概率自测题一答案
九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
概率论与数理统计 自测题2

5
9.设某地区成年居民中肥胖者占 10%,不胖不瘦者占 82%,瘦者占 8%,又知肥胖者患 高血压的概率为 20%,不胖不瘦者患高血压病的概率为 10%,瘦者患高血压病的概率 为 5%。(1)若在该地区任选一人,则此人患高血压病的概率是多大?(2)若在该 地区任选一人,发现此人患高血压病,则他属于肥胖者的概率有多大 ?
(B) P(A ∪ B ) = 1
【】 【】 【】
(C) P( AB) = P( A)P(B)
(D) P(A) + P(B) = 1
8.已知 0<P(B)<1,P[(A1∪A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是 【 】 ( A) P[( A1 ∪ A2 ) | B] = P( A1 | B) + P( A2 | B); (B) P(A1B∪A2B)=P(A1B)+P(A2B);
(2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 中至多有一个发生; (5)A,B,C 都发生; (6)A,B,C 都不发生; (7)A,B,C 中至少有两个发生; (8)A,B,C 中至多有两个发生。
2. 已知 P( A) = 1 , p(B | A) = 1 , P( A | B) = 1 ,求P( A ∪ B) .
(D) P(A-B)=P(A)。
3. 筐中有 5 只黄色的小鸡和 4 只黑色的小鸡,从中任意取出 2 只,则取出的小鸡颜色
概率统计测验题一答案

一、单项选择题(15分,每小题5分)
1、某人射击中靶的概率为 ,则在第二次中靶之前已经失败3次的概率为(A).
(A) ;(B) ;(C) ;(D)
2、设随机变量 只能取 这四个值,其相应的概率依次为 ,则常数 (B).
(A)1;(B)2;(C)3;(D)4.
3、设随机变量 ,且 ,则 =(A).
三、(10分)10把钥匙中有(取出的这两把钥匙能打开门)= (取出的这两把钥匙至少有一把能打
开门)=1- (取出的这两把钥匙都不能打开门)= .
四、(20分)假设同一年级有两个班,一班50名学生,其中20名女生;二班45名
学生,其中15名女生,从中任选一个班,然后从中任选一名学生.(1)试求选出的是
(2)由(1)得 所求概率为
.
六、(10分)设随机变量 ,求随机变量 的概率密度 .
解:因为 ,所以其概率密度为 .
记 的分布函数为 ,故当 时, =0;当 时,有
.
所以 的概率密度为
(A) ;(B) ;(C) ;(D) .
二、填空题(25分,每小题5分)
1、设 为随机事件, , ,则 .
2、一袋中装有4只白球、2只红球,从袋中取球两次,每次取1只,取后不放回,则取到2只球都是白球的概率为 .
3、设事件 相互独立, , ,则 .
4、已知随机变量 ,且 ,则
5、设 的概率密度 = ,则 .
女生的概率;(2)已知选到的是女生,求此女生是一班的概率.
解:设 =“选出一班”, =“选出二班”, =“选出的是女生”,则有
.
(1)由全概率公式,所求概率为
.
(2)由贝叶斯公式,所求概率为 .
概率统计参考答案(习题一)

概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。
解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。
(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。
则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。
2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。
3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。
解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。
4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。
概率复习题自测题解答

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。
解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。
解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。
解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n nn n----+--=⋅+⋅=--当n 为偶数时:1122222()112(1)nnn nn P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。
解: 21411136xS dx dy --==⎰⎰13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。
解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。
概率论与数理统计第四章自测题

概率论与数理统计第四章自测题(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《概率论与数理统计》第四单元自测题时间:120分钟,卷面分值:100分一、填空题:(每空2分,共12分) 得分1.设随机变量X 与Y ,方差D (X )=4,D (Y )=9,相关系数XY=,则D (3X -2Y )= 。
2.已知随机变量X~N (0,2)(>0),Y 在区间[0,3]σ上服从均匀分布,如果D (X-Y )=2,则X 与Y 的相关系数XY= 。
3.二维随机变量(X, Y )服从正态分布,且E (X )=E (Y )=0,D (X )=D (Y )=1,X 与Y 的相关系数XY=-1/2,则当a = 时,随机变量aX+Y 与Y 相互独立。
4.设随机变量X~N (0, 4),Y 服从指数分布,其概率密度函数为1210()200x e x f x x -⎧>⎪=⎨⎪≤⎩,,,,如果Cov (X, Y )=-1,Z=X-aY ,Cov (X, Z )=Cov (Y, Z ),则a = ,此时X 与Z 的相关系数为XZ= 。
5.设随机变量X 在区间(-1, 2)上服从均匀分布,随机变量-100010X Y X X >⎧⎪==⎨⎪<⎩,,,,,,则方差D (Y )= 。
6.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计P {X -24}。
二、单选题:(每题2分,共12分) 得分1.随机变量X, Y 和X+Y 的方差满足D(X+Y)=D(X)+D(Y),该条件是X 与Y( )。
(A)不相关的充分条件,但不是必要条件; (B)不相关的必要条件,但不是充分条件; (C)独立的必要条件,但不是充分条件;(D)独立的充分必要条件。
2.若随机变量X 与Y 的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有( )。
(A) X 与Y 一定相互独立; (B) X 与Y 一定不相关;(C) D(XY)=D(X)D(Y); (D) D(X-Y)=D(X)-D(Y)。
概率论与数理统计自测题1

。
5
44
43 1
13 4
14
A. ( 5 )
B. ( ) ⋅ 55
C. ( ) ⋅ 55
D. ( ) 5
2.设随机变量 X 服从指数分布,且 DX = 0.25 则 X 的概率密度为
。
-1-
−2 x
(A)
⎧2e , x>0 ⎨
⎩0 , x≥0
⎧ −1 x
(B)
⎪ ⎨
1 2
e
2
,
x>0
⎪
⎩0 , x ≥ 0
(C)
⎧
− 4x
4e
,
x>0
⎨
⎧1
1 −
x
(D)
⎪ e 4 , x>0 ⎨4
⎩0 , x≥0
⎪
⎩0 , x≥0
3.
设随机变量 X
的数学期望
EX
= −2
,方差
DX
=
1
,则
E
(3
2
X
− 2) =
。
(A)12 (B) 13 (C) 14
(D) 15
2
4. 设 E (X ) = µ ,D( X ) = σ ,其中 µ,σ > 0 为常数,则对于任意常数c ,
。
3. 有5个人在一座8层大楼的第一层进入电梯。设他们中的每一个人自第二层开始
在每一层离开是等可能的,则5个人在不同层次离开的概率为
。
1
X−µ
4. 设随机变量 X 服从 N ( µ, ) ,则
∼
。
2
1
2
5. 设连续型随机变量 X 的概率密度
⎧
f ( x)
⎪ cos x =⎨
概率第一、二章测试题(含答案)

概率第⼀、⼆章测试题(含答案)第1章随机事件和概率、第2章条件概率与独⽴性⼀、选择题1.设A, B, C 为任意三个事件,则与A ⼀定互不相容的事件为(A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ?2.(01,难度值0.93)对于任意⼆事件A 和B ,与B B A =?不等价的是(A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成⽴的是().A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则().A 事件A 与B 互不相容 .B 事件A 与B 相互独⽴ .C 事件A 与B 相互对⽴ .D 事件A 与B 互不独⽴5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有⼀个发⽣的概率等于().A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+-6.对于任意两事件A 与B ,()P A B -=().A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()()P A P A P A B +-7.若A 、B 互斥,且()()0,0P A P B >>,则下列式⼦成⽴的是().A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A =8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是().A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独⽴ .D A B ?9.设A 、B 互不相容,()()0,0P A P B ≠≠,则下列结论肯定正确的是().A A 与B 互不相容 .B ()0P B A > .C ()()()P AB P A P B = .D ()()P A B P A -=10.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A=().A 0.3 .B 0.24 .C 0.5 .D 0.2111.(98,难度值0.69)设A ,B 是两个随机事件,且00,)|()|(A B P A B P =,则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠ 12.随机事件A , B ,满⾜21)()(==B P A P 和1)(=?B A P ,则有(A )Ω=?B A (B )φ=AB (C ) 1)(=?B A P(D )0)(=-B A P13.设随机事件A 与B 互不相容,0)(>A P ,0)(>B P ,则下⾯结论⼀定成⽴的是(A )A ,B 为对⽴事件(B )A ,B 互不相容(C ) A, B 不独⽴(D )A, B 独⽴ 14.对于事件A 和B ,设B A ?,P(B)>0,则下列各式正确的是(A ))()|(B P A B P =(B ))()|(A P B A P = (C ) )()(B P B A P =+(D ))()(A P B A P =+15.设事件A 与B 同时发⽣时,事件C 必发⽣,则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P (C ) )()(AB P C P = (D ))()(B A P C P ?=16.(98,难度值0.62)设A,B,C 是三个相互独⽴的随机事件,且0(A )B A +与C (B )AC 与C (C )B A -与C (D )AB 与C17.(00,难度值0.42)设A, B, C 三个事件两两独⽴,则A, B, C 相互独⽴的充要条件是(A )A 与BC 独⽴(B )AB 与A+C 独⽴(C )AB 与AC 独⽴(D )A+B 与A+C 独⽴ 18.将⼀枚均匀的硬币独⽴地掷三次,记事件A=“正、反⾯都出现”,B=“正⾯最多出现⼀次”,C=“反⾯最多出现⼀次”,则下⾯结论中不正确的是(A )A 与B 独⽴(B )B 与C 独⽴(C )A 与C 独⽴(D )C B ?与A 独⽴ 19.进⾏⼀系列独⽴重复试验,每次试验成功的概率为p ,则在成功2 次之前已经失败3次的概率为(A )3)1(4p p - (B )3225)1(p p C -(C )3)1(p -(D )32)1(4p p -⼆、填空题1.(97,难度值0.73)⼀袋中有50个乒乓球,其中20个红球,30个⽩球,今两⼈从袋中各取⼀球,取后不放回,则第⼆个⼈取到红球的概率为__________ 2.(97,难度值0.68)设A ,B 是任意两个随机事件,则=++++)})()()({(B A B A B A B A P3.已知A 、B 两事件满⾜条件()()P AB P AB =,且()P A p =,则()_______P B = 4.已知13()()(),()()0,()416P A P B P C P A B P B C P A C ======,则,,A B C 都不发⽣的概率为__________5.随机事件A 、B 满⾜()0.4,()0.5,()()P A P B P A B P A B ===,则()P A B = 6.(99,难度值0.56)设两两相互独⽴的三事件A ,B 和C 满⾜条件:φ=ABC ,21)()()(<==C P B P A P ,且已知169)(=C B A P ,则P(A)=7.(00,难度值0.67)设两个相互独⽴的事件A 和B 都不发⽣的概率为91,A 发⽣B 不发⽣的概率与B 发⽣A 不发⽣的概率相等,则P(A)= 8.设事件A 和B 中⾄少有⼀个发⽣的概率为56,A 和B 中有且仅有⼀个发⽣的概率为23,那么A 和B 同时发⽣的概率为_________ 9.设随机事件A, B, C 满⾜41)()()(===C P B P A P ,0)()(==BC P AB P ,81)(=AC P ,则A, B, C 三个事件中⾄少出现⼀个的概率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自测题一答案
一、选择题(每小题2分,共20分)
1.A
2.C
3.D 5.D 6.B 7.A 8.B 9.B
二、计算题(本题共2小题,共20分。
请写出详细的解题步骤。
)
11. 21,A A 分别表示取到第一箱和取到第二箱,21,B B 分别表示先取出的是一等品和后取出的是一等品。
则
21)(1=
A P ,21)(2=A P ,51)|(11=A
B P ,5
3)|(21=A B P (1)由全概率公式
4
.0)|()()|()()(5321
51212121111=⨯+⨯=+=A B P A P A B P A P B P (2)25
1
5151121)|(=⨯=A B B P ,2595353221)|(=⨯=A B B P 2
.0)|()()|()()(25921
251212212121121=⨯+⨯=+=A B B P A P A B B P A P B B P 5.04
.02
.0)()()|(12112===
B P B B P B B P
12. 设Y 表示甲、乙、丙三人中等车时间不超过2分钟的人数,则),3(~p B Y
其中p 表示每个人等车时间不超过2分钟的概率,则
4.0}2{2
05
1==≤=⎰
dx X P p
所求概率352.04.06.04.0}2{33
3223=⨯+⨯⨯=≥C C Y P
三、计算题(本题共2小题,共2分。
请写出详细的解题步骤。
) 13、1600:,1600:10≠=μμH H ; 拒绝域D : 96.126
/025.00
=>-=
z X U σμ.
代入数据得96.12578.1<=U ,落在D 外,故接受0H ,即质量指标合格. 14、60:,60:2120≠=σσH H .
拒绝域D :919.16)9()1(205.02
22
=≥-=χσχS n 或325.3)9(2
95.02=≤χχ. 代入数据得D ∉=⨯=
152.1360
682
.8792
χ
,故接受0H 即方差无显著变化.
四、计算题(本题共2小题,共20分。
请写出详细的解题步骤。
)
15、⎪⎪⎪⎩
⎪
⎪⎪⎨⎧
≥<≤-+-<≤<==
⎰
∞
-212112210200)()(22
x x x x x x
x dt t f x F x
(2)6
1)(,1)(=
=X D X E (3)245.0755.01)3.1(1}3.1{1}3.1{=-=-=≤-=>F X P X P
五、证明题(本题共10分。
请写出详细的解题步骤。
) 17、(1)C=12
(2)⎩⎨⎧>=-.,0;0 ,3e )(3其它x x f x X ,⎩⎨⎧>=-.,
0;0 ,4e )(4其它y y f x Y
(3)独立
(4)⎩⎨⎧>=-.,
0;
0 ),e -12(e )(-4z 3其它z z f z Z。