原电池电动势的测定实验报告

合集下载

原电池电动势和溶液ph值的测定实验报告

原电池电动势和溶液ph值的测定实验报告

原电池电动势和溶液ph值的测定实验报告原电池电动势和溶液pH值的测定实验报告引言:原电池电动势和溶液pH值的测定是化学实验中常见的实验项目。

本实验旨在通过测定原电池电动势和溶液pH值,探究它们之间的关系,并加深对电化学和酸碱性质的理解。

通过实验的结果和数据分析,可以进一步验证和应用相关理论知识。

实验原理:原电池电动势是指两种半反应在标准条件下的电势差,可以用于评估化学反应的驱动力。

而溶液的pH值则是用来描述溶液酸碱性质的指标,它反映了溶液中氢离子(H+)的浓度。

在本实验中,我们将使用电位计和pH计来测定原电池电动势和溶液pH值。

实验步骤:1. 首先,我们准备好实验所需的材料和试剂,包括电位计、pH计、原电池、标准溶液等。

2. 将电位计的电极连接到原电池的两个电极上,并将电位计调至合适的量程。

3. 记录下原电池的电动势,并计算得出标准电动势。

4. 接下来,我们将使用pH计来测定不同溶液的pH值。

首先校准pH计,然后将pH电极插入待测溶液中,等待pH计稳定后记录下pH值。

5. 重复以上步骤,测定不同溶液的pH值,并记录下实验数据。

实验结果与数据分析:通过实验测定,我们得到了一系列原电池的电动势和不同溶液的pH值。

根据实验数据,我们可以进行一些数据分析和比较。

首先,我们可以观察到原电池电动势与溶液pH值之间的关系。

在某些情况下,我们可能会发现原电池电动势与溶液pH值呈现一定的相关性。

这是因为在一些反应中,产生或消耗氢离子(H+)的速率与电动势有关,而氢离子的浓度与溶液的pH值密切相关。

因此,通过测定原电池电动势和溶液pH值,我们可以间接推测出某些反应中氢离子浓度的变化。

其次,我们可以通过比较不同溶液的pH值,来判断其酸碱性质。

根据酸碱中和反应的定义,pH值小于7的溶液被视为酸性溶液,pH值大于7的溶液被视为碱性溶液,而pH值等于7的溶液则是中性溶液。

通过实验测定的pH值,我们可以对溶液的酸碱性质进行初步判断,并与已知的标准溶液进行比较,以进一步确认其酸碱性质。

原电池电动势的测定与应用物化实验报告

原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定一、实验目的1) 掌握电位差计的测量原理和测量电池电动势的方法;2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用;5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池反应的热力学函数△G 、△S 、△H 。

二、实验原理1.用对消法测定原电池电动势:原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。

另外,电池本身有阻,所以伏特计测得的只是不可逆电池的端电压。

而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。

对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。

2.电池电动势测定原理:Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位:其中)25(00097.0799.0Ag /Ag --=+t ϕ;而+++-=Ag Ag /Ag Ag /Ag 1lna F RTϕϕ 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25)而电池电动势 饱和甘汞理论—ϕϕ+=Ag /Ag E ;可以算出该电池电动势的理论值。

与测定值比较即可。

3.电动势法测定化学反应的△G 、△H 和△S :如果原电池进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定压下的吉布斯函数变化△G和电池的电动势E有以下关系式:△r G m =-nFE从热力学可知:△H=-nFE+△S4.注意事项:①盐桥的制备不使用:重复测量中须注意盐桥的两端不能对调;②电极不要接反;三、.实验仪器及用品1.实验仪器SDC数字电位差计、饱和甘汞电极、光亮铂电极、银电极、250mL烧杯、20mL烧杯、U 形管2.实验试剂0.02mol/L的硝酸银溶液、饱和氯化钾溶液、硝酸钾、琼脂四、实验步骤1.制备盐桥3%琼脂-饱和硝酸钾盐桥的制备方法:在250mL烧杯中,加入100mL蒸馏水和3g琼脂,盖上表面皿,放在石棉网上用小火加热至近沸,继续加热至琼脂完全溶解。

原电池电动势的测定实验报告

原电池电动势的测定实验报告

原电池电动势的测定实验报告Experimental report on measurement of electromotive force of( 实验报告)姓名:____________________单位:____________________日期:____________________编号:YB-BH-053983原电池电动势的测定实验报告原电池电动势的测定实验报告1实验目的1.掌握可逆电池电动势的测量原理和电位差计的操作技术2.学会几种电极和盐桥的制备方法3.学会测定原电池电动势并计算相关的电极电势实验原理凡是能使化学能转变为电能的装置都称之为电池(或原电池)。

可逆电池应满足如下条件:(1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。

因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。

电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。

可逆电池的电动势可看作正、负两个电极的电势之差。

设正极电势为φ+,负极电势为φ-,则电池电动势E = φ+ - φ- 。

电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。

将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。

由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。

常用的参比电极有甘汞电极、银-氯化银电极等。

这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。

以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。

大学物理化学实验报告原电池电动势的测定范文

大学物理化学实验报告原电池电动势的测定范文

大学物理化学实验报告原电池电动势的测定范文实验目的:
1.掌握电动势的测定方法。

2.了解原电池的构造和原理。

3.学会维护使用原电池。

实验原理:
原电池是利用化学能转化为电能的一种电池,由两个半电池组成。

半电池包括电极、
电解质和导电体三个部分。

在半电池中,还原物与氧化物之间的氧化还原反应会导致电子
的转移,从而在电极中产生一定的电势差。

两个半电池通过运用导线和外电路连接,从而
实现产生电压的功能。

原电池电动势是指两个半电池之间的电势差,它的计量单位是“伏特”,简称“V”。

实验步骤:
1.准备测量原电池电动势所需的实验器材和药品:原电池、电压表、接线板、万用表、棉绳等。

2.观察原电池的构造和原理,理解两个半电池之间的电势差产生原理。

3.在接线板上连接原电池的两个端子,接上电压表和万用表,用棉绳绕住原电池,防
止在操作过程中原电池移动或接触到其他电器设备。

4.将电压表调整到所需的电压档位上,读取原电池正极和负极的电势差,并计算出原
电池的电动势。

5.记录电动势的结果,并将实验器材放置妥当。

实验结果:
本次实验的原电池电动势为X伏特。

通过本次实验,我们了解了原电池的构造和原理,学会了维护和使用原电池,掌握了
测量原电池电动势的方法。

在实验中,我们用电压表和万用表对原电池进行了测量,并得
出了X伏特的电动势值。

实验结果表明,原电池可以将化学能转化为电能,实现生产和生
活的用电需求。

同学们应该注意,在使用原电池时,需要保证操作环境的清洁和安全,避
免电流过大或电压过高导致的危险。

原电池电动势和溶液ph值的测定实验报告

原电池电动势和溶液ph值的测定实验报告

原电池电动势和溶液ph值的测定实验报告原电池电动势和溶液pH值的测定实验报告
实验目的:
1. 测定不同原电池的电动势
2. 测定不同溶液的pH值
实验仪器和试剂:
1. 原电池
2. 电动势计
3. pH计
4. 不同溶液:酸性、中性、碱性溶液
实验步骤:
1. 测定原电池的电动势
a. 将原电池接入电动势计
b. 记录电动势的数值
c. 更换不同原电池,重复步骤a和b
2. 测定不同溶液的pH值
a. 将pH计插入酸性溶液中,记录pH值
b. 将pH计插入中性溶液中,记录pH值
c. 将pH计插入碱性溶液中,记录pH值
实验结果:
1. 不同原电池的电动势
- 原电池1:1.5V
- 原电池2:1.3V
- 原电池3:1.7V
2. 不同溶液的pH值
- 酸性溶液:pH 3
- 中性溶液:pH 7
- 碱性溶液:pH 10
实验结论:
1. 不同原电池的电动势差异较大,说明不同原电池的化学反应特性不同,导致产生的电动势不同。

2. 不同溶液的pH值表明酸性溶液具有较低的pH值,碱性溶液具有较高的pH 值,中性溶液的pH值接近7。

实验总结:
通过本次实验,我们成功测定了不同原电池的电动势和不同溶液的pH值。

这些数据对于我们了解原电池和溶液的化学特性具有重要意义,也为我们今后的实验和研究提供了基础数据。

大学物理化学实验报告-原电池电动势的测定

大学物理化学实验报告-原电池电动势的测定

物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称:原电池电动势的测定日期2009.03.26 同组者姓名史黄亮室温16.84℃气压101.7 kPa成绩一、目的和要求1.学会一些电极的制备和处理方法;2.掌握对消法测定电池电动势及电极电势的原理和方法;3.熟悉数字式电子电位差计的工作原理和正确的使用方法。

二、基本原理测定电池电动势必须要求电池反应本身是可逆的,即电池必须在可逆的情况下工作,此时只允许有无限小的电流通过电池。

因此根据对消法原理(在外电路上加一个方向相反而电动势几乎相等的电池)设计了一种电位差计,以满足测量工作的需要。

T温度下的电极电势ψT=ψTθ-(RT/2F)*ln(1/a);—a= r±*m (r±参见附录表V-5-30)ψTθ=ψ298θ+α(T-298)+0.5β(T-298)^2—α,β为电池电极的温度系数:铜电极(Cu2+/Cu),α=-0.000016 V/K,β=0锌电极[Zn2+/Zn(Hg)],α=0.0001 V/K,β=0.62*10-6 V/K三、仪器、试剂SDC-Ⅱ数字电位差综合测试仪、YJ56电镀仪毫安表、饱和甘汞电极、U型玻璃管等;0.1000mol/L CuSO4溶液、0.0100mol/L CuSO4溶液、0.1000mol/L ZnSO4溶液、Hg2Cl2溶液、饱和KCl溶液、琼脂、氯化钾(A.R.)、铜片、锌片等。

四、实验步骤㈠、电极制备Ⅰ. 铜电极①取2片铜片,用沙皮纸将其表面打磨干净,再放入稀硝酸溶液中处理片刻,用蒸馏水冲洗干净;②将处理后的铜片放入电镀液(0.1000mol/L CuSO4溶液)中,与电源的负极相连,电源的正极与另一片铜片相连,回路中连有一只毫安表,调节电镀装置使毫安表的读数为40左右,电镀约1h;Ⅱ. 锌电极①取一片锌片,用沙皮纸将其表面的氧化物打磨去除,放入稀硫酸溶液中片刻,使其表面氧化物进一步反应完全;②用蒸馏水冲洗锌片后,将其放入Hg2Cl2溶液约6秒钟,使其表面汞齐化;③取出后再用蒸馏水淋洗,用纸吸干表面的水,放入0.1000 mol/L ZnSO4溶液中备用;㈡、制盐桥①在100ml烧杯中加入适量蒸馏水,用电磁炉煮沸;②称取12g琼脂和20g纯KCl,加入沸水中③待固体完全溶解至溶液成浆糊状时,用胶头滴管将液体注入U型玻璃管中,注满且没有气泡;④冷却后即为盐桥;㈢、测定各组电池的电动势a.(-) Zn|ZnSO4(0.1000mol/L)‖KCl(饱和)|Hg2Cl2|Hg (+)b.(-) Zn|ZnSO4(0.1000mol/L)‖KCl(饱和)|AgCl|Ag (+)c.(-) Hg|Hg2Cl2|KCl(饱和) ‖CuSO4(0.1000mol/L) |C u (+)d.(-) Ag|AgCl|KCl(饱和) ‖CuSO4(0.1000mol/L) |Cu (+)e.(-) Zn|ZnSO4(0.1000mol/L)‖CuSO4(0.1000mol/L) |Cu (+)f.(-) Cu|CuSO4(0.0100mol/L)‖CuSO4(0.1000mol/L) |Cu (+)①打开数字式电位差计的电源,打到内标档,各旋钮打至0处,按下归零按钮;②切换到测量档,将以上电池的正负极对应数字式电位差计的正负极连接好;③调整各旋钮,使右侧显示值为零(有时需要等待片刻至数值稳定),此时左侧显示的数值即被测电池的电动势;④依次测定6组电池的电动势并记录下数据。

物理化学实验原电池电动势的测定

物理化学实验原电池电动势的测定

物理化学实验原电池电动势的测定下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!物理化学实验原电池电动势的测定在物理化学实验中,测定原电池电动势是一项基础且重要的实验。

原电池电动势实验报告

原电池电动势实验报告

一、实验目的1. 了解原电池电动势的基本原理和测量方法。

2. 掌握电位差计的使用方法,学会测定原电池电动势。

3. 理解可逆电池电动势的应用,并学会根据实验数据计算电池反应的热力学参数。

二、实验原理原电池是一种将化学能转化为电能的装置,其电动势主要由两个电极的电势差决定。

在实验中,我们通过测量两个电极的电势差来计算原电池的电动势。

原电池电动势的测量方法主要有以下几种:1. 电位差计法:利用电位差计测量电池两极的电势差,通过测量结果计算电动势。

2. 伏安法:通过测量电池的电流和电压,根据欧姆定律计算电动势。

3. 对消法:通过测量电池两极的电势差,消除电池内阻的影响,得到准确的电动势。

本实验采用电位差计法测量原电池电动势。

三、实验仪器与试剂1. 仪器:电位差计、标准电池、待测电池、电极、盐桥、电阻箱、导线等。

2. 试剂:CuSO4溶液、ZnSO4溶液、KCl溶液、pH试纸等。

四、实验步骤1. 准备实验装置:将标准电池与待测电池的正负极分别连接,将电压表接在标准电池的正负极之间,用电阻箱调节电阻,使电流大小保持在一定范围内。

2. 调节电位差计:根据电位差计的说明书,进行相应的调节,使电位差计处于工作状态。

3. 测量电动势:用电压表测量标准电池和待测电池两极的电势差,记录数据。

4. 计算电动势:根据测量数据,计算原电池的电动势。

五、实验数据与结果1. 标准电池电动势:1.018V2. 待测电池电动势:1.056V六、实验分析1. 通过实验,我们成功测量了原电池的电动势,并了解了电位差计的使用方法。

2. 在实验过程中,我们发现电位差计的精度较高,可以满足原电池电动势测定的要求。

3. 根据实验数据,我们可以计算原电池反应的热力学参数,进一步了解电池反应的热力学性质。

七、实验结论1. 通过本次实验,我们掌握了原电池电动势的测量方法,学会了电位差计的使用。

2. 实验结果表明,电位差计法可以准确地测量原电池电动势,为后续的热力学参数计算提供了可靠的数据支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验九 原电池电动势的测定及应用一、实验目的1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。

2.学会几种电极的制备和处理方法。

3.掌握数字电位差计的测量原理和正确的使用方法。

二、实验原理电池由正、负两极组成.电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。

电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。

从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系:G nFE ∆=- (9-1)式中G ∆是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -⋅);E 为电池的电动势。

所以测出该电池的电动势E 后,进而又可求出其它热力学函数。

但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件:(1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小.因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。

在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量.原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。

由(9-1)式可推导出电池的电动势以及电极电势的表达式。

下面以铜-锌电池为例进行分析。

电池表示式为:4142()()()()Zn s ZnSO m CuSO m Cu s ||||符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。

当电池放电时,负极起氧化反应: {}22()()2Zn Zn s Zn a e ++-+正极起还原反应: 22()2()Cu Cu a e Cu s ++-+电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++电池反应的吉布斯自由能变化值为:22lnCuZn ZnCu a a G G RT a a ++∆=∆- (9—2)上述式中G ∆为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==.而在标态时,221Cu Zn a a ++==,则有:G G nFE ∆=∆=- (9-3)式中E 为电池的标准电动势.由(9—1)至(9—1)式可得:22lnZn Cu a RT E E nF a ++=- (9—4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为:E ϕϕ+-=- (9—5)对铜-锌电池而言 22,1ln 2Cu Cu Cu RT F a ϕϕ+++=- 22,1ln 2Zn Zn Zn RT F a ϕϕ++-=- 式中2,Cu Cu ϕ+和2,Zn Zn ϕ+是当221Cu Zn a a ++==时,铜电极和锌电极的标准电极电势。

对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和平均活度系数之间有以下关系:21Zn a m γ+±= 22Cu a m γ+±=γ±是离子的平均离子活度系数,其数值大小与物质浓度、离子的种类、实验温度等因数有关。

在电化学中,电极电势的绝对值至今无法测定,在实际测量中是以某一电极的电极电势作为零标准,然后将其它的电极(被研究电极)与它组成电池,测量其间的电动势,则该电动势即为该被测电极的电极电势.被测电极在电池中的正、负极性,可由它与零标准电极两者的还原电势比较而确定。

通常将氢电极在氢气压力为101325Pa ,溶液中氢离子活度为1时的电极电势规定为零伏,即2,0H H ϕ+=,称为标准氢电极,然后与其它被测电极进行比较.由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极,常用的参比电极有甘汞电极。

以上所讨论的电池是在电池总反应中发生了化学变化,因而被称为化学电池。

还有一类电池叫做浓差电池,这种电池在净作用过程中,仅仅是一种物质从高浓度(或高压力)状态向低浓度(或低压力)状态转移,从而产生电动势,而这种电池的标准电动势E 等于零伏。

例如电池33()(0.01000)(0.1000)()Cu s Cu mol dm Cu mol dm Cu s --|⋅||⋅|就是浓差电池的一种。

电池电动势的测量工作必须在电池可逆条件下进行,必须指出,电极电势的大小,不仅与电极种类、溶液浓度有关,而且与温度有关。

本实验是在实验温度下测得的电极电势T ϕ,由(9—6)式和(9-7)式可计算T ϕ。

为了比较方便起见,可采用下式求出298K 时的标准电极电势298K ϕ.22981(298)(298)2T K T K T K ϕϕαβ=+-+-式中α、β为电极电势的温度系数。

对于Cu -Zn 电池来说:铜电极231(,),0.01610,0Cu Cu V K αβ+--=-⨯⋅=锌电极23162[,()],0.10010,0.6210Zn Zn Hg V K V K αβ+----=⨯⋅=⨯⋅三、仪器和试剂SDC —Ⅲ电位差计1台; 镀铜溶液;电镀装置1套; 饱和硝酸亚汞(控制使用); 标准电池1个; 硫酸锌(分析纯); 饱和甘汞电极1支; 铜、锌电极; 电极管2支; 硫酸铜(分析纯); 电极架2个;氯化钾(分析纯)。

四、实验步骤1.电极的制备(1)锌电极:将锌电极在稀硫酸溶液中浸泡片刻,取出洗净,再浸入汞或饱和硝酸亚汞溶液中约10s ,表面上即生成一层光亮的汞齐,用水冲洗晾干后,插入0。

10001mol kg -⋅4ZnSO 中待用.(2)铜电极:将铜电极在63mol dm -⋅的硝酸溶液中浸泡片刻,取出洗净,将铜电极置于电镀烧杯中作为阴极,另取一个经清洁处理的铜棒作阳极,进行电镀,电流密度控制在202mA cm -⋅为宜.其电镀装置如图9—1所示。

电镀半小时,使铜电极表面有一层均匀的新鲜铜,洗净后放入0。

10001mol kg -⋅4CuSO 中备用。

2.电池组合将饱和KCl 溶液注入50mL 的小烧杯内,制盐桥,再将上面制备的锌电极和铜电极置于小烧杯内,即成Cu -Zn 电池:1144()(0.1000)(0.1000)()Zn s ZnSO mol kg CuSO mol kg Cu s --|⋅||⋅|电池装置如图9—2所示。

同法组成下列电池:1144()(0.01000)(0.1000)()Cu s CuSO mol kg CuSO mol kg Cu s --|⋅||⋅| 1422()(0.1000)()()()Zn s ZnSO mol kg KCl Hg Cl s Hg l -|⋅||||饱和 1224()()()(0.1000)()Hg l Hg Cl s KCl CuSO mol kg Cu s -||||⋅|饱和3.电动势的测定(1)按照电位差计电路图,接好电动势测量线路。

(2)根据标准电池的温度系数,计算实验温度下的标准电池电动势。

以此对电位差计进行标定。

23620//[40.6(/20)0.95(/20)0.01(/20)]10t E V E V t C t C t C -=-︒-+︒--︒-⨯(3)分别测定以上电池的电动势。

五、数据记录及处理1。

将试验数据列表。

标准溶液NaoH 浓度为0。

102mol/LZn 电极铜电极盐桥图9-2 Cu-Zn 电池装置示意图图9-1 制备铜电极的电镀装置瓶号活性炭重(g) 起始浓度(mol/L)平衡浓度(mol/L)吸附量(mol/kg)1 1。

0591 0。

21525 0。

19431 1。

97715 0.384182 1.0323 0.12915 0。

10727 2。

11954 0。

227363 1.0439 0。

0861 0.066402 1。

88696 0。

125304 1.0077 0.04305 0.029614 1.33333 0.039495 1。

0333 0。

021525 0.01292 0。

83277 0。

01076 2.计算各瓶中醋酸的起始浓度c,平衡浓度c及吸附量Ґ(mol• kg-1)。

计算结果如上表。

由计算吸附量。

3.吸附量对平衡浓度作等温线。

4.作c/Ґ-c图,并求出和常数K.由直线斜率得:=0.05168mol/kg由直线截距得:K=—47.295。

由计算活性炭的比表面。

=756。

006●结果与讨论1。

比表面测定与哪些因素有关,为什么?a. 测定固体比表面时所用溶液中溶质的浓度要选择适当,即初始溶液的浓度以及吸附平衡后的浓度都选择在合适的范围内。

既要防止初始浓度过高导致出现多分子层吸附,又要避免平衡后的浓度过低使吸附达不到饱和。

如次甲基蓝在活性炭上的吸附实验中原始溶液的浓度为2g·dm—3左右,平衡溶液的浓度不小于1mg·dm—3。

b. 按朗格谬尔吸附等温线的要求,溶液吸附必须在等温条件下进行,使盛有样品的三角瓶置于恒温器中振荡,使之达到平衡.本实验是在空气浴中将盛有样品的三角瓶置于振荡器上振荡。

实验过程中温度会有变化,这样会影响测定结果。

2。

由于实验酸碱滴定过程中,滴定的体积存在一定的偏差,所以导致实验结果1和3瓶所测得结果存在偏差,故在酸碱滴定中需要操作规范,使实验结果更精准。

六、注意事项1.制备电极时,防止将正负极接错,并严格控制电镀电流.2.甘汞电极使用时请将电极帽取下,用完后用氯化钾溶液浸泡.七、思考题1.电位差计、标准电池各有什么作用?如何保护及正确使用?2.参比电极应具备什么条件?它有什么功用?3.若电池的极性接反了有什么后果?附录SDC—Ⅲ数字电位差计一、SDC—Ⅲ数字电位差计的特点一体设计:将UJ系列电位差计、光电检流计、标准电池等集成一体,体积小,重量轻,便于携带.数字显示:电位差值七位显示,数值直观清晰、准确可靠。

内外基准:即可使用内部基准进行测量,又可外接标准作基准进行测量,使用方便灵活。

误差较小:保留电位差计测量功能,真实体现电位差计对检测误差微小的优势。

性能可靠:电路采用对称漂移抵消原理,克服了元器件的温漂和时漂,提高测量的准确度.二、使用条件电源:~220V±10%;50Hz环境:温度—10℃~40℃;湿度≤85%三、使用方法1.开机用电源线将仪表后面板的电源插座与~220V电源连接,打开电源开关(ON),预热15分钟。

相关文档
最新文档