四年级奥数系列第4讲-排列
小学四年级奥数举一反三第1讲至第40讲全

小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
四年级-奥数-讲义-349学子-教案库-第4讲—和倍与差倍问题

第4讲和倍与差倍问题教学目标1.学会分析题意并且熟练的利用线段图法能够分析和倍与差倍问题2.掌握寻找和倍差倍的方法解决问题.-知识点说明(1)和倍问题和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。
和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是:和÷(倍数+1)=小数小数×倍数=大数或和一小数=大数如果要求两个数的差,要先求1份数:l份数×(倍数-1)=两数差.解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。
(2)差倍问题差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.差倍问题的特点与和倍问题类似。
解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到。
解题思路:首先要在题目中找到1倍量,然后画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量差倍问题的基本关系式:差÷(倍数-1)=1倍数(较小数)1倍数×几倍=几倍数(较大数)或较小数+差=较大数解决差倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系.模块一、和倍问题例题44例题33例题22例题11例题精讲师、徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个? 实验小学三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模? 某镇上有东西两个公交车站,东站有客车84辆,西站有客车56辆,每天从东站到西站有7辆车,从西站到东站有11辆车,几天后,东站车辆是西站的4倍? (第五届小数报数学竞赛初赛)六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.WORD 完整版----可编辑----教育资料分享例题99例88例题77例题66例题55(2008第四届“IMC 国际数学邀请赛”(新加坡)四年级复赛)甲、乙、丙三个小朋友共有73块巧克力,如果丙吃掉3块,那么乙和丙的巧克力就一样多;如果乙给甲2块巧克力,那么甲的巧克力就是乙的2倍,丙原有 块巧克力. 爸爸和冬冬一起搬砖,原计划爸爸搬其中的一些,冬冬搬剩余的砖头.父子二人发现,如果爸爸帮冬冬搬10块,那么爸爸所搬的砖头数是冬冬的5倍;如果冬冬帮爸爸搬10块,那么爸爸所搬的砖头数是冬冬的2倍.请问:原计划爸爸搬多少块砖,冬冬搬多少块砖? 一家汽车销售店有若干部福特汽车和丰田汽车等待销售。
四年级下册数学奥数试题-培优拓展训练--第4讲:等积变形(学生版)

第4讲 等积变形(不用添加内容,任课老师根据学生情况自行添加)(不用添加内容,也不做修改)1、三角形的面积=21底边长 高;所以,两个面积相等的三角形,当底边相等时,高也相等;反之亦然。
2、当两个三角形高相等时,面积之比等于底边长之比。
3、当两个三角形的底边长相等时,面积之比等于高之比。
4、在等底等高的情况下,三角形面积是平行四边形面积的一半;5、底边之和等于平行四边形的一边,且高相等的所有三角形,面积之和是平行四边形面积的一半;6、高之和等于平行四边形的高,且分别以这条高的两边为底的所有三角形,面积之和是平行四边形面积的一半。
1、灵活运用三角形和四边形的面积公式2、掌握三角形的等积变形技巧(不用添加内容,任课老师根据学生情况自行添加)例1:如图,三角形ABC的面积为1,其中AE=3AB,BD=2BC,三角形BDE的面积是多少?A B EC例2:正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中三角形BDF面积为多少平方厘米?GFHEC例3:图中三角形AOB的面积为15平方厘米,线段OB的长度为OD的3倍,求梯形ABCD的面积。
A DO例4:如下图,在平行四边形ABCD中,直线CF交AB于E,交DA延长线于F,若三角形ADE 的面积为1,求三角形BEF的面积。
例5:如图,三角形ABC中,AB是AD的5倍,AC是AE的3倍,如果三角形ADE的面积等于1,那么三角形ABC的面积是多少?ADEB C例6:B C如图所示,长方形ABCD的长是12厘米,宽是8厘米,三角形CEF的面积是32平方厘米,则OG是多少厘米?1、如图,在梯形ABCD中,AC与BD是对角线,其交点O,求证:△AOB与△COD 面积相等.2、如图,已知在△ABC中,BE=3AE,CD=2AD.若△ADE的面积为1平方厘米.求三角形ABC的面积.3、如下图,在△ABC中,BD=2AD,AG=2CG,BE=EF=FC=4、如右图,ABCD为平行四边形,EF平行AC,如果△ADE的面积为4平方厘米.求三角形CDF的面积.5、如右图,四边形ABCD 面积为1,且AB=AE ,BC=BF ,DC=CG ,AD=DH .求四边形EFGH 的面积.6、如右图,在平行四边形ABCD 中,直线CF 交AB 于E ,交DA 延长线于F ,若S △ADE=1,求△BEF 的面积.1、如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ∆的面积是 平方厘米.DA2、图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米?CB3、如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果24AB =厘米,8BC =厘米,求三角形ZCY 的面积.ABC DZ Y4、如图,三角形ABC 的面积是24,D 、E 和F 分别是BC 、AC 和AD 的中点.求三角形DEF 的面积.FE DCBA5、图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.6、右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC 的面积.G4ABCDEF(不用添加内容,也不做修改)1、如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是 平方厘米.2、如下图,长方形AFEB 和长方形FDCE 拼成了长方形ABCD ,长方形ABCD 的长是20,宽是12,则它内部阴影部分的面积是 .F E DCBA3、图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是 .E D GCBA4、在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.5、如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。
四年级奥数《举一反三》全的

小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第21讲速算与巧算(二)第22讲平均数问题第23讲定义新运算第24讲差倍问题第25讲和差问题第26周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
小学奥数基础教程4目录

小学奥数基础教程(四年级)目录第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)小学奥数举一反三(四年级)目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第21讲速算与巧算(二)第22讲平均数问题第23讲定义新运算第24讲差倍问题第25讲和差问题第26讲巧算年龄第27讲较复杂的和差倍问题第28讲周期问题第29讲行程问题(一)第30讲用假设法解题第31讲还原问题第32讲逻辑推理第33讲速算与巧算(三)第34讲行程问题(二)第35讲容斥原理第36讲二进制第37讲应用题(三)第38讲应用题(四)第39讲盈亏问题第40讲数学开放题。
四年级奥数第4讲盈亏问题

1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。
问参加栽树的有多少名同学?原有树苗多少棵?分析:当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。
通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。
所以,原有树苗=200-8=192棵。
解答:有同学12+8=20名,原有树苗20*10-8=192棵。
2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。
请问,共有多少名少先队员?共挖了多少树坑?分析:这是一个典型的盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑”统一一下。
即:应该统一成每人挖6个树坑,形成统一的标准。
那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。
这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。
解答:盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。
3、学校安排学生到会议室听报告。
如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。
问听报告的学生有多少人?分析:典型盈亏问题。
盈亏总数48+5*2=58,所以,长椅的数量就等于58/(5-3)=29条。
那么,听报告的人数等于29*3+48=135人。
解答:长椅有(48+5*2)/(5-3)=29条,听报告的学生有29*3+48=135人。
4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。
问小明带了多少钱?分析:在盈亏问题中,我们得到的计算公式是指同一对象的。
四年级数学奥数举一反三课程第一讲至第四十讲全(精品)
四年级数学奥数培训资料姓名:__________________小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
四年级下册数学讲义 第4讲差倍问题含答案奥数板块全国通用
差倍问题一、【名师解析】解答差倍问题时,先要求出与两个数的差对应的倍数差。
在一般问题下,它们往往不会直接告诉我们,这就需要我们根据题目的具体特点将它们求出。
当题中出现三个或三个以上的数量时,一般把题中有关数量转化为与标准量之间倍数关系对应的数量。
解答差倍应用题的基本数量关系是:差÷(倍数-1)=小数小数×倍数=大数或:小数+差=大数二、【例题精讲】【例1】光明小学开展冬季体育比赛,参加跳绳比赛的人数是踺子人数的3倍,比踢踺子的多36人。
参加跳绳和踢踺子比赛的各有多少人?练习:城南小学三年级的人数是一年级人数的2倍,三年级的人数比一年级多130人。
三年级和一年级各有多少人?【例2】仓库里存放大米和面粉两种粮食,面粉比大米多3900千克,面粉的千克数比大米的2倍还多100千克。
仓库有大米和面粉各多少千克?1练习:三年级学生参加课外活动,做游戏的人数比打球人数的3倍多2人,已知做游戏的比打球的多38人,打球和做游戏的各有多少人?【例3】育红小学买了一些足球、排球和篮球,已知足球比排球多7只,排球比篮球多11只,足球的只数是篮球的3倍。
足球、排球和篮球各买了多少只?练习:玩具厂二月份比一月份多生产玩具2000个,三月份比二月份多生产3000个,三月份生产的玩具个数是一月份的2倍。
每个月各生产多少个?【例4】商店运来一批白糖和红糖,红糖的重量是白糖的3倍,卖出红糖380千克,白糖110千克后,红糖和白糖重量相等。
商店原有红糖和白糖各多少千克?练习:甲、乙两个仓库各存一批面粉,甲仓库所存的面粉的袋是乙仓库的3倍,从甲仓库运走720千克,从乙仓库运走120千克后,两个仓库所剩的面粉相等。
两个仓库原来各有面粉多少千克?2【例5】甲、乙两个书架原有图书本数相等,如果从甲书架取出2本,从乙书架取出60本后,甲书架的本数是乙书架的3倍。
原来两个书架各有图书多少本?练习:甲、乙两人的存款相等,甲取出60元,乙存入20元后,乙的存款是甲的3倍。
小学四年级奥数(40讲)
小学四年级奥数1—40讲第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
四年级奥数举一反三第4讲应用题
适用文档第4讲应用题(一)例题1、某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具相同多。
每个塑料箱和纸箱各装多少件玩具?1、百货商铺运来300双球鞋分别装在2个木箱和6个纸箱里。
假如两个纸箱同一个木箱装的球鞋相同多,每个木箱和每个纸箱各装多少双球鞋?2、新华小学买了两张桌子和5把椅子,共付款195元。
已知每张桌子的价格是每把椅子的4倍,每张桌子多少元?3、王叔叔买了3千克荔枝和4千克桂圆,共付款 156元。
已知5千克荔枝的价钱等于2千克桂圆的价格。
每千克荔枝和每千克桂圆各多少元?例题2、一桶油,连桶重180千克,用去一半油后,连桶还有100千克。
问:油和桶各重多少千克?1、一筐梨,连筐重38千克,吃去一半后,连筐还有20千克。
问:梨和筐各重多少千克?2、一筐苹果,连筐共重35千克,先拿一半送给少儿园小朋友,再拿剩下的一半送给一年级小朋友,余下的苹果连筐重11千克。
这筐苹果重多少千克?3、一只油桶里有一些油,假如把油加到本来的2倍,油桶连油重38千克;如果把油加到本来的4倍,这里油和桶共重46千克。
本来油桶里有油多少千克?例题3、有5盒茶叶,假如从每盒中取出200克,那么5盒剩下的茶叶正好和原来4盒茶叶的重量相等。
本来每盒茶叶有多少克?1、有6筐梨子,每筐梨子个数相等,假如从每筐中取出40个,6筐梨子剩下的个数总和正好和本来两筐的个数相等。
本来每筐有多少个?文案大全适用文档2、在5个木箱中放着相同多的橘子。
假如从每个木箱中取出60个橘子,那么5个木箱中剩下的橘子的个数的总和等于本来两个木箱里橘子个数的和。
本来每个木箱中有多少个橘子?3、某食品店有5箱饼干,假如从每个箱子里取出 20千克,那么5个箱子里剩下的饼干正好等于本来3箱饼干的重量。
本来每个箱子里装多少千克饼干?例题4、一个木器厂要生产一批课桌。
原计划每日生产60张,实质每日比原计划多生产4张,结果提早一天达成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果是四位小朋友站成一排排列的所有情况就是:
如果是从出n个学生排成一排的所有不同情况就是:
排列
排列
可以引用乘法原理进行总结:从n个不同元素中取出m个 (m≤n)元素的排列问题可以这样计算: 第一步:排第一个位置上的元素从n个中任取,可以有n种选法; 第二步:排第二个位置的可以有n-1(n个抽掉1个只剩n-1个)种 选法; 第三步:则有n-2种选法; 。。。。。。 第m步:前面已排了m-1个元素,这里只能从剩下的n-(m-1)中选, 则有n-m+1种选法。
排列
例六 联欢晚会共有五个唱歌节目,两个舞蹈节目,要求两个舞蹈不能相邻,
共有多少种节目表?
排列
练一练 三名男生五名女生站成一排照相,男生不能相邻,有多少种不同的站法?
排列
例七
法排 除
一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单 (1)前4个节目中要有舞蹈,有多少种排法? (2)3个舞蹈节目要排在一起,有多少种排法? (3)3个舞蹈节目彼此要隔开,有多少种排法?
排列
例一
(1)
(2)
(3)
排列
例二 6名同学到照相馆站成一排照相,可以有多少种不同的站法?
排列
练一练
10个人走进只有6辆不同颜色碰碰车的游乐场,每辆碰碰车必须 且只能坐一个人,那么共有多少种不同的坐法?
排列
例三 从六位课代表候选人中选出三位分别当选数学课代表、语文课代表和英语 课代表,有多少种情况?
排列
练一练 3名女生和5名男生站成一排照相要求两端站女生且每个女生之间至少 有两个男生 排法有几种?
排列
例八
由0,2,4,5,7,8组成无重复数字的数 ⑴五位数有几个? ⑵五位奇数有几个? ⑶五位偶数有几个? ⑷自然数有几个? ⑸是5的倍数的三位数有几个?
排列
<作业1>
用1、2、3、4、5五个数字可以组成多少个五位数?
排列
<作业2> 5男2女7个人站成一排合影留念,要求2个女的紧挨着有多少种不同的排法?
排列
课后作业 <作业3> 3男6女9个人站成一排合影留念,要求3个男的不能相邻有多少种不 同的排法?
排列
练一练 从8种不同的礼品中选中3种,分别送给三位同学,请问有多少种送法?
排列
例四
三名男生和两名女生站成一排照相,女生必须要相邻,共有多少种站法?
法捆 绑
排列
练一练 小宝一家五口排成一排照全家福照片,奶奶必须坐在中间,共有多
少种排法?
排列
例五
法插 空
排列
练一练
有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数. ⑴全体排成一行,其中甲只能在中间或者两边位置. ⑵全体排成一行,其中甲不在最左边,乙不在最右边. ⑶全体排成一行,其中男生必须排在一起. ⑷全体排成一行,男、女各不相邻. ⑸全体排成一行,男生不能排在一起. ⑹排成前后二排,前排3人,后排4人. ⑺全体排成一行,甲、乙两人中间必须有3人.
排列
今天我们来想一想:如果像下面这样18支不同颜色的笔排成一排,
有多少种不同的排法呢?是不是有些难度呢?
排列
那么我先来看一种简单的情况: 3个小朋友排成一排,有多少种排法呢?
排列
仔细想一下,一定难不倒你~~~
相信你一定想到了,没错儿,是6种!
排列
之前我们学习了乘法原理,今天我们学习来学习一个新的方法:排列 比如刚才的三位小朋友排列问题就可以写成: