减压孔板计算
高层建筑消火栓系统减压孔板的计算

在高层建筑分区消火栓给水系统中,采用减压阀组技术,可满足各分区不同压力的需求,取消中间水箱,较好地解决消防过程中的超压问题。
8.会议论文 陈家强 浅谈“以固为主,固移结合”原则在高层建筑火灾扑救中的运用 1998
该文提出了扑救高层建筑火灾必须坚持“以固为主,固移结合”并遵循 这一原则,对高层建筑火灾扑救中的火情侦察、登高、救人、供水、防排 烟以及战斗部署的方法和要求进行了论述。高层建筑物设计、建造的特点及其火灾的特点、规律,加之消防消防队丛的实际灭火战斗能力所限,决定了 扑救高层建筑火灾必须坚持“以固为主,固移结合”的原则。所谓“固”,即固定消防设施,如:建筑防火设施、火灾自动报警控制系统、自动灭火系 统和室内消火栓系统等;“移”,即指移动消防设施,如消防队伍的车辆、器材、装备等。
随着国民经济的不断发展,人民生活水平的提高,高层建 筑得到了迅速发展,为了保证人民生命财产的安全,消防设
施在整个建筑中的作用越来越重要。目前的经济和技术条件
仍将消火栓系统作为高层建筑中最基本的灭火设备,但由于 在高层建筑灭火过程中,无论是在火灾前十分钟由屋顶水箱
供水还是由消防主泵供水都存在低层消火栓的反作用力过
根据《高层民用建筑设计防火规范》第7.4.7.2条:“高位 消防水箱的设置高度应保证最不利点消火栓静水压力。当建 筑高度不超过100m时,高层建筑最不利点消火栓静水压力 不应低于0.07MPa。”
假设水箱至xl立管上13层消火栓的阻力损失为lm: 1.13层消火栓栓口水压及流量
表6
消火栓 所在层
l
2
Hq=qx2m=52/1.577=15.85mH20 实际充实水柱长度:
H庐Hq/“l+t0Hq)=15.85/1.2(1+0.0097×15.85)=1 1.4mHzO 13层消火栓栓口水压: H”=H。+Ak q盎-15.85+0.0043 X 20 X 5L-18mH20 2.12层消火栓栓口水压及流量
关于减压孔板的计算

; FONT-SIZE: 20px; COLOR: #b0b41f">关于减压孔板的计算; LINE-HEIGHT: 36px" background=/img/bg3.gif>关于减压孔板的计算简介:在高层建筑的消火栓系统的设计中,必定会碰到系统分区的情况,按“高规”第7.4.6.5条“消火栓栓口的静水压力不应大于0.80MPa,当大于0.80MPa时,应采取分区给水系统。
消火栓栓口的出水压力大于0.50MPa 时,消火检处设减压装置”。
关键字:减压孔板计算在高层建筑的消火栓系统的设计中,必定会碰到系统分区的情况,按“高规”第7.4.6.5条“消火栓栓口的静水压力不应大于0.80MPa,当大于0.80MPa时,应采取分区给水系统。
消火栓栓口的出水压力大于0.50MPa时,消火检处设减压装置”。
通常所设的减压装置是减压孔板。
设置孔板,一是安装方便,二是便于调整。
孔板的大小可通过计算得到。
笔者经过对某工程的孔板设计计算,觉得通过以下几个步骤,能较准确地作出选择。
该工程的消火栓系统原理如附图所示。
在进行计算之前,首先要明确孔板将安装在何处。
由于现在有些建筑物中,有单出水消火栓,也有双出水消火栓,而两种类型的消火栓与立管的接口分别为DN65、DN80,其流量也不相同,因此,不先搞清楚孔板位置,会导致计算的错误。
在本工程中,笔者将孔板设于消火栓栓口,以方便计算。
按规定,为保证水枪的充实水拄13米的要求,DNl9喷嘴的流量为5.7L/S,压力为0.205MPa,按DN70查水力计算表,得到此时管内流速:V=1.62m/s根据《建筑给水排水设计手册》(P40 1.5—16)H′=H/V2×1=H/1.622×1=0.381H(m)其式中:H′——流速1m/s时的剩余水头(m)V ——水流通过孔板后的实际流速(m/s)H ——设计剩余水头,即须减去的多余水头(m)对系统中地下4至地上6层区域来讲,在7层设有可调式减压阀,井控制阀后压力H1=0.25MPa,以室内一层地坪为1.00米计,阀的安装标高H2=40.00米。
浅析减压孔板和节流管的减压设计计算与比较

浅析减压孔板和节流管的减压设计计算与比较【摘要】根据某项目自动喷淋系统水力计算,比较两种减压措施的优劣。
【关键词】自动喷淋灭火系统;减压孔板;节流管;【Abstract】According to the calculation of hydraulic project of automatic sprinkling system,comparison of two kinds of relief measures of quality.【Key words】Sprinkler systems;Decompression orifice plate; Throttle pipe自动喷淋灭火系统,是当今世界上公认的最为有效的自救灭火设施,是应用最广泛、用量最大的自动灭火系统。
根据《自动喷水灭火系统设计规范》要求,使自动喷淋灭火系统充分达到预期灭火效果既要满足最不利点的压力和流量要求,同时又要满足配水管入口的压力平衡。
由于管道局部和沿程水头损失的存在,距离水泵越近,其配水管入口压将越大。
因此,在自动喷淋灭火系统中,减压措施的设计计算和选择显得尤为重要。
在管道中设计减压孔板和节流管,是最为常见的两种减压措施。
减压孔板和节流管减压的适用范围是对流体动力减压,其原理是当流动水经过减压孔板时,由于水头阻力损失,在减压孔板处或节流管处产生水头压力降(水头损失),从而可以降低底层的自动喷淋系统配水管和消火栓的出口压力。
高层建筑由于层数较多,高低层所承受的静水压力不一样,实际出水量相差很大,作用时底层的自动喷水设备和消火栓出水量远远超过顶层的设计流量和设计压力。
若不采取减压措施,将会造成同样的消防水量无法满足火灾持续时间,从而不能有效的起到灭火效果。
减压孔板和节流管相对于减压阀来说,系统比较简单,投资较少,管理方便。
因此本文着重介绍减压孔板和节流管的减压计算方法,减压阀减压不在讨论其中。
1规范对两种减压措施的有关规定《自动喷水灭火系统设计规范》对减压孔板与节流管两种减压措施的相关规定见表1:表1对过水管管径的要求对孔口直径的要求对管长的要求减压孔板应设在直径不小于50mm的水平直管段上孔口直径不应小于设置管段直径的30%,且不应小于20mm 前后管段的长度均不宜小于该管段直径的5倍节流管直径宜按上游管段直径的1/2确定节流管内水的平均流速不应大于20m/s 长度不宜小于1m2设计计算以珠江国际商贸中心中区6~11号楼工程为例,本工程为一类高层,建筑性质公寓式办公楼,本项目采用自动喷淋灭火系统,火灾危险等级地下车库按中危险II级,其消防水泵房位于地下二层,喷淋水泵扬程1.2MPa,流量35L/s,其地下二层喷淋配水管入口压力达到1.1MPa,规范要求不宜大于0.40MPa,远远超过规定值,因此需要采取减压措施。
孔板的减压原理及孔径计算的探讨_吴常军

消 火 栓 管道内径 流量 型 号 ;5/" ;5./ 2 (( 3 /6 .28 9 :3 #! #% #.
孔板孔径 2 (( 3 #!" !% !. !6"
板阻力系数 ! 在 @、A 和流量一定时,可以近似看作一个常 数, 同时给出了消火栓口最大水压的建议值。 本文得到了安徽省建筑设计研究院副总、教授级高工 胡世权同志的悉心指导, 在此表示衷心的感谢。
图! 减压孔板示意图
$ ; "4 @ #:$&( , ,% ) #:= = 压差 "4 等于孔板前后静水压强差 "I 乘以一个系数 ’, 即: "4 @ ’("I 则: "I @ )@
$ ! $ ; @ ): #:$&( , ,% ) (’ #:= = $J
设段面 6 % 6 处,流体未受到孔板的影响,流束即面 , % , 处为止, 由于受边界条件的制约, 流线收缩, 边缘的流 体向管中心加速, 致使流束断面逐渐减小, 流速随之增加, 压强 则相应降低。 至段面 , % , 处流速最大, 压强最低。 过此段面以 后, 流束断面又逐渐扩展。并在孔板前后形成漩涡, 由于水流 的粘滞作用, 漩涡经过一段距离后便会逐渐消失。 在段面 7 % 7 以后, 流束扩大至整个断面, 又与管中心线平行, 压强逐渐升到 最大值。综上所述, 水流通过孔板时流速重新分布, 在孔板前 后形成漩涡, 这些漩涡的形成、 运动和分裂, 摩擦力做功, 从而
可见消火栓正常使用时, 均在阻力平方区, 在管径和孔板孔径 一定时孔板阻力系数 ! 可以近似看成一个常数。有关的试验 测数据亦证明了这一点。 图 ! 为孔板实测局部阻力系数 ! 与雷 诺数 &’ 的关系。
#" ## #! #6 #% #/ #. #7 #-
节流管减压孔板喷淋计算

减压孔板水力计算表
消火栓减压孔板计算法,当消火栓栓口压力决定了,只要选定合适的孔板,就决定了减压的阻力损失与栓口余下的损失,由于有
流速后去算出此流量流速下孔板损失,通过校核此流量流速下减压后余下的压力与假定的校对,不断调整。
当二者数值相近时则假定的成立
同,栓口出水压力也不同。
由此选用合适的孔板与余下的充实水柱。
由于充实水柱的特性系数要查减压孔板水力计算表
其中充实水柱计算中的水枪充实水柱特性&值及充实水柱a值为查表所得(a值可以用插入法计算)
水枪口径1316192225
&0.0160.0120.010.0080.006
充实水柱68101216
a 1.19 1.19 1.2 1.21 1.24
得(a值可以用插入法计算)
由于有循环计算流量与流速等问题,可以选定孔板后去假设余下的压力通过假定的流量者数值相近时则假定的成立,所以当孔板一旦选定后,栓口出水压力也就确定了。
孔板大小不于充实水柱的特性系数要查表,故本表仅为接近值。
关于减压孔板的计算

关于减压孔板的计算简介:在高层建筑的消火栓系统的设计中,必定会碰到系统分区的情况,按“高规”第7.4.6.5条“消火栓栓口的静水压力不应大于0.80MPa,当大于0.80MPa时,应采取分区给水系统。
消火栓栓口的出水压力大于0.50MPa时,消火检处设减压装置”。
关键字:减压孔板计算在高层建筑的消火栓系统的设计中,必定会碰到系统分区的情况,按“高规”第7.4.6.5条“消火栓栓口的静水压力不应大于0.80MPa,当大于0.80MPa时,应采取分区给水系统。
消火栓栓口的出水压力大于0.50MPa时,消火检处设减压装置”。
通常所设的减压装置是减压孔板。
设置孔板,一是安装方便,二是便于调整。
孔板的大小可通过计算得到。
笔者经过对某工程的孔板设计计算,觉得通过以下几个步骤,能较准确地作出选择。
该工程的消火栓系统原理如附图所示。
在进行计算之前,首先要明确孔板将安装在何处。
由于现在有些建筑物中,有单出水消火栓,也有双出水消火栓,而两种类型的消火栓与立管的接口分别为DN65、DN80,其流量也不相同,因此,不先搞清楚孔板位置,会导致计算的错误。
在本工程中,笔者将孔板设于消火栓栓口,以方便计算。
按规定,为保证水枪的充实水拄13米的要求,DNl9喷嘴的流量为5.7L/S,压力为0.205MPa,按DN70查水力计算表,得到此时管内流速:V=1.62m/s根据《建筑给水排水设计手册》(P40 1.5—16)H′=H/V2×1=H/1.622×1=0.381H(m)其式中:H′——流速1m/s时的剩余水头(m)V ——水流通过孔板后的实际流速(m/s)H ——设计剩余水头,即须减去的多余水头(m)对系统中地下4至地上6层区域来讲,在7层设有可调式减压阀,井控制阀后压力H1=0.25MPa,以室内一层地坪为1.00米计,阀的安装标高H2=40.00米。
现以地下4层孔板计算为例:1、确定该层消火栓栓口标高H0=-13.60M;2、栓口的动压值(为方便计算,水头损失均按10米计)H=H1十(H2—H0)=25十(40十13.60)=68.6M3、栓口允许的最大动压:按规范压力控制在0.25MPa-0.5MPa,现按0.40MPa计。
孔板的减压原理及孔径计算的探讨_吴常军

!&’#%()’($&)
!水・电・暖通・空调 !
孔板的减压原理及孔径计算的探讨
"吴常军
内容提要
本文分析了孔板的减压原理;并利用量纲分析理
产生较大的能量损失, 这便是孔板减压的原理。 三、 利用量纲分析理论—— — ! 定理推导孔板水头损失计算 公式 假设有一物理过程函数式中包括有 8 个物理 ! 定理: “ 量, 其中 9 个量具有基本量纲, 则此函数式可以用 8 % 9 个无 量纲所组成的函数式来表示。 ” 令水流通过孔板前后的压差为 "4, 水管中 如图 * ! / 所示: 流速为 :, 水管管径为 ;, 水流通过孔板时流速为 <, 孔板孔径 为 =, 液体密度为 #, 动力粘滞系数为 $, 孔板切角 %, 则水流通 过孔板的函数关系式可以写成: > * "4? :? $? #? ;? =? <? %? / @ " *!/ 在这 A 个变量中, 任选 # 个独立变量作为基本变量, 如选 #, :, B CE % ! D 和 B C D , 这三者的量纲分别为 B 3C % # D , 它们之间是互 =, 相独立的, 则根据 ! 定理可得: "4 @! #5!:5$=5# B 3C % ! E % $ D @ B 3C % # D 5! B CE % ! D 5$ B C D 5# 将上式写成量纲关系式: 解得: 5! @ !? 5$ @ $? 5# @ " 所以: !- @ F! @ "4 #:$ ; = 同理可得: !& @ F$ @ < : $ #:=
管中水流雷诺数 &’ * 7, % = #" ,其值均较临界雷诺数大得多,
%
减压孔板快速计算书

减压孔板在室内给排水工程中,减压孔板可用于消除给水龙头与消火栓前的剩余水头,以保证水系统均衡供水,达到节水、节能的目的。
(1) 减压孔板孔径的计算:水流通过孔板式的水头损失,按式中计算:)10(242pa g H υξ= 1式式中 H ——水流通过孔板的水头损失值(Pa);ξ——孔板的局部阻力系数;υ——水流通过孔板后的流速(m/s);g ——重力加速度(m/s)。
ξ值可从下列式中求得:ξ= 2式式中 D ——给水管道直径(mm);——孔板孔径(mm)。
为简化计算,将各种不同管径及孔板孔径代入公式1式、2式,求得相应的H 值,所得计算结果列于表1、使用时,只要已知剩余水头及给水立管直径D,九可从表中查的所需孔板孔径。
表1: 减压孔板的水头损失D (mm) 345 6 7 8 9 10 11 12 13 15 20 25 32 40 50 81、03 262、30 24、54 81、03201、779、49 32、16 81、03 222、214、25 14、91 38、13 105、59 262、302、09 7、68 19、98 56、00 140、021、10 4、25 11、31 32、16 81、03 201、770、59 2、48 6、79 19、61 49、84 124、800、33 1、51 4、25 12、53 32、16 81、030、18 0、94 2、75 8、30 21、56 54、700、09 0、59 1、83 5、67 14、91 38、130、04 0、38 1、24 3、96 10、58 27、30D(mm) 14 0 21 22 23 2420 25 32 40 50 70 80 100 0、240、862、837、6819、9881、03140、820、150、592、055、6714、9160、98105、590、090、421、514、5211、3146、6981、03201、770、050、291、123、238、7136、3063、13157、610、030、200、842、486、7928、5949、84124、800、010、140、631、925、3422、7839、83100、020、090、471、514、2518、3532、1681、030、060、361、183、4114、9126、2266、280、040、270、942、7512、2221、5654、700、020、200、752、2410、1017、8745、500、010、150、591、838、4014、9138、13D(mm) 25 26 27 28 29 30 31 32 3332 40 50 70 80 100 125 150 0、110、471、517、0312、5332、1681、04170、850、080、381、245、9110、5827、3068、99145、600、060、301、035、008、9923、2959、07124、800、040、240、854、257、6019、9850、74107、540、020、190、713、636、5817、2343、8993、130、010、150、593、115、6714、9138、1481、030、120、502、674、9012、9733、2870、800、090、422、314、2511、3129、1062、110、070、351、993、709、9125、5954、70D(mm) 34 35 36 37 38 39 40 41 4240 50 70 80 100 125 150 0、050、291、733、238、7122、5948、340、040、241、512、837、6820、0042、870、030、201、312、486、7917、7238、130、020、171、152、186、0115、7934、020、010、141、001、925、3414、1030、430、010、881、704、7612、6027、300、090、771、514、2511、3124、540、080、681、333、8010、1822、120、060、591、183、419、1619、90D(mm) 43 44 45 46 47 48 49 50 5150 70 80 100 125 150 0、050、521、053、068、2818、090、040、460、942、757、4916、410、030、400、842、486、7814、910、020、360、752、246、1513、580、010、310、672、025、5912、380、010、280、581、835、1011、310、240、531、664、6610、350、210、471、514、259、490、190、421、373、908、71D(mm) 52 53 54 55 56 57 58 59 6070 80 100 125 150 0、160、381、243、568、000、140、341、133、277、360、120、301、033、006、790、110、270、942、766、260、090、240、862、535、780、080、220、782、345、340、070、190、712、154、950、060、170、651、984、580、050、150、591、834、25D(mm) 61 62 63 64 65 66 67 68 6970 80 100 125 150 0、040、140、541、693、950、030、120、501、563、670、030、110、451、453、410、020、090、421、343、170、020、080、381、242、950、010、070、351、152、750、010、060、321、072、570、050、290、992、400、050、270、922、24D(mm) 7 76 77 7880 100 125 150 0、040、240、852、090、030、220、791、960、030、200、741、830、020、180、691、710、020、170、641、610、010、150、591、510、010、140、551、410、010、130、511、320、110、481、24D(mm) 79 80 8 87100 125 150 0、100、451、170、090、411、100、080、391、030、080、360、970、070、330、910、060、310、860、050、290、800、050、270、760、040、250、71D(mm) 88 89 9 96100 125 150 0、040、230、670、030、220、630、030、200、590、020、190、560、020、170、530、010、160、500、010、150、470、010、140、440、010、130、42D(mm) 97 98 99 1 104 105125 150 0、120、390、110、370、100、350、090、330、090、310、080、290、070、270、070、260、060、24D(mm) 1 11 14125 150 0、050、230、050、210、040、200、040、190、040、180、030、170、030、160、020、150、020、14D(mm) 1 119 120 121 122 123125 1500、020、130、010、120、010、110、010、110、010、100、010、09 0、09 0、08表1中数据就是假定水流通过孔板后的流速为1m/s时计算得出的,如实际流速与此不符,则应按式3进行修正,并安修正后的剩余水头查表。