冻结法加固在盾构隧道施工中应用讲解
冻结技术在盾构工程中的应用浅析

冻结技术在盾构工程中的应用浅析引言随着我国城市地下建筑业的兴起,在市政工程中,煤炭行业冻结凿井法作为一种有效的处理松软地层的特殊技术,越来越显示出其优越性。
在北京、上海、广州等地的地铁建设中,冻结技术的应用已取得了很好的效果。
目前,天津市市政工程即将进入建设高峰期,冻结技术也已作为一种较成熟的施工工艺应用到现场施工中,主要工程有盾构进出洞及旁通道、泵站施工。
冻结法加固土体作为一种较成熟的工艺已经广泛应用与各类工程中,市场开发前景广阔,在进洞工程中,冻结法施工所形成的冻结帷幕具有均匀性好、强度高、隔水性好等优点,再结合洞圈钢板加焊盾尾刷、降水井等措施可有效地降低盾构进洞的风险。
由于冻结法施工工期较长,难度和风险较大,所以目前工程中使用的设计方法大多偏于保守,即加大冻结壁厚度或降低冻结温度,而且一般多采用短距离水平冻结加固土体实施盾构进洞工程,超长水平冻结技术应用较少,结合天津站站地质条件复杂,地面建筑物分布密集,地理位置极其重要及施工限制条件多的特点,首次尝试超长水平冻结并取得圆满成功。
该工程特点:(1)地质条件复杂,该进洞区域下部位于含承压水砂层中,水头压力达3.5bar,所处地层水中具有一定的含盐量,含盐量对冻结土层温度和强度都有一定影响。
(20盾构进洞是隧道施工过程中重大风险点,尤其该进洞工程处于天津站下方,距离进洞口位置旁侧约14米是京津城际列车,地面建筑分布密集。
1 工程概况天津市区至滨海新区快速轨道交通工程中山门西段工程天津站站~七经路站区间隧道左线和右线均从七经站出发,推进至天津站站,盾构直径φ6340mm,洞门直径φ6700mm,洞门中心标高-17.70米,自然地面标高+2.88米,盾构在天津站接收,洞口形状为圆形,洞口开口净直徑为6.7m。
加固区域上部土层厚度近18m,加固地层为⑤1灰色粉质粘土、⑥1粉质粘土、⑥2粉土、⑦1粉质粘土、⑦4粉砂。
2 方案设计根据冻结帷幕设计,冻结孔按近水平角度布置。
盾构进洞接收水平冻结法加固施工工法

盾构进洞接收水平冻结法加固施工工法盾构进洞接收水平冻结法加固施工工法一、前言盾构技术作为一种地下工程施工方法,已经广泛应用于城市地铁、隧道等建设领域。
然而,在实际的施工过程中,盾构隧道刀盘在进洞过程中容易受到地质条件的限制,常常会遇到各种困难。
为了解决这些问题,盾构进洞接收水平冻结法加固施工工法被提出并得到了广泛的应用。
二、工法特点盾构进洞接收水平冻结法加固施工工法的主要特点如下:1. 施工工法简单,施工工艺成熟,易于操作。
2. 加固效果好,能够有效解决进洞困难问题。
3. 能够确保施工过程的质量,保证施工结果的稳定性和可靠性。
4. 对环境的影响较小,对周边结构的损害较少。
三、适应范围盾构进洞接收水平冻结法加固施工工法适用于以下情况:1. 地质条件复杂,地层变化大,盾构刀盘难以穿越的地方。
2. 需要保证施工过程的安全性和稳定性的地方。
3. 需要保证施工结果的质量和可靠性的地方。
四、工艺原理盾构进洞接收水平冻结法加固施工工法的工艺原理是通过冻结地层,增加地层的强度和稳定性,为盾构刀盘提供稳定的施工环境。
在实际工程中,首先需要对施工工法与实际工程之间的联系进行分析和解释。
然后,根据工程的实际情况,采取相应的技术措施,以确保施工工法的可行性和有效性。
具体的分析和解释如下:1. 施工工法与实际工程之间的联系:盾构进洞接收水平冻结法加固施工工法适用于各种地质条件,能够有效地解决盾构刀盘进洞困难的问题。
通过冻结地层,增加地层的强度和稳定性,为盾构刀盘提供了一个稳定的施工环境。
这种施工工法在多个实际工程中得到了成功的应用。
2. 采取的技术措施:在施工过程中,需要采取以下技术措施:(1)选择合适的冻结剂和冷却设备,以确保冻结效果的达到要求。
(2)合理布置冷却管道,确保冷却剂能够均匀地冷却地层。
(3)选取合适的施工方式,确保施工工艺的顺利进行。
(4)根据实际情况,进行必要的调整和改进,以提高施工效率和质量。
五、施工工艺盾构进洞接收水平冻结法加固施工工法的施工过程主要包括以下几个阶段:1. 地质勘察和设计阶段:对工程地质条件进行详细的勘察,并根据勘察结果进行工程设计。
地铁隧道工程中冻结技术应用分析

地铁隧道工程中冻结技术应用分析摘要:地铁隧道工程流砂地层中盾构进洞中采取了地层冻结技术,这区别与传统对流砂地质层的处理方法。
其主要的成功点就在于解决了洞门区域地层的封闭加固问题。
本文还对地铁隧道工程中地层冻结技术的最终效果进行了分析,指出了其可靠性和优点。
关键词:地铁隧道;地层冻结技术;应用分析冻结技术主要是指在隧道工程的施工过程中,采用了人工制冷的技术,将地层中所含的水从液态转化成固态,即将水冻结成为冰,以便增强其稳定性,从而实现工程与地下水之间的联系,从而以便于地下工程掘砌施工。
此项技术的实质就是通过人工制冷达到改变岩土性质的目的。
冻结壁仅仅是临时的支护结构,停止冻结以后,结构壁融化。
该项技术主要是利用了物质由液态转化成气态过程中的气化过程的吸热来实现的,其制冷的主要材料是氨。
一、冻结法施工工艺步骤地铁隧道工程的制冷技术主要包含有以下几个步骤。
首先是安装冻结站,冻结站主要的设备组成包含有冷凝机、节流阀、压缩机、蒸发器、盐水循环系统和中间冷却器等。
然后是冷结管的施工,这主要是钻冻结孔,将冷结站与不同冷洁孔中的冷结器相连接并形成一个系统。
接着是冻结,冻结壁会从冻结管向外扩张,最终实现冻结管周边的冻结柱最终连成一片的时候,地层的地表温度就会随着冻结时间的加长而越来越低,冻结壁的强度也会相应地加强,最终让地层的温度达到设计时所需要的温度的时候,该阶段就可以结束。
再者就是要对冻结壁进行维护,主要操作就是要不断地补充地层的冷量,最终实现地层温度的相对稳定。
最后一个步骤就是解冻,当永久结构和地层挖掘结束以后,将冷冻管拔出以后就可以实现解冻。
二、地铁隧道工程中冻结技术在工程中的应用某地铁隧道采用了土压平衡盾构,8.10米的盾构直径。
其盾构进洞的空门口的地质主要成分为砂性土,其主要的特点是含水量大,透水性和水压大。
在暴露扰动的情况下容易产生液化的现象,这就给工作立井进入隧道前的混凝土地下连续墙的构建带来了很大的困难。
地铁隧道盾构进出洞冻结加固的研究

地铁隧道盾构进出洞冻结加固的研究
随着城市化的发展,地铁交通在城市中的重要性不断增大。
为了确保地铁交通的安全
运行,地铁隧道的建设和维护变得至关重要。
地铁隧道盾构进出洞冻结加固技术是一种常
用的加固方法。
地铁隧道盾构进出洞冻结加固是在盾构机完成隧道掘进之后,利用冻结技术对周围土
层进行加固的过程。
这种技术主要是通过将低温液体注入钢管中,利用冷却效应使土层结冰,从而提高地层的强度和稳定性。
具体而言,地铁隧道盾构进出洞冻结加固主要包括以
下几个步骤:
需要在盾构进入隧道的位置钻孔,将冻结管安装在地层中。
冻结管一般由钢管和塑料
管组成,钢管起到支撑作用,塑料管用于输送冷却介质。
然后,通过冷却机组将冷却液注入冻结管中。
冷却液一般为低温液体,如液氮或液氧。
冷却液的注入温度和流量需要根据地层的特点和冷却效果来确定,一般需进行试验和调
整。
接下来,冷却液在冻结管中的流动方式可以根据具体情况而定。
有的情况下,可以采
用自然循环,即冷却液在冻结管中自然流动。
有的情况下,需要通过泵进行强制循环,即
通过泵将冷却液抽调出来,再回流到冻结管中。
在冷却液冷却地层一定时间后,地层会逐渐结冰。
冰层的形成可以在地层表面形成有
力的支撑,从而提高地层的强度和稳定性。
冻结液的温度也可以控制地层的变形和沉降,
进一步保证隧道的安全。
在隧道施工完全结束后,可以通过加热或其他方法来解冻冻结层,恢复地层的原状。
这一步骤需要非常谨慎,以免对地层造成不可逆的损害。
冻结法在盾构隧道的应用

冻结法在盾构隧道中的应用翁家杰王朝晖摘要本文第一简要叙述丁冻结法的进展历史进程,举例分析丁冻结技术在国际盾构隧道工程中的应用情形,并对其大体理论及应用的若干技术问题迸行丁较为详细的论述。
一、冻结法的进展冻结法是利用人工制冷技术,使地层中的水结成冰,把天然岩土变成冻土,增加其强度和稳固性,以隔间地下水与地下工程的联系。
在冻结壁的保护下进行地下工程掘砌施工, 是一种有效的特殊施工技术。
19世纪60年代,冻结法第一应用于英国南威上的建筑基础工程。
1883年,徳国工程师波茨舒(F. H. Poetsch)在阿尔巴里得煤矿采用冻结法施工深103m的井筒,并取得专利:引发工程界的关注。
随着地下空间的慢慢开发利用,新工程的不断出现,增进了冻结技术的迅速进展。
近几年来,冻结法已进展成为一门较为成熟的特殊施工技术,被普遍应用于水利工程、地基基础工程:隧道工程和矿井建设等工程中。
目前世界各国应用冻结法凿井的最大深度见表1。
冻结法在我国起步较晚,但进展速度却专门快。
自1955年开滦矿区应用冻结法凿井以来,现已在12个省区推行,共施工360多个立井井简、斜井井筒和风道口等,冻结总长度约6万米。
冻结法已成为我国通过不稳固冲积层和裂隙含水层的主要施工方式,专门是自1675年以来,冻结工程量有较大的增加,年平均冻结长度达2300m。
本世纪60年代,液氮冻结法的出现为冻结法的进展历史揭开了新的一页。
由于炼钢工业和空分技术的进展,大量的制氧副产品氮气通过液化取得的液氮已被应用到实用的工业领域和国民经济部门。
液氮在常压下沸点为一195. 8°C,气化潜热为kg,氯的显热为1. 05J /(kg ・k)。
液氮对震动、热和电火花是稳固的,且没有侵蚀性。
其良好的理化性质使之成为一种比较理想的制冷工质。
和传统冻结法的氨循环、盐水循环、冷却水循、一环组成的复杂系统相较,液氮冻结系统简单,具有低温、快速和高强的特点° 1992年中煤特凿公司、上海隧道公司和中国矿业大学合作完成上海地铁1号线151井以北软上盾构隧道的贯通工程,实现了液氮冻结在我国的第一次工程应用。
冻结法加固在盾构隧道施工中应用讲解

冻结法加固应用于盾构隧道施工浙江大成建设集团有限公司章履远由于搅拌桩、注浆、高压旋喷等土体加固方法存在土体加固不均,可能存在局部薄弱带而不能封堵具有压力的地下水。
而采用冻结土形成的冻结帷幕,其冻土墙均匀性好、强度高(大于3MPa )。
尤其是冻结体与井壁能做到无缝对接,可保证滴水不漏。
因此,大直径的泥水平衡盾构大多采用冻结法加固技术。
大直径泥水平衡盾构使用最多的是日本,其进出洞土体加固大多采用冻结法。
1995 年,上海延安东路南线隧道,11.22m 泥水盾构,当时始发井采用水泥土搅拌桩加固,盾构出洞始发,因覆土浅产生冒浆而不能建立泥水平衡,影响了3 个月工期后,最后改用冻洁法加固土体取得成功(国内第一次)。
从2001 年以来,上海的泥水平衡越江隧道,如大连路隧道、复兴东路隧道、翔殷路隧道、上中路隧道等都采用了冻结法加固取得成功。
因此,掌握冻结法施工技术对隧道工作者来说,也是必不可少的工作。
然而,冻结法施工最大缺点是施工成本高,冻融隆沉大,应该懂得采取相应技术措施。
下面就来谈一谈冻结法的施工和用冻结法施工的成功案例。
一、冻结法施工技术1、概况:冻结法是利用人工制冷技术使地层中的水冻结,把天然岩土变成冻土,从而增加岩土的强度和稳定性,隔绝地下水与地下工程的联系,以便在冻结壁保护下进行隧道、竖井、地下联络通道和其他地下工程的开挖与施工的一种特殊施工技术。
其实质是人工制冷技术临时性改变岩土的状态以固结地层。
冻结法施工技术在矿井建设、地基基础工程、水利工程、河底隧道、地下铁道和其他地下工程中,当遇到不稳定地层或含水量丰富地层、裂隙岩层等,只要是地下水含盐量不大,且流速慢(6m/d )都可以采用冻结法固结地层,完成地下工程施工。
英国人和德国人早在1862 年、1883 年利用冻结技术完成建筑基础、煤矿深井施工。
1886 年、1906 年瑞典和法国用冻结法施工人行隧道,穿越河底地铁工程。
前苏联、日本也在20 世纪70 年代用冻结法施工地铁隧道,排水管等。
盾构进出洞冻结加固技术

盾构进出洞冻结加固技术摘要:人工地层冻结法在1862年首次得到应用工程中,1993年被应用于地铁建设,上世纪60年代末首次应用于我国地铁建设。
冻结法在地铁建设中得到了越来越普遍的应用。
本文以昆明地铁冻结施工为案例介绍盾构进出洞施工中的冻结法加固设计及施工应用技术。
关键词:冻结法盾构加固进出洞1 引言在地铁盾构法施工中,盾构始发出洞及到达接收进洞施工风险大,且多造成了重大损失。
尤其在昆明高富水的软弱地层中,盾构安全进出洞是工程成败的主要、关键技术。
本文结合昆明地铁的工程实践,对人工地层冻结技术在盾构进出洞中的设计及应用进行探讨。
2 工程概况昆明地铁5号线六标包括河~广~怡两个盾构区间。
盾构施工采用2台盾构机从河尾村站先后始发,过广福路站后,二次始发到达怡心桥站。
两区间左线共有4个端头,广福路站的始发接收端头地基采用‘水泥系+冻结法’的加固。
2.1 工程地质洞门位置主要土层自上而下分述如下:(2)2-2层泥炭质土:黑色,软塑,以黏性土为主,含有腐烂的朽木及有臭味,干强度及韧性较好;具高压缩性、孔隙比大、含水率高等特征;各钻孔均揭露该层,呈层状分布,层厚1.20~5.60m,平均厚度3.43m;层面埋深3.80~11.90m;层面标高1876.26~1884.18m;承载力特征值fak=40kPa,岩土施工工程等级为Ⅰ级。
(2)5-3层粉砂:灰褐色,饱和,中密,成分以石英,长石为主,微胶结,级配一般,具中等压缩性;有2个钻孔揭露该层,呈透镜状分布,层厚2.00~2.40m,平均厚度2.20m;层面埋深10.20~11.80m,层面标高1876.15~1877.16m;承载力特征值fak=100kPa,岩土施工工程等级为Ⅰ级。
(2)3-3层粉质黏土:褐灰色、灰绿色,可塑,主要成份以黏粒为主,粉粒次之,具中等压缩性;有7个钻孔揭露该层,呈透镜状分布,层厚1.00~3.10m,平均厚度2.00m;层面埋深8.70~13.50m,层面标高1874.45~1879.24m;承载力特征值fak=100kPa,岩土施工工程等级为Ⅱ级。
谈冻结法在盾构进洞中的应用

11
结语
目前 20 m 跨先张法桥梁板工艺在工程中应用不多, 本工程
10
几点体会
1 ) 工程选用的预应力钢绞线供货单位应按批量提供现场合
施工后经测试各项指标均满足设计要求, 我们深信该工艺值得大 力全面推广。 先张法施工锚具特别适用于中小跨度桥梁板, 可以重复使 。 用, 工艺简单, 可进行工厂化制作, 省工省料
1
冻结法原理及优势
冻结法是用冷却的手段使地层中的地下水冻结成冰, 结冰后
櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅 展打好基础, 以确保构件一次校验合格率 100% 。2 ) 采用先绑扎 8 预应力钢绞线的张拉方法
1 ) 张拉顺序由下至上逐层张拉, 每层从两侧向中间左右交 “逐根张拉法” 替。2 ) 张拉方法采用单端进行 张拉, 张拉力控制采 且应做好张拉前的原始长度记录 用应力控制和张拉伸长值控制, 和张拉记录。3 ) 张拉注意事项: 张拉机具及仪表应由专人操作和 管理, 设备要定期维护和校验, 校验期限不宜超过 3 个月, 压力表 的精度不宜低于 1. 5 级, 校验精度不低于 ± 2% 。4 ) 放张时混凝 土强度不低于设计强度等级的 80% 。 经本工程实践 非预应力钢筋后铺设预应力钢绞线方法进行施工, 证明此种施工方法较费时费力, 穿筋引筋困难, 建议采用非预应 力钢筋同预应力钢筋同时进行的方法施工, 即将预应力钢筋铺设 固定, 然后及时将非预应力钢筋铺设并同箍筋绑扎牢固, 然后进 行张拉, 这种方法可节约劳动力, 且进度快, 施工简便。3 ) 通过本 深深体会到如此大的先张法施工中各个程序各个环 工程的施工, 节操作人员均应严格按照规范规定有关技术要求精心操作, 同时 施工单位应设置专业技术人员对施工全过程进行全天候指导检 查, 尤其是对下料, 铺筋, 混凝土浇筑及张拉, 放张等关键工序严 格把关, 并且要加强对职工的技术培训工作, 以便提高操作人员 素质。4 ) 先张法工装制作一定要认真计算墩台承载力及抗倾覆 能力以便保证使用安全 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冻结法加固应用于盾构隧道施工浙江大成建设集团有限公司章履远由于搅拌桩、注浆、高压旋喷等土体加固方法存在土体加固不均,可能存在局部薄弱带而不能封堵具有压力的地下水。
而采用冻结土形成的冻结帷幕,其冻土墙均匀性好、强度高(大于3MPa)。
尤其是冻结体与井壁能做到无缝对接,可保证滴水不漏。
因此,大直径的泥水平衡盾构大多采用冻结法加固技术。
大直径泥水平衡盾构使用最多的是日本,其进出洞土体加固大多采用冻结法。
1995年,上海延安东路南线隧道,11.22m泥水盾构,当时始发井采用水泥土搅拌桩加固,盾构出洞始发,因覆土浅产生冒浆而不能建立泥水平衡,影响了3个月工期后,最后改用冻洁法加固土体取得成功(国内第一次)。
从2001年以来,上海的泥水平衡越江隧道,如大连路隧道、复兴东路隧道、翔殷路隧道、上中路隧道等都采用了冻结法加固取得成功。
因此,掌握冻结法施工技术对隧道工作者来说,也是必不可少的工作。
然而,冻结法施工最大缺点是施工成本高,冻融隆沉大,应该懂得采取相应技术措施。
下面就来谈一谈冻结法的施工和用冻结法施工的成功案例。
一、冻结法施工技术1、概况:冻结法是利用人工制冷技术使地层中的水冻结,把天然岩土变成冻土,从而增加岩土的强度和稳定性,隔绝地下水与地下工程的联系,以便在冻结壁保护下进行隧道、竖井、地下联络通道和其他地下工程的开挖与施工的一种特殊施工技术。
其实质是人工制冷技术临时性改变岩土的状态以固结地层。
冻结法施工技术在矿井建设、地基基础工程、水利工程、河底隧道、地下铁道和其他地下工程中,当遇到不稳定地层或含水量丰富地层、裂隙岩层等,只要是地下水含盐量不大,且流速慢(6m/d)都可以采用冻结法固结地层,完成地下工程施工。
英国人和德国人早在1862年、1883年利用冻结技术完成建筑基础、煤矿深井施工。
1886年、1906年瑞典和法国用冻结法施工人行隧道,穿越河底地铁工程。
前苏联、日本也在20世纪70年代用冻结法施工地铁隧道,排水管等。
据不完全统计已有数百项工程用冻结法来完成工程施工。
我国从1955年~1999年在煤炭系统,利用冻结技术,建设煤矿竖井近500个,总长达70Km,最大冻结深度达435m。
随着冻结技术不断发展,水平冻结、斜井冻结也取得成功。
近年来,随着地下工程日益增多,特别是地下铁道建设兴起,冻结技术开始应用于城市地铁工程的隧道施工。
北京、上海、广州已分别采用了垂直冻结、水平冻结技术完成了多项地下工程。
岩土冻结常采用方法叫间接冻结法—低温盐水法。
其原理是以氨、氟利昂等制冷工质,经过压缩机对工质压缩成高温液态,经冷却后到蒸发器膨胀汽化,在交换器中吸收盐水中热量,负温盐水作为传递冷量的媒介。
把冷量传递给需要冻结的岩土层,达到冻结局部岩土目的。
这种冻结方法由三大循环系统构成。
①氟利昂(或氨)循环系统②盐水循环系统③冷却水循环系统从而获得-20oC~-35oC左右的低温盐水,用以冻结岩土。
还有一种方法为直接冻结法—液氮法。
液氮在1个大气压下的蒸发温度为-196oC。
当要冻结的土体不大,或抢险堵水的紧急情况下,可用液氮冻结技术,达到快速便利的优点。
且液氮冻结设备简单,只要液氮槽车输送液氮到液氮储罐内,再通过液氮输送管输送到冻结器(冻结管),再把汽化氮气排出,即达到冻结目的。
该法施工简单,唯施工成本高于盐水法。
(图1)2、盐水法冻结的原理和工艺:·自由水冻结过程:岩土中的自由水的冻结过程可划分为5个时间段(图2)①冷却段:开始向土层供冷,土体温度逐渐降到冰点;②过冷段:土体温度达到0oC以下,但土中自由水尚未结冰,呈现出过冷现象;③突变段:水过冷后,一旦结晶就立即放出结冰潜热,出现升温现象;④冻结段:温度上升到接近0oC时稳定下来,自由水开始结冰过程,将土体颗粒胶结成整体,形成冻土;⑤继续冷却段:随着温度降低,冻土的强度逐渐增大。
·冻结加固岩土的特点:①强度高:冻结后地层的抗压强度明显提高,可达到2~10Mpa。
各种土层其强度是不一样的;冻土瞬时极限抗压强度参考值(MPa)一般而言,土体中含水量越高,其冻土强度越高②封水效果好:可保证不漏、不渗,在无水条件下工作;③适应性强:适用于一切含水、尤其是含水量大的地层。
无论是砂土、粘土、软粘土,以及其他方法无法施工地层;④支护性能好:冻结体为一完整的支护体;⑤安全性好:由于冻结体为一个整体,在冻结体的遮护下,可保证隧道掘进的安全施工;⑥灵活性好:可人为冻结任意需要的形状,可绕过障碍物进行冻结;⑦环境保护好:因为冻结是一个临时措施,先将水结成冰,工程完成后又恢复到原来状态,对环境不造成污染。
·冻结工艺:①冻结施工的三个阶段:a、积极冻结阶段—在施工地层中开始冷冻,并将地层中的冻结壁扩展到设计厚度的工作阶段;b、维护冻结阶段—维护施工需要的冻结壁厚度,以满足地下结构施工的正常操作;c、解冻阶段—地下结构施工完成,停止制冷,地温恢复原状阶段。
②冻结施工的四大工序:a、冻结站安装:冻结站的位置必须满足供冷、供电、供水、排水都比较方便的地方,还要兼顾到井口、洞口施工时材料,施工器材进出方便。
一般而言,冻结站设在距井口30~50m距离为好。
冻结站安装工序见图3。
b、钻孔施工:即冻结孔的钻孔和观察孔的钻孔。
冻结孔是用来安装冻结管的。
冻结管的作用是:管体置于地层钻孔内,用来输送低温盐水与地层直接进行热交换,使冻结管周围的土体温度降低,自由水冻结,形成有足够强度的冻结壁。
冻结孔采用钻机完成。
过去,钻孔完成后需撤出钻杆,换装冻结管。
现在,采用特别的专利技术可以做到不必取出钻杆,钻杆直接用作冻结管。
冻结管一般选用直径Φ127m m~Φ139mm,壁厚5~10mm的钢管,目前常采用Φ127mm×7.5mm 的无缝钢管,也可以根据地下工程实际情况减小冻结管的直径。
冻结管的构造可见图4所示:冻结孔大多分布在冻结壁的设计中心线上,用来安装冻结管,其孔径、间距和设计倾角依地层的土质、水文条件、工程要求而定。
钻孔容易发生偏斜,特别是水平钻孔和斜向钻孔,发生偏斜,对冻结效果影响很大,对地下工程的施工也有一定的影响。
为保证施工质量,避免对相邻建筑物造成损害和减少地面沉降,对孔的允许偏斜率要求较高,钻孔的偏斜率一般小于5‰。
除了冻结孔之外,还要安设计要求钻观察孔,用于安装温度传感器、土压传感器、土层位移传感器和孔隙水压力传感器等。
c、地层冻结:一挨地层开始冻结,就要求以最快速度达到设计所要求的冻结厚度,称为积极冻结期。
在此期间应保证冻结站正常工作。
最好选在冬季,以求提高冻结站的制冷效率。
当然要勤观察冻结温度,注意盐水循环是否正常。
冻结壁的厚度既要满足强度要求,又要满足变形条件要求。
通常由计算确定。
根据已有的工程经验,在城市浅土层下施工时,冻结壁厚度主要受埋深和地面荷载状况的影响,常在1.2m~2.0m之间选用。
冻结前,同一深度的地层具有相同的原始温度。
冻结开始以后,在冻结管周围产生降温区,形成以冻结管为中心的冻结圆柱,并逐渐扩大直至与相邻的冻结圆柱连接成封闭的冻结壁。
冻结壁的交圈时间主要与冻结孔的间距、盐水温度、土层性质、冻结管直径、地层原始温度等因素有关。
根据试验资料看出:交圈时间随着冻结孔间距的增大而延长,随着地层土体颗粒的直径的增大和冻结管直径的加大而缩短。
下表可作为参考:冻结壁交圈时间参考表注:盐水温度为-25C;冻结管直径为159mm冻结壁交圈以后,相邻冻结圆柱体的相交界面的温度会在冻结的过程中继续降低,该部分的冻结壁厚度会逐渐增大。
冻结管中心温度最低,逐渐向冻结壁边缘升高,见图5所示。
d、地下工程掘进施工:积极冻结阶段完成后应立即进入地下工程的掘进施工。
掘进施工应注意各工序的合理衔接,以最快的速度完成地下结构的施工。
因为无论是积极冻结还是维护冻结,每天的电能消耗是可观的。
经过积极冻结、维护冻结两个阶段,完成地下结构物的施工以后,冻结站可以停止工作。
冷量的供应停止后,地层温度会自然升高,冻结壁会自然解冻。
根据试验资料,砂性土体由停冻到冻结壁开始解冻的时间约为80~90天,而粘性土层从停冻到冻结壁开始解冻的时间为90~110天。
3、冻结法施工的设备:·制冷设备:①制冷压缩机:我国冻结法施工所使用的制冷压缩机主要有活塞式和螺杆式两种。
以氨为制冷工质的制冷机常采用活塞式压缩机。
活塞式压缩机按制冷能力可分为:小型机:功率小于60KW;中型机:功率介于60KW至600KW之间;大型机:功率大于600KW。
活塞式压缩机按其气缸中心线的位置又可以分为卧式机、立式机、V型机和扇型机等。
②冷凝器和蒸发器:冷凝器和蒸发器是完成制冷循环所必须的辅助设备。
它们的换热效率直接影响冻结站的技术经济指标。
蒸发器由置于盐水箱中的多组金属管组成。
在制冷循环中,压缩后的液态工质(液态氟利昂或液态氨)在蒸发器中蒸发,变为饱和蒸气,同时吸收周围管路中盐水热量,形成低温盐水。
冷凝器是一个装有多组冷却水管的密闭筒体,高约2m~3m,直径1m~2m。
冷凝水从筒体内的冷却管通过,使筒内的过热氟利昂或氨的蒸气冷却而形成气态和液态混合物。
③盐水循环设备:盐水循环系统的作用是将通过蒸发器得到冷量的低温盐水输送到需要冻结的地层中的冻结器,并将吸收了地层热量的升温盐水通过管路回到蒸发器,以完成利用盐水作介质的热交换循环。
盐水循环系统主要设备有盐水泵、盐水干管、配液及集液环、冻结器等。
在一般保温情况下,冷量损失约占冻结站总制冷量的20%~25%,所以为降低能量消耗、盐水循环系统应有良好的保温措施。
配液器和集液环设在冻结工作面附近,使去、回盐水管路阻力相等,配液均匀。
冻结器由冻结管、供液管、回液管组成,冻结管常用直径127mm或139mm的无缝钢管制成。
而供液管可采用直径50mm~60mm塑料管或橡胶管。
(图4)移动式制冷机组:随着城市地下工程中采用冻结法施工越来越多,在每个工作现场建立冻结站相当繁锁。
为方便工程使用,近来,已研制了可移动制冷机组。
将制冷机、冷凝器、蒸发器、盐水泵、电控柜等配置在一个底盘上。
只要用平板车拖到现场,只需在现场增设盐水箱,安装盐水循环泵,接上电源、冷却水源后即可投入运行。
大大方便了现场施工。
4、冻结法施工的监测:冻结法施工是包含多工种的复杂施工过程,地层温度场控制、制冷量控制、现场水文地质条件的不确定性、以及暗挖工程自身所包含的信息化施工因素等,都使量测监控工作成为冻结法施工中不可缺少的重要环节。
冻结法施工过程中,有以下几方面量测监控工作:①钻孔质量检测:钻孔的平面位置或垂直距离(斜向或水平钻孔)及钻孔的垂直度或水平夹角(斜向或水平钻孔)。
用激光定位法确定孔位,用陀螺议检测孔的倾角。
这一工作相当重要,要随时纠偏;②冻结设备工作情况监测:冻结设备在冻结施工期间必须安全正常运行。