效的存储、 索引和查询处理支持
分布式技术也能帮助处理海 量数据
数据以极快的速度收集和存储 (GB/hour) remote sensors on a satellite telescopes scanning the skies microarrays generating gene expression data scientific simulations generating terabytes (千兆字节) of data
14.03.2020
数据挖掘:概念与技术
14
挑战2
高维性 具有数以百计或数以千计属性的数据集 生物信息学:涉及数千特征的基因表达数据 不同地区温度测量:维度(特征数)的增长正比于测量的次数
为低维数据开发的数据分析技术不能很好地处理高维数据
某些数据分析算法,随着维度(特征数)的增加,计算复杂性迅速 增加
范明, 孟小峰译 数据挖掘:概念与技术(第二版) 机械工业出版社, 2007
14.03.2020
数据挖掘:概念与技术
3
14.03.2020
数据挖掘:概念与技术
4
14.03.2020
数据挖掘:概念与技术
5
Jiawei Han
在数据挖掘领域做出杰出贡献的郑州大学校友——韩家炜
14.03.2020
14.03.2020
数据挖掘:概念与技术
12
数据挖掘与KDD
数据挖掘与知识发现 数据挖掘是数据库中知识发现(knowledge discovery in database, KDD)不可缺少的一部分 KDD是将未加工的数据转换为有用信息的整个过程
14.03.2020
数据挖掘:概念与技术
数据中的联系 如时间和空间的自相关性、图的连通性、半结构化文本和XML 文档中元素之间的父子联系
14.03.2020
数据挖掘:概念与技术
16
挑战4
数据的所有权与分布 数据地理上分布在属于多个机构的资源中 需要开发分布式数据挖掘技术
分布式数据挖掘算法面临的主要挑战包括 (1) 如何降低执行分布式计算所需的通信量? (2) 如何有效地统一从多个资源得到的数据挖掘结果? (3) 如何处理数据安全性问题?
计算机越来越便宜,功能越来越 强大
竞争压力越来越大 Provide better, customized services for an edge (e.g. in Customer Relationship Management)
14.03.2020
数据挖掘:概念与技术
8
为什么挖掘数据?(科学)
最优化、进化计算、信息论、 信号处理、可视化和信息检 索
Statistics/ AI
Machine Learning/ Pattern
Recognition
Data Mining
Database systems
14.03.2020
数据挖掘:概念与技术
19
数据挖掘任务
预测vs.描述 预测(Prediction)
根据其他属性的值,预测特定属性的值 描述(Description)
导出概括数据中潜在联系的模式
14.03.2020
数据挖掘:概念与技术
20
数据挖掘任务
分类(Classification) [Predictive] 回归(Regression) [Predictive] 关联规则发现(Association Rule Discovery) [Descriptive] 序列模式发现(Sequential Pattern Discovery) [Descriptive] 聚类(Clustering) [Descriptive] 异常/偏差检测(Anomaly/Deviation Detection) [Predictive]
14.03.2020
数据挖掘:概念与技术
11
什么(不)是数据挖掘
What is not Data Mining?
– Look up phone number in phone directory
– Query a Web search engine for information about “Amazon”
14.03.2020
数据挖掘:概念与技术
17
挑战5
非传统的分析 传统的统计学方法:假设-检验模式 提出一种假设,设计实验来收集数据,然后针对假设分析数据
当前的数据分析任务常常需要产生和评估数以千计的假设 希望自动地产生和评估假设导致了一些数据挖掘技术的开发
数据挖掘所分析的数据集通常不是精心设计的实验的结果 代表数据的时机性样本(opportunistic sample)而不是随机样本 (random sample) 数据集常常涉及非传统的数据类型和数据分布
Yes
D iv o rc e d 9 0 K
?
No
S in g le 4 0 K
?
No
M a rrie d 8 0 K
?
10
Training Set
Learn Classifier
Test Set
Model
14.03.2Leabharlann 20数据挖掘:概念与技术23
分类:应用1
Direct Marketing Goal: Reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product. Approach: Use the data for a similar product introduced before. We know which customers decided to buy and which decided otherwise. This {buy, don’t buy} decision forms the class attribute. Collect various demographic, lifestyle, and company-interaction related information about all such customers. Type of business, where they stay, how much they earn, etc. Use this information as input attributes to learn a classifier model.