新一代超声波密封泄漏检测仪_
压力容器接管改造施工方案(3篇)

第1篇随着我国工业生产的发展,压力容器在各个领域得到了广泛的应用。
压力容器接管作为压力容器的重要组成部分,其改造施工对于提高压力容器的安全性能和延长使用寿命具有重要意义。
本文针对压力容器接管改造施工,制定以下方案。
二、施工方案1. 施工准备(1)组织施工队伍:成立专门的施工队伍,明确各岗位职责,确保施工过程中的协调与配合。
(2)技术交底:对施工人员进行技术交底,确保施工人员熟悉施工图纸、施工工艺及安全注意事项。
(3)材料设备准备:根据施工图纸要求,提前准备所需材料、设备,确保施工过程中材料、设备供应充足。
(4)现场勘查:对施工现场进行勘查,了解现场环境、地质条件等,为施工方案制定提供依据。
2. 施工步骤(1)拆除原有接管1)检查原有接管,确定拆除方案。
2)对原有接管进行切割、焊接等处理,确保拆除过程中安全、无污染。
3)清理现场,确保施工环境整洁。
(2)接管改造1)根据施工图纸要求,进行接管改造设计。
2)对改造部位进行切割、焊接等处理,确保焊接质量。
3)对接管进行热处理,消除应力,提高强度。
4)对接管进行无损检测,确保焊接质量。
(3)接管连接1)根据接管改造设计,进行接管连接。
2)对接管进行无损检测,确保连接质量。
(4)管道防腐1)对接管进行防腐处理,提高管道使用寿命。
2)对防腐层进行检测,确保防腐效果。
3. 施工质量控制(1)施工前,对施工人员进行技术培训,提高施工人员的技能水平。
(2)施工过程中,严格执行施工规范,确保施工质量。
(3)对接管进行无损检测,确保焊接质量。
(4)对防腐层进行检测,确保防腐效果。
4. 施工安全措施(1)施工人员必须穿戴好个人防护用品,如安全帽、安全带、防护眼镜等。
(2)施工过程中,严格遵守安全操作规程,防止发生安全事故。
(3)施工现场设置警示标志,提醒施工人员注意安全。
(4)施工现场配备消防设施,确保发生火灾时能够及时进行灭火。
三、施工进度安排1. 施工前期准备:1周2. 施工拆除:2周3. 施工改造:3周4. 施工连接:2周5. 施工防腐:1周6. 施工验收:1周总计:10周四、施工总结1. 施工过程中,严格按照施工方案进行施工,确保施工质量。
非金属超声波检测仪使用说明书

非金属超声波检测仪使用说明书ZBL-U520/510 非金属超声检测仪使用说明书ZBL-U520(U510)非金属超声检测仪使用说明书本说明书中的约定: 0第 1 章概述 (1)1.1 简介 (1)1.2 超声仪的组成 (1)1.3 主要性能指标 (6)1.4 工作环境要求 (7)1.5 超声仪的维护、保养及使用过程中的注意事项 (7)1.6 测试前的准备 (9)1.7 功能选择 (10)第 2 章基本操作方法介绍 (11)2.1 输入方法 (11)2.2 调零 (12)2.3 采样参数的调整 (15)2.4 波形操作 (17)2.5 手动判读首波声时、幅度 (19)2.6 手动寻找首波 (20)2.7 数据传输 (21)2.8 软件升级 (24)第 3 章超声回弹综合法检测混凝土抗压强度 (26)3.1 进入测强功能 (26)3.2 测试前的准备 (27)3.3 工程参数的设置 (27)3.4 测试界面说明 (31)3.5 测试界面操作 (32)3.6 分析处理 (35)3.7 文件管理 (38)第 4 章超声法检测混凝土缺陷 (41)4.1 进入测缺功能 (41)4.2 测试前的准备 (41)4.3 工程参数的设置 (42)4.4 测试界面说明 (45)4.5 测试界面操作 (46)4.6 分析处理 (49)4.7 文件管理 (52)第 5 章声波透射法检测基桩完整性(自动记录) (56)ZBL-U520(U510)非金属超声检测仪使用说明书5.1 简介 (56)5.2 测试前的准备 (59)5.3 设置工程参数 (60)5.4 测试界面说明 (66)5.5 测试新剖面 (68)5.6 打印波形: (74)5.7 检测新的剖面或新的桩 (74)5.8 续测剖面 (74)5.9 数据文件管理 (75)5.10 对已测桩进行分析 (78)第 6 章声波透射法检测基桩完整性(手动记录) (82)6.1 简介 (82)6.2 测试前的准备 (82)6.3 设置工程参数 (83)6.4 测试界面说明 (86)6.5 测试新剖面 (89)6.6 打印波形: (93)6.7 检测新的剖面或新的桩 (94)6.8 续测剖面 (94)6.9 数据文件管理 (94)6.10 对已测桩进行分析 (94)第 7 章超声平测法检测混凝土表面浅裂缝 (95)7.1 进入测缝功能 (95)7.2 测试前的准备 (96)7.3 工程参数的设置 (96)7.4 测试界面说明 (99)7.5 测试界面操作 (101)7.6 分析处理 (105)7.7 文件管理 (107)第 8 章单孔一发双收测井软件 (111)8.1 简介 (111)8.2 工程参数设置 (112)8.3 使用压电陶瓷换能器作为发射源的测试 (118)8.4 使用超磁致伸缩换能器或电火花作为震源测试 (124)ZBL-U520(U510)非金属超声检测仪使用说明书8.5 文件管理 (127)附加说明: (130)参考资料: (131)本说明书中的约定:A. 灰色背景、带黑色方框的文字表示屏幕上的一个按钮,如:分析、参数等。
开关设备超声波测试标准

开关设备超声波测试标准:●-6 ~ 0 dBuV,无放电声,开关设备无局部放电。
●0 ~ 6 dBuV,有短放电声,开关设备有轻微放电,以后应注意。
●大于6 dBuV,出现放电噪声,开关设备明显放电,应结合TEV 测试确定。
注:分界点(6dBuV)在不同地区略有不同,有些地区(如国外、南网)以6dBuV 为分界点,多判断为6dBuV 或明显放电现象,而国家电网用户,一般以8dBuV 为分界点、无论是6dBuV 还是8dBuV,最终目的都是为了预测开关柜的绝缘性能,因此建议分界点为6dBuV,这样可以更提前地进行TEV 测试,并应引起重视。
因此建议将6dBuV 作为分界点,以便提前对开关设备的运行状态发出警告。
开关柜局部放电检测有两种原理:超声波原理和瞬态地电压(TEV)原理,局部放电检测仪中的超声波和TEV 传感器用于精确测量高压开关柜的局部放电,超声波传感器位于主机前端位置超声波传感器位于主机位置的前端,测试时必须靠近元件(超声波测量)或(TEV 测量)。
请注意,对于高压开关设备而言,接近和近接是不一样的,这取决于使用哪种原理进行测试。
如果选择集成超声波传感器来测量开关柜的局部放电,便携式局部放电检测仪在开机后将默认选择集成超声波传感器,屏幕左上角将显示当前连接的传感器类型,如下图所示,该状态即为超声波测量模式。
这种状态就是超声波测量模式,因此在接通电源后几乎不需要执行任何其他操作或设置。
超声波测量模式下,所测得的数据单位为dBuV,dBuV 是相对于1uV 的对数函数值,因此超声波模式下测得的数据可以是正值或负值,这取决于产品超声波放大器的处理能力,测试范围为-6 dBuV 至68 dBuV,负值表示超声波信号较小。
值表示超声波信号较小,接近0uV,但不是负数!在正常无干扰环境下测量的数据介于-6 dBuV 和0 dBuV 之间。
超声波信号以空气为传播介质,是从柜体间隙中传播出来的,工程师提醒您,使用超声波测量高压开关柜的柜值需要靠近柜体传感器的间隙位置,是同时可以通过监听耳机听到柜内放电声音(超声波信号通过数字滤波实现可听声音)。
HS 7X 系列数字式超声波检测仪说明书

10
欢迎使用 HS 7X 系列数字式超声波检测仪
全屏: 功能:将波形区域放大到全屏幕显示。 如图:
仪器设置: 功能:调节仪器参数,改变波形状态至最佳 具有检波方式,脉冲宽度,工作方式,重复频率,频带选择,报警开关,发射电压。
阻抗匹配,抑制等参数调节功能 如图:
自动增益:自动增益波形 自动调校:进入自动调校功能 手动调校:进入手动调校功能 波峰记忆:闸门内峰值记忆 动态记录:连续存储多幅相邻的波形数据 伤波储存:存储单幅波形数据 左下键:参数调节,且是减小操作 右上键:参数调节,且是增加操作 确认键:波形冻结/输入命令、数据认可
1.5 功能介绍
1.5.1 功能分类: 仪器主要分为探伤管理,文件管理,无线管理,FTP 管理,TOFD 5 个模块
11
欢迎使用 HS 7X 系列数字式超声波检测仪
焊缝功能: 功能:描述缺陷位置示意图 1.进入该功能后,出现(图 1),输入各项参数后,将箭头调节到焊缝设置(改变设 置到应用) 2.焊缝图,出现在下方(图 2) 3.按返回键退出后,找到焊缝中心,最高回波处 4.按确定后,出现(图 3),输入焊缝中心至前沿 5.输入完后,按确定键,出现(图 4),出现声线图 6.此时,可以按伤波存储键,存储数据,可在离线分析软件上打开并打印出图 如图:
如图:
1.5.2 探伤管理功能: 常规 A 型脉冲反射和 B 型成像扫查 C 型成像扫查三个主要功能组成 如图:
8
欢迎使用 HS 7X 系列数字式超声波检测仪 9
欢迎使用 HS 7X 系列数字式超声波检测仪
1.5.2.1 如图:
功能选择 包含全屏,仪器设置,焊缝功能,厚度测量,裂纹测高,性能校验,频
检验装置气密性的方法

检验装置气密性的方法
有许多方法可以检验装置的气密性,以下列举了一些常用的方法。
1. 泡水法:将装置浸入水中,观察是否有气泡冒出来。
如果有气泡冒出,说明装置存在漏气问题。
2. 压力测试法:将装置封闭后,通过增加压力的方式,观察装置内压力是否持续稳定。
如果压力持续下降,说明装置存在漏气问题。
3. 气压泄漏检测法:使用气体检测仪或气泡剂等工具,在装置上喷洒或注入气体,观察气体是否泄漏出来。
根据气体泄露的位置和速度,可以判断装置是否存在漏气问题。
4. 真空度测试法:通过将装置置于真空室中,观察真空度的变化情况来判断装置的气密性。
如果真空度下降较快,说明装置有漏气问题。
5. 烟雾测试法:通过在装置周围喷洒烟雾或使用烟雾机等设备,观察是否有烟雾从装置中逸出来。
如果有烟雾逸出,说明装置存在漏气问题。
6. 超声波检测法:使用超声波检测仪,对装置进行扫描,观察是否有超声波信号泄漏出来。
如果有信号泄漏,说明装置存在漏气问题。
以上是一些常用的检验装置气密性的方法,不同的方法适用于不同的装置和需求。
选择适合的方法进行检验可以帮助确保装置的气密性。
超声波检测

超声波探头
优点: 不需要清除工件的表面
电 磁 声 探 头
不需要耦合剂 高温、低温条件下的检测 小直径的棒材的检测 探头可设计成产生各种波型:纵波、垂直偏振的横波、水平偏振的 横波、板波、瑞利波、导波等等。
• 入射角与折射角及介质1与介质2之间的关系为:
C1:第一介质声速
C2:第二介质声速
超声检测的概述
反射
当声波从第一介质倾斜入射到第二介质界面上时,一部分声波 通过界面在第二介质中产生折射。而另一部分声波没有穿过界 面,却返回到原来的介质中,这一现象称为波的反射。
反射为:
C1:第一介质声速
超声波检测仪
同步电路(仪器的心脏)产生同步脉冲信号,一方面 触发发射电路,产生一个持续时间极短的电脉冲加到 探头上,激励(探头内)晶片产生脉冲超声波;另一 方面,同步脉冲信号触发时基电路,时基电路(扫描 延迟、扫描发生器、ⅹ轴放大器)产生线性较好的锯 齿波,经ⅹ轴放大器放大后加到示波管ⅹ轴偏转板上 ,使光点从左到右随时间作线性地移动。当探头接收 到反射或透射的超声波(由于正压电原理)转变成电 脉冲输入接收电路(高频放大器、检波电路、视频放 大器),加到示波管的Y轴偏转板上,从而在扫描线 上就出现了波形。波的位置与转输时间成正比,既与 缺陷距离成正比;波的幅度与缺陷的大小成正比。
CTS-8005APLUS
用于铁路车辆轮轴探伤的数字式探伤仪,内嵌铁道部车辆轮轴工艺 规程,智能化的季度、日常校验功能,具有五个通道,可自由切换.
GT-2
国内首台为钢轨在线检 测而设计的手推式全数 字超声探伤设备
超声波检测国家标准总汇(2015最新)

超声波检测国家标准超声波检测国家标准超声波检测国家标准GB 3947-83GB/T1786-1990 GB/T 2108-1980 GB/T2970-2004 GB/T3310-1999 GB/T3389.2-1999 GB/T4162-1991 GB/T 4163-1984 GB/T5193-1985 GB/T5777-1996 GB/T6402-1991 GB/T6427-1999 GB/T6519-2000 GB/T7233-1987 GB/T7734-2004 GB/T7736-2001 GB/T8361-2001 GB/T8651-2002 GB/T8652-1988 GB/T11259-1999 GB/T11343-1989 GB/T11344-1989 GB/T11345-1989 GB/T 12604.1-2005 GB/T 12604.4-2005 GB/T12969.1-1991 GB/T13315-1991 GB/T13316-1991 GB/T15830-1995 GB/T18182-2000 GB/T18256-2000 GB/T18329.1-2001 GB/T18604-2001 GB/T18694-2002 GB/T 18696.1-2004 GB/T18852-2002/行业标准/行业标准/行业标准表声学名词术语锻制园并的超声波探伤方法薄钢板兰姆波探伤方法厚钢板超声波检验方法铜合金棒材超声波探伤方法压电陶瓷材料性能测试方法纵向压电应变常数d33 的静态测试锻轧钢棒超声波检验方法不锈钢管超声波探伤方法(NDT,86-10)钛及钛合金加工产品( 横截面厚度≥13mm) 超声波探伤方法(NDT,89-11)(eqv AMS2631)无缝钢管超声波探伤检验方法(eqv ISO9303:1989)钢锻件超声波检验方法压电陶瓷振子频率温度稳定性的测试方法变形铝合金产品超声波检验方法铸钢件超声探伤及质量评级方法(NDT,89-9)复合钢板超声波检验方法钢的低倍组织及缺陷超声波检验法( 取代 YB898-77)冷拉园钢表面超声波探伤方法(NDT,91-1)金属板材超声板波探伤方法变形高强度钢超声波检验方法(NDT,90-2)超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92)接触式超声斜射探伤方法(WSTS,91-4)接触式超声波脉冲回波法测厚钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2 ~3)无损检测术语超声检测代替JB3111-82 GB/T12604.1-1990无损检测术语声发射检测代替JB3111-82 GB/T12604.4-1990钛及钛合金管材超声波检验方法锻钢冷轧工作辊超声波探伤方法铸钢轧辊超声波探伤方法钢制管道对接环焊缝超声波探伤方法和检验结果分级金属压力容器声发射检测及结果评价方法焊接钢管 ( 埋弧焊除外 )—用于确认水压密实性的超声波检测方法(eqv ISO 10332:1994)滑动轴承多层金属滑动轴承结合强度的超声波无损检验用气体超声流量计测量天然气流量无损检测超声检验探头及其声场的表征(eqv ISO10375:1997)声学阻抗管中吸声系数和声阻抗的测量第 1 部分 : 驻波比法无损检测超声检验测量接触探头声束特性的参考试块和方法GB/T 19799.1-2005 GB/T 19799.2-2005 GB/T 19800-2005 GB/T 19801-2005 GJB593.1-1988 GJB1038.1-1990 GJB1076-1991 GJB1580-1993 GJB2044-1994 GJB1538-1992 GJB3384-1998 GJB3538-1999 ZBY 230-84ZBY 231-84ZBY 232-84ZBY 344-85ZBY 345-85ZB G93 004-87 ZB J04 001-87ZB J74 003-88ZB J26 002-89ZB J32 004-88ZB U05 008-90ZB K54 010-89ZB N77 001-90ZB N71 009-89ZB E98 001-88 SDJ 67-83QJ 912-1985QJ 1269-87QJ1274-1987QJ 1629-1989QJ 1657-1989QJ 1707-1989QJ2252-1992QJ 2914-1997CB 827-1975(ISO12715:1999,IDT)无损检测超声检测 1 号校准试块无损检测超声检测 2 号校准试块无损检测声发射检测换能器的一级校准无损检测声发射检测声发射传感器的二级校准无损检测质量控制规范超声纵波和横波检验纤维增强塑料无损检验方法-- 超声波检验穿甲弹用钨基高密度合金棒超声波探伤方法变形金属超声波检验方法钛合金压力容器声发射检测方法飞机结构件用TC4 钛合金棒材规范金属薄板兰姆波检验方法变形铝合金棒材超声波检验方法A 型脉冲反射式超声探伤仪通用技术条件(NDT,87-4/84版)(已被JB/T10061-1999代替)超声探伤仪用探头性能测试方法(NDT,87-5/84版)(已被JB/T10062-1999代替)超声探伤用 1 号标准试块技术条件(NDT,87-6/84版)(已被JB/T10063-1999代替)超声探伤用探头型号命名方法(NDT,87-6)超声探伤仪用刻度板(NDT,87-6)尿素高压设备制造检验方法-- 不锈钢带极自动堆焊层超声波检验A 型脉冲反射式超声探伤系统工作性能测试方法(NDT,88-6)( 已被JB/T9214-1999代替)压力容器用钢板超声波探伤(已废止 )圆柱螺旋压缩弹簧超声波探伤方法大型锻造曲轴超声波检验( 已被 JB/T9020-1999代替)船用锻钢件超声波探伤汽轮机铸钢件超声波探伤及质量分级方法超声测厚仪通用技术条件超声硬度计技术条件常压钢质油罐焊缝超声波探伤(NDT,90-1)( 已被 JB/T9212-1999代替)水电部电力建设施工及验收技术规范: 管道焊缝超声波检验篇复合固体推进剂药条燃速的水下声发射测定方法金属薄板兰姆波探伤方法玻璃钢层压板超声波检测方法钛合金气瓶声发射检测方法固体火箭发动机玻璃纤维缠绕燃烧室壳体超声波探伤方法金属及其制品的脉冲反射式超声波测厚方法高温合金锻件超声波探伤方法及质量分级标准复合材料结构声发射检测方法船体焊缝超声波探伤CB 3178-1983民用船舶钢焊缝超声波探伤评级标准CB/Z211-1984船用金属复合材料超声波探伤工艺规程CB1134-1985BFe30-1-1 管材的超声波探伤方法CB/T 3907-1999船用锻钢件超声波探伤CB/T3559-1994船舶钢焊缝手工超声波探伤工艺和质量分级CB/T 3177-1994船舶钢焊缝射线照相和超声波检查规则TB 1989-87机车车辆厂 , 段修车轴超声波探伤方法TB 1558-84对焊焊缝超声波探伤TB 1606-1985球墨铸铁曲轴超声波探伤TB 2046-1989机车新制轮箍超声波探伤方法TB 2049-1989机车车辆车轴厂、段修超声波探伤标准试块TB/T1618-2001机车车辆车轴超声波检验TB/T 1659-1985内燃机车柴油机钢背铝基合金双金属轴瓦超声波探伤TB/T2327-1992高锰钢辙叉超声波探伤方法TB/T2340-2000多通道 A 型显示钢轨超声波探伤仪技术条件TB/T 2452.1-1993整体薄壁球铁活塞无损探伤球铁活塞超声波探伤TB/T2494.1-1994轨道车辆车轴探伤方法新制车轴超声波探伤TB/T2494.2-1994轨道车辆车轴探伤方法在役车轴超声波探伤TB/T2634-2000钢轨超声波探伤探头技术条件TB/T2658.9-1995工务作业标准钢轨超声波探伤作业TB/T 2882-1998车轮超声波探伤技术条件TB/T 2452.1-1993整体薄壁球铁活塞无损探伤球铁活塞超声波探伤TB/T 2959-1999滑动轴承金属多层滑动轴承粘结层的超声波无损检验TB/T2995-2000铁道车轮和轮箍超声波检验TB/T 3078-2003铁道车辆高磷闸瓦超声波检验HB/Z33-1998变形高温合金棒材超声波检验HB/Z34-1998变形高温合金园并及盘件超声波检验HB/Z35-1982不锈钢和高强度结构钢棒材超声检验说明书HB/Z36-1982变形钛合金棒材超声波检验说明书HB/Z37-1982变形钛合金园并及盘件超声波检验说明书HB/Z59-1997超声波检验HB/Z 74-1983航空铝合金锻件超声波检验说明书HB/Z75-1983航空用小直径薄壁无缝钢管超声波检验说明书HB/Z 76-1983结构钢和不锈钢航空锻件超声检验说明书HB/Z 5141-19803Cr3Mo3VNb 热作模具钢坯超声波探伤HB 5141-19803Cr3Mo3VNb 热作模具钢坯超声波探伤HB 5169-1981铂铱 25 合金板材超声波探伤方法HB5265-1983航空发动机 TC11 钛合金压气机盘用并(环) 坯及锻件超声波检验说明书HB5266-1983航空发动机 TC11 钛合金压气机盘用并(环) 坯及锻件超声波检验验收标准HB 5358.1-1986航空制件超声波检验质量控制标准 (NDT,90-6)HB6108-1986HB6107-1986HB5460-1990HB 5461-1990 MH/T3002.4-1997 YB 943-78YB 950-80YB3209-1982YB 4082-1992YB 4094-1993YB/T 036.10-1992 YB/T144-1998 YB/T 145-1998 YB/T 898-77YB/T951-2003 YB/T4082-2000 YB/T4094-1993 JB 1151-1973JB 2674-80JB 3963-1985JB 4010-1985JB 4125-85JB 4126-85JB/T 1152-1981 JB/T 3144-1982 JB/T1582-1996 JB/T1581-1996 JB/T4010-1985 JB/T4009-1999 JB/T4008-1999 JB/T 4730.3-2005 JB/T5093-1991 JB/T5439-1991 JB/T5440-1991 JB/T5441-1991 JB/T5754-1991 JB/T6903-1993 JB/T6916-1993 JB/T6979-1993 JB/T7367.1-2000金属蜂窝胶接结构声谐振法检测金属蜂窝胶接结构声阻法检测蜂窝构件超声波穿透 C 扫描检测方法金属蜂窝胶接结构标准样块航空器无损检测超声检验锅炉用高压无缝钢管超声波检验方法专用 TC4 钛合金锻制并材超声波探伤方法锻钢冷轧工作辊超声波探伤方法钢管自动超声探伤系统综合性能测试方法炮弹用方钢(坯)超声波探伤方法冶金设备制造通用技术条件锻钢件超声波探伤方法超声探伤信号幅度误差测量方法钢管探伤对比试样人工缺陷尺寸测量方法钢材低倍缺陷超声波检验方法钢轨超声波探伤方法钢管自动超声探伤系统综合性能测试方法炮弹用方钢(坯)超声波探伤方法高压无缝钢管超声波探伤合金钢锻制模块技术条件压力容器锻件超声波探伤(NDT,87-8)( 已废止 )汽轮发电机用钢制护环超声探伤方法超声波检验用铝合金参考试块的制造和控制超声波检验用钢质参考试块的制造和控制锅炉和钢制压力容器对接焊缝超声波探伤(NDT,82-2)锅炉大口径管座角焊缝超声波探伤汽轮机叶轮锻件超声探伤方法(NDT,86-12)汽轮机、汽轮发电机转子和主轴锻件超声波探伤方法汽轮发电机用钢制护环超声探伤方法(NDT,86-12)接触式超声纵波直射探伤方法代替 JB4009 - 85液浸式超声纵波直射探伤方法代替 JB4008 - 85承压设备无损检测第 3 部分超声检测取代 JB4730-1994 内燃机摩擦焊气门超声波探伤技术条件压缩机球墨铸铁零件的超声波探伤压缩机锻钢零件的超声波探伤压缩机铸钢零件的超声波探伤单通道声发射检测仪技术条件阀门锻钢件超声波检查方法在役高压气瓶声发射检测和评定方法大中型钢质锻制模块(超声波和夹杂物)质量分级圆柱螺旋压缩弹簧超声波探伤方法JB/T7522-2004 JB/T7524-1994 JB/T 7602-1994 JB/T7667-1995JB/T 7913-1995JB/T8283-1999 JB/T8428-1996 JB/T8467-1996 JB/T8931-1999 JB/T9020-1999 JB/T9212-1999 JB/T9214-1999 JB/T9219-1999 JB/T9377-1999 JB/T9630.2-1999 JB/T9674-1999 JB/T10061-1999 JB/T10062-1999 JB/T10063-1999 JB/T10326-2002 JB/T 53070-1993 JB/T 53071-1993 JB/ZQ 6141-1986 JB/ZQ 6142-1986 JB/ZQ 6159-1985 JB/ZQ 6104-1984 JB/ZQ 6109-1984 JB/ZQ 6112-1984 JB/Z 262-86JB/Z 265-86JG/T3034.1-1996JG/T3034.2-1996JGJ 106-203JG/T 5004-1992 DL 505-1992DL/T 5048-95DL/T 505-1992 DL/T 542-1994无损检测材料超声速度测量方法(代替JB/T7522 —1994 )建筑钢结构焊缝超声波探伤卧式内燃锅炉T 形接头超声波探伤在役压力容器声发射检测评定方法超声波检验用钢制对比试块的制作与校验方法旧标准GB/TH11259-89(2000年作废 )声发射检测仪性能测试方法代替 JB/T8283 -95校正钢焊缝超声波检测仪器用标准试块锻钢件超声波探伤方法堆焊层超声波探伤方法大型锻造曲轴超声波检验常压钢质油罐焊缝超声波探伤代替 ZBE98001-88A 型脉冲反射式超声探伤系统工作性能测试方法代替ZBJ04001-87球墨铸铁超声声速测定方法超声硬度计技术条件汽轮机铸钢件超声波探伤及质量分级方法超声波探测瓷件内部缺陷A 型脉冲反射式超声探伤仪通用技术条件代替 ZBY230-84超声探伤仪用探头性能测试方法代替 ZBY231-84超声探伤用 1 号标准试块技术条件代替 ZBY232-84在役发电机护环超声波检验技术标准加氢反应器焊缝超声波探伤加氢反应器堆焊层的超声波探伤超声波检验用钢质对比试块的制作和控制(机械工业部重型矿山机械工业局企业标准 )(WSTS,90-1)超声波检验用铝合金对比试块的制作和控制奥氏体钢锻件的超声波检验方法汽轮机和发电机转子锻件超声波探伤方法铸钢件超声波检测方法汽轮发电机用钢质护环的超声波检验方法超声波探测瓷件内部缺陷( 已被 JB/T9674-1999代替 )球墨铸铁超声声速测定方法( 已被 JB/T9219-1999 代替 )焊接球节点钢网架焊缝超声波探伤及质量分级法螺栓球节点钢网架焊缝超声波探伤及质量分级法(JG-- 建筑工业行业标准)[NDT2000-12]建筑基桩检测技术规范声波透射法混凝土超声波检测仪汽轮机焊接转子超声波探伤规程电站建设施工及验收技术规范( 管道焊接接头超声波检验篇)汽轮机焊接转子超声波探伤规程钢熔化焊T 形接头角焊缝超声波检验方法和质量分级DL/T 694-1999DL/T 714-2000DL/T 718-2000DL/T820-2002JJG (航天 ) 53-1988 JJG (铁道 ) 130-2003JJG (铁道 )156-1995JJG (铁道 )157-2004JJG 645-1990JJG (豫 ) 107-1999 JJG 403-1986JJG 746-2004JJG (辽 ) 51-2001 SY4065-1993SY 5135-1986SY/T5446-1992SY/T5447-1992SY/T 0327-2003SY/T 6423.2-1999 SY/T 6423.3-1999 SY/T 6423.4-1999 SY/T 6423.5-1999 SY/T 6423.6-1999 SY/T 6423.7-1999SY/T 10005-1996 EJ/T 606-1991EJ/T 958-1995EJ/T 195-1988EJ/T 768-1993EJ/T 835-1994HG/T3175-2002 WCGJ 040602-1994高温紧固螺栓超声波检验技术导则汽轮机叶片超声波检验技术导则火力发电厂铸造三通、弯头超声波探伤方法管道焊接接头超声波检验技术规程国家计量检定规程-A 型脉冲反射式超声波探伤仪检定规程国家计量检定规程- 钢轨超声波探伤仪检定规程国家计量检定规程- 超声波探头检定规程( 试行 )国家计量检定规程- 钢轨探伤仪检定仪检定规程国家计量检定规程- 三型钢轨探伤仪检定规程国家计量检定规程- 非金属超声波检测仪检定规程国家计量检定规程- 超声波测厚仪检定规程国家计量检定规程 - 超声探伤仪检定规程代替 JJG746-1991 国家计量检定规程 - 不解体探伤仪检定规程石油天然气钢制管道对接焊缝超声波探伤及质量分级SSF 79 超深井声波测井仪油井管无损检测方法钻杆焊缝超声波探伤油井管无损检测方法超声测厚石油天然气钢质管道对接环焊缝全自动超声波检测石油天然气工业承压钢管无损检测方法电阻焊和感应焊钢管焊缝纵向缺欠的超声波检测石油天然气工业承压钢管无损检测方法埋弧焊钢管焊缝纵向和 / 或横向缺欠的超声波检测石油天然气工业承压钢管无损检测方法焊接钢管焊缝附近分层缺欠的超声波检测石油天然气工业承压钢管无损检测方法焊接钢管制造用钢带/ 钢板分层缺欠的超声波检测石油天然气工业承压钢管无损检测方法无缝和焊接(埋弧焊除外 ) 钢管分层缺欠的超声波检测石油天然气工业承压钢管无损检测方法无缝和焊接钢管管端分层缺欠的超声波检测海上结构建造的超声检验推荐作法和超声技师资格的考试指南压水堆核电厂反应堆压力容器焊缝超声波在役检查核用屏蔽灰铁铸件超声纵波探伤方法与验收准则焊缝超声波探伤规程与验收标准核级容器堆焊层超声波探伤方法与探伤结果分级核级容器管座角焊缝超声探伤方法和验收准则尿素高压设备制造检验方法不锈钢带极自动堆焊层超声波检测燃油锅炉填角焊缝超声波探伤标准CECS21:2000超声法检测混凝土缺陷技术规程(中国建筑科学研究院结构所)CECS02:1988超声 - 回弹综合法检测混凝土抗压强度规程HJ/T 15-1996超声波明渠污水流量计YS/T 585-2006铜及铜合金板材超声波探伤方法超声波检测国家标准/ 行业标准台湾标准 :CNS 3712 Z8012-74金属材料之超音波探伤试验法CNS 4120 Z7051-87超音波探测用G 型校正标准试块CNS 4121 Z7052-87超音波探测钢板用 N1 型校正标准试块CNS 4122 Z7053-87超音波探测用A1 型校正标准试块CNS 4123 Z7054-87超音波探测用A2 型校正标准试块CNS 4124 Z7055-87超音波探测用A3 型校正标准试块CNS 11051脉冲反射式超音波检测法通则Z8052-85CNS 11224脉冲反射式超音波检测仪系统评鉴Z8053-85CNS 11399压力容器用钢板直束法超音波检验法Z8061-85CNS 11401钢对接焊道之超音波检验法Z8063-85CNS 12618钢结构熔接道超音波检测法Z8075-89CNS 12622大型锻钢轴件超音波检测法Z8079-89CNS 12668钢熔接缝超音波探伤试验法及试验结果之等级分类Z8088-90CNS 12675铝合金熔接缝超音波探伤试验技术检定之试验法Z8094-90CNS 12845结构用钢板超音波直束检测法Z8099-87CNS 13302钢筋混凝土用竹节钢筋瓦斯压接部超音波探伤试验法A3341-82CNS 13342非破坏检测词汇 ( 超音波检测名词 )Z8126-83CNS 13403无缝及电阻焊钢管超音波检测法Z8127-83CNS 13404电弧焊钢管超音波检测法Z8128-83CNS 14135金属材料超音波测厚法Z8135-87CNS 14136锻钢品超音波检测法Z8136-87CNS 14138钛管超音波检测法Z8138-87。
Krautkramer USM 35 彩色显示通用超声波检测仪 参考说明书

调节范围最小: 0 - 0,5 mm + 10 % (钢)最大: 0 - 9999 mm + 10 % (钢)频率范围 0,2 - 1 / 0,5 - 4 MHz0 - 1420 mm + 10 % (钢)频率范围 0,8 - 8 / 2 - 20 MHz声速1000 - 15000 m/s在 1 m/s 的段可调节和固定编程值脉冲位移由 -10 至 1000 mm (340 s)探头前移0 - 200 s调节辅助通过两个已知调节回波测量和调整声速和探头前移 (2点-调节)脉冲强度220 pF, 1 nF衰减50 Ohm, 500 Ohm (1000 Ohm SE-运行状态)脉冲群频率4 - 1000 Hz, 在10个段内可调节频率范围 (-3 dB)0,2 - 1 MHz / 0,5 - 4 MHz / 0,8 - 8 MHz / 2 - 20 MHz放大0 - 110 dB, 阶段内可调节放大级0,5 / 1 / 2 / 6 / 12 dB (或者可以自由调节),0 段闭锁精确放大4 dB, 在40个段内连续整流全波,正负半波,HF-表示法抑制线性,0 - 80 % 显示器高度,在 1 % 段内可调节显示器光阑2个独立的光阑形成了测试线条,起点和宽度可通过整个调节范围调整, 响应门限为10 - 90 % 显示器高度在 1 % 段内可调节(复合和反复合), 报警信号通过 LED 和一个可以起动的内部报警器,作为物方视场光阑A相对光阑B是可控制的, 光阑放大镜(光阑区域在整个图像宽度的放大)声程测量发射脉冲和光阑第一回波间或两个光阑回波间的声程(投影距离,深度)数字显示,测量交点处的回波脉冲或回波峰值。
测量分辨0,01 mm 在范围至 99,99 mm /0,1 mm 在范围 100 至 999,9 mm /1 mm 在范围超过 1000 mm凝结成A-图像的评估: 0,5 % 调整的调节范围振幅显示在 % 显示器高度USM 35DAC: 还可绘制分贝距离的DAC及TCG曲线USM 35S: 还可绘制分贝距离AVG曲线或ERG测量值显示声程,(缩小的) 投影距离,深度,每一光阑的振幅,测量行的4个位置和A-图像的放大显示可以自由设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012.08 Automobile Parts
045
技术新视野
VH是指Noise(噪
N
声),Vibration(振动)和
Harshness(声振粗糙度),由于以上三者
在汽车等机械振动中是同时出现且密不可
分,因此常把它们放在一起进行研究。
NVH是衡量汽车制造质量的一个综合性
问题,它给汽车用户的感受是最直接和最
表面的。业界将噪声、振动与舒适性的英
文缩写为NVH(Noise、Vibration、
Harshness),统称为车辆的NVH问题,
法(Heterodyning)可以将这些超声波声波检测,则可以提供高质量、快速、简
它是国际汽车业各大整车制造企业和零部
讯号转换为音频信号,让使用者透过耳机单的测试。
件企业关注的问题之一。有统计资料显
来听到这些声音,并于仪器显示屏看到强在风噪音和水泄漏检测中,UE公司
示,整车约有1/3的故障问题是和车辆的
度指示,判断泄漏量的大小。外差法原理专门检测风噪和漏水点检测的
NVH问题有关的,而各大公司有近
就像是收音机,可将信号准确地转换成声ULTRAPROBE9000WNWL套装包括
20%的研发费用消耗在解决车辆的
音,让人们容易地辨认及了解。使用超声UFMTG-1991超声波发生器和CFM近距
NVH问题上。
波技术的优点就是容易理解、更加方便。 聚焦探头。UFMTG-1991超声波发生器
整车密封性检测仪简称汽车泄漏检测
汽车泄漏检测仪超声波探测具有以下是360°全方位的,并且底部带有吸盘,
仪(ULTRAPROBE9000WNWL),是美国
特性:超声波具有方向性,超声波很容易可以方便地安放在挡风玻璃上。CFM近距
UE采用超声波音响密封测试原理可用于
被阻隔或遮蔽,超声波仪器能使用于噪音聚焦模块是一个具有特殊设计的接收探
汽车NVH检测的仪器。超声波是一种高
环境,超声波的变化可预知潜在的问题,头,特别适合近距精确扫描。
频短波信号,具有很强的方向性,此声波
超声波仪器操作更容易。该种探测广泛应这种测试方法是在被测试设备不做加
是不能被人耳所直接听见的,当我们透过
用于汽车密封检测、高速列车密封检测、压情况下,将超声波信号发生器放置于设
超声波密封性能检测仪可完全侦测到这些
飞机密封检测、游艇舰船座舱密封测试。备内部或一端,则超声波信号会充满待测
声音,从物理学可以知道,气体总是由高
在交通运输设备制造行业最常见的超设备内部各个角落,并穿透任何泄露位
气压侧流向低气压侧。当压差只出现于小
声波检测区域是:风噪音、水泄漏、空气置。因此使用ULTRAPROBE检测仪在外
孔时,气体产生的紊流将在小孔处产生超
制动和排气系统。在UE公司超声波检测部扫描逸出的超声波信号,即可查找出泄
声波。利用此原理,汽车泄漏检测仪使用
技术出现以前,漏水和风噪音检测一直采露的具体位置。通过比较显示数值大小和
超声波探测技术可以精确定位气体泄漏
用水管和手电筒,需要花很长时间,并经声音信号强弱即可判断密封状况。典型应
点。在用于对缺陷点的定位时,超声波信
常失误。对于风噪音检测,则用医生用的用在飞机门窗检漏、油箱检漏、座舱泄漏
号发生器可以在容器或舱室内产生超声波
听诊器收听,常需要两个人以上,反复检检测、船舱/潜艇密封检测,高速列车泄
信号,如果容器或舱室的密封存在缺陷,
测,耗费大量时间。采用常规的肥皂泡法漏检测、汽车泄漏检测、门窗气密检测、
超声波信号就会从缺陷处泄漏出来,用超
测试查找空气刹车和排气系统的泄漏可能汽车风噪音检测、汽车漏水检测、汽车
声波密封性检测仪可以接收到泄漏出的超
也需要数个小时的时间。通过UE公司超NVH测试。
声波信号。汽车泄漏检测仪使用独特外差
新一代超声波密封
泄漏检测仪
The auto leakage tester can convert these
ultrasonic wave signals to sound frequency signals
by using a unique outer difference method. Let
users hear these voices through earphone, and see
intensity indication from the display screen of the
device and estimate sizes of leakages. The
advantages of using the ultrasonic technology are
just easy to understand and more convenient.
New Generation of
Ultrasonic Wave Tester
for Sealing Leakage