历年高考物理压轴题精选详细解答

合集下载

全国各地多年高考物理压轴题汇集与详细解析

全国各地多年高考物理压轴题汇集与详细解析

最近两年全国各地高考物理压轴题汇集(详细解析63题)1(20分)如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少?3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。

最近两年全国各地高考物理压轴题汇集(详细解析63题)

最近两年全国各地高考物理压轴题汇集(详细解析63题)

最近两年全国各地高考物理压轴题汇集(详细解析63题)1(20分)如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少?3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。

(新)高考物理典型压轴题汇总含答案解析

(新)高考物理典型压轴题汇总含答案解析

典型高考物理压轴题集锦含答案解析1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 =G)(2h R Mm+。

卫星在空间站上的引力势能在 E p = -G hR Mm+ 机械能为 E 1 = E k + E p =-G)(2h R Mm+同步卫星在轨道上正常运行时有 G 2rMm=m ω2r 故其轨道半径 r =32ωMG由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为E 2,设离开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -2132ωGM+G hR Mm +2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。

(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y解得 f=20N N=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。

高考物理压轴题集(含答案)

高考物理压轴题集(含答案)

1、如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。

当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向解:(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg =qBv 2 ①(2)离开电场后,按动能定理,有:-μmg 4L =0-21mv 2 ② 由①式得:v 2=22 m/s (3)代入前式①求得:B =22 T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )212=L mv 12-0 ③ 进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg ) ④由以上③④两式得:⎩⎨⎧==N/C 2.4m/s241E v2、如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?解:(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v(2)炸药爆炸时有B B A A v m v m = 解得s m v B /5.1=又B B A A s m s m =当s A =1 m 时s B =0.25m ,即当A 、C 相撞时B 与C 右板相距m s L s B 75.02=-= A 、C 相撞时有:v m m v m C A A A )(+= 解得v =1m/s ,方向向左而B v =1.5m/s ,方向向右,两者相距0.75m ,故到A ,B 都与挡板碰撞为止,C 的位移为3.0=+=BC v v sv s m19.3、为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)解:固定时示数为F 1,对小球F 1=mgsinθ ①整体下滑:(M+m )sinθ-μ(M+m)gcosθ=(M+m)a ②下滑时,对小球:mgsinθ-F 2=ma ③由式①、式②、式③得 μ=12F F tan θ 4、有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L′的大小。

各高考物理压轴题精编附有祥解36道

各高考物理压轴题精编附有祥解36道

各省市高考物理压轴题精编(附有祥解)1、如图所示,一质量为 M 长为I 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A , m 〈 M 现以地面为参照系,给A 和B以大小相等、方向相反的初速度 (如图5),使A 开始向左运动、 开始向右运动,但最后 A 刚好没有滑离L 板。

以地面为参照系。

(1) 若已知A 和B 的初速度大小为v o ,求它们最后的速度的大小和 方向。

(2) 若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离。

解法1:(1)AM m 、亠亠亠 解得: v v o , 方向向右 M m(2) A 在B 板的右端时初速度向左,而到达程中必经历向左作减速运动直到速度为零,B 板左端时的末速度向右,可见 A 在运动过 再向右作加速运动直到速度为 V 的两个阶段。

设l i 为A 开始运动到速度变为零过程中向左运动的路程,本题第(2)问的解法有很多种,上述解法 2只需运用三条独立方程即可解得结果,显然是比较简捷的解法。

2、如图所示,长木板 A 右边固定一个挡板,包括挡板在内的总质量为 光滑的水平面上,小木块 B 质量为M ,从A 的左端开始以初度。

设此速度为v , A 和B 的初速度的大小为 V o ,则由动量守恒可得:Mv 0 mv 0 (M m)v过程中向右运动的路程,L 为A 从开始运动到刚到达 B 的最左端的过程中 B 运动的路程,如 A 与B之间的滑动摩擦力为f ,则由功能关系可知: 1 2 Mv 2 2 图6所示。

设 对于 对于Afl l 12 fL mv 0 2 1 2 2mv o fl 21 2mv2由几何关系 (I 1 I 2) 由①、②、 ③、④、⑤式解得 解法2: 对木块A 和木板 fl 〔(M m)v 2 2由①③⑦式即可解得结果ml4MB 组成的系统,由能量守恒定律得:1 2 -(M m)v 2 ⑦2M m l11l4Ml iB 吕風化h ---------- 1---------------------- 尹ffl 5刚好没有滑离B 板,表示当A 滑到B 板的最左端时,A 、B 具有相同的速I 2为A 从速度为零增加到速度为 V 的1? _________n1 -------------- 1 1 1 1 1 1 111 - _ 1h1.5M ,静止在故在某一段时间里 B 运动方向是向左的条件是2V p 15g2V 0I 3 -⑧20g3、光滑水平面上放有如图所示的用绝缘材料料成的型滑板,(平面部分足够长)速度V o 在A 上滑动,滑到右端与挡板发生碰撞, 已知碰撞过程时间极短,碰后木块B 恰好滑到A 的左端停止,已知 B 与A 间的动摩擦因数为,B 在A 板上单程滑行长度为I ,求:…3v 0 (1) 若-,在B 与挡板碰撞后的运动过程中,摩擦力对木板A 做正功还是负160g功?做多少功?(2) 讨论A 和B 在整个运动过程中,是否有可能在某一段时间里运动方向是向左的, 如果不可能,说明理由;如果可能,求出发生这种情况的条件。

高考物理压轴题详解

高考物理压轴题详解

高考物理压轴题(含详解答案)1、如图9-13所示,S 是粒子源,只能在纸面上的360°范围内发射速率相同、质量为m 、电量为q 的电子。

MN 是一块足够大的挡板,与S 相距OS = L 。

它们处在磁感强度为B 、方向垂直纸面向里的匀强磁场中,试求:(1)要电子能到达挡板,其发射速度至少应为多大?(2)若发射速率为meBL ,则电子击打在挡板上的范围怎样? 【解说】第一问甚简,电子能击打到挡板的临界情形是轨迹与挡板相切,此时 r min = 2L ; 在第二问中,先求得r = L ,在考查各种方向的初速所对应的轨迹与挡板相交的“最远”点。

值得注意的是,O 点上方的最远点和下方的最远点并不是相对O 点对称的。

【答案】(1)m2eBL ;(2)从图中O 点上方距O 点3L 处到O 点下方距O 点L 处的范围内。

2、如图9-14甲所示,由加速电压为U 的电子枪发射出的电子沿x 方向射入匀强磁场,要使电子经过x 下方距O 为L 且∠xOP = θ的P 点,试讨论磁感应强度B 的大小和方向的取值情况。

【解说】以一般情形论:电子初速度v 0与磁感应强度B 成任意夹角α ,电子应做螺旋运动,半径为r = eB sin mv 0α,螺距为d = eB cos mv 20απ,它们都由α 、B 决定(v 0 =e mU 2是固定不变的)。

我们总可以找到适当的半径与螺距,使P 点的位置满足L 、θ的要求。

电子运动轨迹的三维展示如图9-14乙所示。

如果P 点处于(乙图中)螺线轨迹的P 1位置,则α = θ ,B ∥OP ;如果P 点处于P 2或P 3位置,则α ≠ θ ,B 与OP 成一般夹角。

对于前一种情形,求解并不难——只要解L = kd (其中k = 1,2,3,…)方程即可;而对后一种情形,要求出B 的通解就难了,这里不做讨论。

此外,还有一种特解,那就是当B ⊥OP 时,这时的解法和【例题4】就完全重合了。

高考物理复习冲刺压轴题专项突破—电荷间的相互作用规律(含解析)

高考物理复习冲刺压轴题专项突破—电荷间的相互作用规律(含解析)

一、单选题1.如图所示,在倾角为α的光滑绝缘斜面上固定一个挡板,在挡板上连接一根劲度系数为k 0的绝缘轻质弹簧,弹簧另一端与A 球连接。

A 、B 、C 三小球的质量均为M ,q A =q 0>0,q B =-q 0,当系统处于静止状态时,三小球等间距排列。

已知静电力常量为k ,则()A .0C 47q q =B .弹簧伸长量为sin Mg k αC .A 球受到的库仑力大小为2Mg D.相邻两小球间距为q 【答案】A【解析】AD .三小球间距r 均相等,对C 球受力分析可知C 球带正电,根据平衡条件:0C 0C 22sin (2)q q q qMg kk r rα+=对B 小球受力分析,根据平衡条件:20C 022sin q q q Mg k k r rα+=两式联立解得:0C 47q q =,r q =A 正确,D 错误;B .对A 、B 、C 三小球整体受力分析,根据平衡条件:03sin Mg k xα=高考物理复习冲刺压轴题专项突破—电荷间的相互作用规律(含解析)弹簧伸长量:03sin Mg x k α=,故B 错误;C .对A 球受力分析,根据平衡条件:sin Mg F kx α+=库解得A 球受到的库仑力为:2sin F Mg α=库故选A .2.如图所示质量为m 、电荷量为q 的带电小球A 用绝缘细线悬挂于O 点,带有电荷量也为q 的小球B 固定在O 点正下方绝缘柱上.其中O 点与小球A 的间距为l .O 点与小球B的间距为,当小球A 平衡时,悬线与竖直方向夹角30θ=︒,带电小球A 、B 均可视为点电荷,静电力常量为k ,则()A .A 、B 间库仑力大小222kq F l=B .A 、B间库仑力3F =C .细线拉力大小223T kq F l=D.细线拉力大小T F =【答案】B【解析】A 的受力如图所示,几何三角形OAB 与力三角形相似,由对应边成比例T F mg =,则33T F =,由余弦定律AB l ==,则2233T kq F F l===,故B 正确.3.如图所示,两个相同的小球AB 用等长的绝缘细线悬挂在竖直绝缘的墙壁上的O 点,将两小球分别带上同种电荷,其中小球A 的电荷量为q 1,由于库仑力,细线OA 恰好水平.缓慢释放小球A 的电荷量,当细线OA 与竖直方向夹角为60°时,小球A 的电荷量为q 2.若小球B 的电荷量始终保持不变,则q 1:q 2的值为()A B C :1D .:1【答案】D【解析】受力分析如图所示,利用相似三角形可知2sin 2C F mg LL θ=,由库仑定律可知22sin 2C kQq F L θ=(),可得q =238sin 2mgL kQθ,即331212:sin :sin :122q q θθ==,故D 正确;ABC 错误;故选D 4.如图所示,A 、B 是两个带异号电荷的小球,其质量相等,所带电荷量分别为q 1,q 2,A 球刚绝缘细线悬挂于O 点,A 、B 球用绝缘细线相连,两细线长度相等,整个装置处于水平匀强电场中,平衡时,两细线张紧,且B 球恰好处于O 点正下方,则可以判定,A 、B 两球所带电荷量的关系为()A .q l =-q 2B .q l =-2q 2C .2q 1=-q 2D .q 1=-3q 2【答案】D【解析】设OA 绳子对A 球的作用力为1F ,AB 球之间的作用力为2F ,对A 和B 整体分析,有平衡条件可得1cos 2F mg θ=,112sin F q E q E θ=-,对B 球受力分析,有平衡条件可得2cos F mg θ=,22sin F q E θ=,由以上4式可得两球的电荷量的关系为123q q =,又因为两球是异种电荷,所以D 正确.5.A 、B 两带电小球,质量分别为m A 、m B ,电荷量分别为q A 、q B ,用绝缘不可伸长的细线如图悬挂,静止时A 、B 两球处于同一水平面.若B 对A 及A 对B 的库仑力分别为F A 、F B ,则下列判断正确的是()A .F A <F BB .AC 细线对A 的拉力2ATA m F g =C .OC 细线的拉力F TC =(m A +m B )gD .同时烧断AC 、BC 细线后,A 、B 在竖直方向的加速度不相同【答案】C【解析】A 、两球间的库仑力是作用力与反作用力,大小一定相等,与两个球是否带电量相等无关,故A 错误;B 、对小球A 受力分析,受重力、静电力、拉力,如图:根据平衡条件,则有:30A TA m g F cos =︒,因此:3TA A F m g =,故B 错误;C 、由整体法可知,细线OC 的拉力等于两球的重力,故C 正确;D 、同时烧断AC 、BC 细线后,A.B 在竖直方向重力不变,所以加速度相同,故D 错误;故选C .6.用等长的两根轻质绝缘细线,把两个带异种电荷的小球a 、b 悬挂起来,已知2a b m m =,3a b q q =,如果该区间加一水平向右的匀强电场,且绳始终拉紧.最后达到的平衡状态可以表示为图中的()A .B .C .D .【答案】A【解析】对整体分析,整体的受力分析图如左图所示,可知绳子拉力方向斜向左上方,与竖直方向的夹角:2tan 3qEmgα=;隔离对b 分析,b 受力图如右图所示,绳子拉力方向斜向右上方.绳子与竖直方向的夹角tan tan qEmgβα=>,即β>α,所以b 球处于虚线左侧位置.故A 正确,BCD 错误.故选A .7.如图a 所示是卡文迪许扭秤实验(实验Ⅰ)和库伦扭秤实验(实验Ⅱ)的原理图,同学们在仔细观察这两个实验后发现:实验Ⅰ测量的是两组质量为分别为M 和m 的两球之间的引力;实验Ⅱ测量的只有一组点电荷Q 与q 之间的引力,扭秤另外一端小球不带电.分析两实验的区别,同学们发表了以下观点,正确的是:()A.甲同学认为:实验Ⅰ需要两组小球而实验Ⅱ只需要一组带电小球的原因是质点间的万有引力很小,而电荷间的静电力很大B.乙同学认为:实验Ⅰ需要两组小球而实验Ⅱ只需要一组带电小球的原因是实验Ⅰ是在空气中完成的,而实验Ⅱ需要在真空进行C.丙同学认为:在实验Ⅰ中若只用一组小球进行实验,如图b所示,则对实验结果并无影响D.丁同学认为:在实验Ⅱ中无论用两组还是一组带电小球进行实验,对实验结果并无影响,但在实验Ⅰ中若按图b只用一组小球进行实验,则对实验结果产生较大影响【答案】D【解析】在实验Ⅰ中必须要有两组小球,假设只有一组小球,则受力情况如图所示:此时扭称无法扭转,实验无法完成.实验Ⅱ中,由于另一个小球不带电,故一组带点小球也可完成实验.故D正确,ABC错误.8.如图所示,直径为L的光滑绝缘半圆环固定在竖直面内,电荷量为q1、q2的两个正点电荷分别置于半圆环的两个端点A、B处,半圆环上穿着一带正电的小球(可视为点电荷),小球静止时位于P点,PA与AB间的夹角为α.若不计小球的重力,下列关系式中正确的是()A .321tan q q α=B .221tan q q α=C .312tan q q α=D .212tan q q α=【答案】A【解析】对小球进行受力分析如图所示:根据库仑定律有:F 1=k 121 q qr ,r 1=Lcosα…①F 2=k 222q qr ,r 2=Lsinα…②根据平衡条件有:F 1sinα=F 2cosα…③联立①②③解得:tan 3α=21q q ,故BCD 错误,A 正确.故选A .二、多选题9.如图所示,绝缘底座上固定一电荷量为8×10-6C 的带正电小球A ,其正上方O 点处用轻细弹簧悬挂一质量为m =0.06kg 、电荷量大小为2×10-6C 的小球B ,弹簧的劲度系数为k =5N/m ,原长为L 0=0.3m 。

物理压轴题及答案

物理压轴题及答案

高中物理题答案及解析1.【考点】D8:法拉第电磁感应定律;BH:焦耳定律.【专题】53C:电磁感应与电路结合.【分析】(1)根据法拉第电磁感应定律,即可求解感应电动势;(2)由功率表达式,结合闭合电路欧姆定律,即可;(3)对线框受力分析,并结合平衡条件,及焦耳定律,从而求得。

【解答】解:(1)由法拉第电磁感应定律有:E=n得:E=n=2.5V(2)小灯泡正常发光,有:P=I2R由闭合电路欧姆定律有:E=I(R0+R)即有:R代入数据解得:R=1.25Ω(3)对线框bc边处于磁场中的部分受力分析如图,当线框恰好要运动时,磁场的磁感应强度大小为B,由力的平衡条件有:mgsinθ=F安+f=F安+μmgcosθF安=nB′I×2r由上解得线框刚要运动时,磁场的磁感应强度大小为:B′=0.4T线框在斜面上可保持静止的时间为:t=s小灯泡产生的热量为:Q=Pt=1.25×=π≈3.2J答:(1)线框不动时,回路中的感应电动势2.5V;(2)小灯泡正常发光时的电阻1.25Ω;(3)线框保持不动的时间内,小灯泡产生的热量3.2J。

【点评】考查法拉第电磁感应定律与闭合电路欧姆定律的内容,掌握平衡条件的应用,及焦耳定律的公式,注意安培力大小计算。

2.【考点】CO:霍尔效应及其应用.【专题】11 :计算题;32 :定量思想;43 :推理法;536:带电粒子在磁场中的运动专题.【分析】(1)根据左手定则,即可求解;(2)根据电场力等于洛伦兹力,结合电阻定律,即可求解;(3)根据闭合电路欧姆定律,与焦耳定律,即可求解。

【解答】解:(1)由左手定则得,N板的电势较高。

(2)当海水中流动的带电离子进入磁场后,将在两板之间形成电势差,当带电离子所受到的电场力F与洛伦兹力f相平衡时达到稳定状态,有:q=qvB代入有关数据得电动势为:E=25V。

(3)内阻为:r=ρ代入数据得:r=0.025Ω电路中的电流为:I═A=40A.答:(1)达到稳定状态时,金属N板的电势较高;(2)该磁流体发电机产生的电动势E为25V;(3)若用此发电机给一电阻为0.6Ω的航标灯供电,则流过航标灯的电流大小为40A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考物理压轴题精选2006年理综(全国卷Ⅰ)(河南、河北、广西、新疆、湖北、江西、等省用)25.(20分)有个演示实验,在上下面都是金属板的玻璃盒内,放了许多锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。

现取以下简化模型进行定量研究。

如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。

设两板之间只有一个质量为m 的导电小球,小球可视为质点。

已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(α<<1)。

不计带电小球对极板间匀强电场的影响。

重力加速度为g 。

(1)欲使小球能够不断地在两板间上下往返运动,电动势ε至少应大于多少?(2)设上述条件已满足,在较长的时间间隔T 内小球做了很多次往返运动。

求在T 时间内小球往返运动的次数以及通过电源的总电量。

解析25.解:(1)用Q 表示极板电荷量的大小,q 表示碰后小球电荷量的大小。

要使小球能不停地往返运动,小球所受的向上的电场力至少应大于重力,则qεd>mg ① 其中 q=αQ ② 又有 Q=C ε ③ 由以上三式有 ε>mgdαC④ (2)当小球带正电时,小球所受电场力与重力方向相同,向下做加速运动。

以a 1表示其加速度,t 1表示从A 板到B 板所用的时间,则有 q εd +mg=ma 1郝双制作 ⑤ d=12a 1t 12 ⑥ 当小球带负电时,小球所受电场力与重力方向相反,向上做加速运动,以a2表示其加速度,t 2表示从B 板到A 板所用的时间,则有 q εd -mg=ma 2 ⑦ d=12a 2t 22 ⑧小球往返一次共用时间为(t 1+t 2),故小球在T 时间内往返的次数 n=T t 1+t 2 ⑨ 由以上关系式得: n=T2md 2αC ε2+mgd+2md 2αC ε2-mgd⑩小球往返一次通过的电量为2q ,在T 时间内通过电源的总电量 Q'=2qn ○11 由以上两式可得:郝双制作 Q'=2αC εT2md 2αC ε2+mgd+2md 2αC ε2-mgd2007高考北京理综25.(22分)离子推进器是新一代航天动力装置,可用于卫星姿态控制和轨道修正。

推进剂从图中P 处注入,在A 处电离出正离子,BC 之间加有恒定电压,正离子进入B时的速度忽略不计,经加速后形成电流为I 的离子束后喷出。

已知推进器获得的推力为F ,单位时间内喷出的离子质量为J 。

为研究方便,假定离子推进器在太空飞行时不受其他阻力,忽略推进器运动的速度。

⑴求加在B C 间的电压U离子推进器正常运行,必须在出口D 处向正离子束注入电子,试解释其原因。

⑴JI F U 22=(动量定理:单位时间内F=Jv ;单位时间内221Jv UI =,消去v 得U 。

)⑵推进器持续喷出正离子束,会使带有负电荷的电子留在其中,由于库仑力作用,将严重阻碍正离子的继续喷出。

电子积累足够多时,甚至会将喷出的正离子再吸引回来,致使推进器无法正常工作。

因此,必须在出口D 处发射电子注入到正离子束中,以中和正离子,使推进器持续推力。

难 三、磁场2006年理综Ⅱ(黑龙江、吉林、广西、云南、贵州等省用)25.(20分)如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别xyB 2B 1OvAP为B 1与B 2的匀强磁场,磁场方向垂直于纸面向里,且B 1>B 2。

一个带负电的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,B 1与B 2的比值应满足什么条件?解析:粒子在整个过程中的速度大小恒为v ,交替地在xy 平面内B 1与B 2磁场区域中做匀速圆周运动,轨迹都是半个圆周。

设粒子的质量和电荷量的大小分别为m 和q ,圆周运动的半径分别为和r 2,有r 1=1mvqB ① r 2=2mvqB ② 现分析粒子运动的轨迹。

如图所示,在xy 平面内,粒子先沿半径为r 1的半圆C 1运动至y 轴上离O 点距离为2 r 1的A 点,接着沿半径为2 r 2的半圆D 1运动至y 轴的O 1点,O 1O 距离d =2(r 2-r 1) ③此后,粒子每经历一次“回旋”(即从y 轴出发沿半径r 1的半圆和半径为r 2的半圆回到原点下方y 轴),粒子y 坐标就减小d 。

设粒子经过n 次回旋后与y 轴交于O n 点。

若OO n 即nd 满足nd =2r 1= ④则粒子再经过半圆C n +1就能够经过原点,式中n =1,2,3,……为回旋次数。

由③④式解得11n r n r n =+ ⑤ 由①②⑤式可得B 1、B 2应满足的条件211B n B n =+ n =1,2,3,…… ⑥ 评分参考:①、②式各2分,求得⑤式12分,⑥式4分。

解法不同,最后结果的表达式不同,只要正确,同样给分。

2007高考全国理综Ⅰ25.(22分)两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x 轴和y 轴,交点O 为原点,如图所示。

在y >0,0<x <a 的区域由垂直于纸面向里的\匀强磁场,在在y >0, x >a 的区域由垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B 。

在O 点处有一小孔,一束质量为m 、带电量为q (q >0)的粒子沿x 轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。

入射粒子的速度可取从零到某一最大值之间的各种数值。

已知速度最大的粒子在0<x <a 的区域中运动的时间与在x >a 的区域中运动的时间之比为2∶5,在磁场中运动的总时间为7T /12,其中T 为该粒子在磁感应强度为B 的匀强磁场中作圆周运动的周期。

试求两个荧光屏上亮线的范围(不计重力的影响)。

y 轴范围:0-2a ;x 轴范围:2a-a ⎪⎪⎭⎫⎝⎛+3312 难2008年(重庆卷)25.(20分)题25题为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM=d.现有一正离子束以小发散角(纸面内)从C 射出,这些离子在CM 方向上的分速度均为v 0.若该离子束中比荷为qm的离子都能汇聚到D ,试求: (1)磁感应强度的大小和方向(提示:可考虑沿CM 方向运动的离子为研究对象);(2)离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间;(3)线段CM 的长度. 25.解: (1)设沿CM 方向运动的离子在磁场中做圆周运动的轨道半径为R由 12R '=200mv qv B R =R=d 得B =mv qd磁场方向垂直纸面向外 (2)设沿CN 运动的离子速度大小为v ,在磁场中的轨道半径为R ′,运动时间为t 由v cos θ=v 0 得v =cos v θEBR ′=mv qB=cos dθ方法一:设弧长为st =s vs=2(θ+α)×R ′ t =2v R '⨯+)(αθ方法二:离子在磁场中做匀速圆周运动的周期T =2mqBπ t =T×παθ+=0)(2v αθ+(3)方法一: CM =MN cot θ)sin(βα++d MN =αsin R 'R′=θcos d以上3式联立求解得 CM =d cot α 方法二:设圆心为A ,过A 做AB 垂直NO , 可以证明NM =BO ∵NM =CM tan θ又∵BO =AB cot α=R ′sin θcot α=αθθcot sin cos d∴CM =d cot α四、复合场2006年全国理综 (四川卷)25.(20分)如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B =1.57T 。

小球1带正电,其电量与质量之比11q m =4C/kg ,所受重力与电场力的大小相等;小球2不带电,静止放置于固定和水平悬空支架上。

小球1向右以v0=23.59m/s 的水平速度与小球2正碰,碰后经0.75s 再次相碰。

设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内。

(取g =9.8m/s 2)问:(1)电场强度E 的大小是多少? (2)两小球的质量之比是多少?解析(1)小球1所受的重力与电场力始终平衡 mg 1=q 1E ①E =2.5N/C ② (2)相碰后小球1做匀速圆周运动,由牛顿第二定律得:q 1v 1B =111v m R ③ 半径为 R 1=111m v q B④ 周期为 T =112m q Bπ=1s ⑤ ∵两球运动时间 t =0.75s =34T ∴小球1只能逆时针经34周期时与小球2再次相碰 ⑥ 第一次相碰后小球2作平抛运动 h =R 1=212gt ⑦ L =R 1=v 2t ⑧ 两小球第一次碰撞前后动量守恒,以水平向右为正方向m 1v 0=m 1v 1+m 2v 2 ⑨由⑦、⑧式得 v 2=3.75m/s 由④式得 v 1=17.66m/s∴两小球质量之比22111m v v m v +==11 ⑩ 2006年(广东卷)18.(17分)在光滑绝缘的水平桌面上,有两个质量均为m ,电量为q +的完全相同的带电粒子1P 和2P ,在小孔A 处以初速度为零先后释放。

在平行板间距为d 的匀强电场中加速后,1P 从C 处对着圆心进入半径为R 的固定圆筒中(筒壁上的小孔C 只能容一个粒子通过),圆筒内有垂直水平面向上的磁感应强度为B 的匀强磁场。

1P 每次与筒壁发生碰撞均无电荷迁移,1P 进入磁场第一次与筒壁碰撞点为D ,θ=∠COD ,如图12所示。

延后释放的2P ,将第一次欲逃逸出圆筒的1P 正碰圆筒内,此次碰撞刚结束,立即改变平行板间的电压,并利用2P 与1P 之后的碰撞,将1P 限制在圆筒内运动。

碰撞过程均无机械能损失。

设R d π85=,求:在2P 和1P 相邻两次碰撞时间间隔内,粒子1P 与筒壁的可能碰撞次数。

附:部分三角函数值ϕ52π 3π 4π 5π 6π 7π 8π 9π 10π ϕtan08.3 73.1 00.1 73.0 58.00.48 41.0 36.0 32.0解:P 1从C 运动到D , 周期2mT qBπ=, 半径r =R tan2θ=mv qB, 从C 到D 的时间 2CD t Tπθπ-= 每次碰撞应当在C 点,设P 1的圆筒内转动了n 圈和筒壁碰撞了K 次后和P 2相碰于C 点,K +12nπθ所以时间间隔,则P 1、P 2次碰撞的时间间隔2(1)(1)2CD m t t K K qB ππθπ-=+=⨯⨯+=2()1(1)nm K K qBππ-++在t 时间内,P 2向左运动x 再回到C ,平均速度为2v ,542445822Rx x d R t v v v v v ππ⨯==≤== 由上两式可得:52Rvπ≥2()1(1)nm K K qBππ-++ (K +1)mv qB (1-21n K +)≤52R tan(12)1n K n K π+-+≤52当 n=1, K=2、3、4、5、6、7 时符合条件,K=1、8、9………不符合条件当 n=2,3,4……….时,无化K=多少,均不符合条件。

相关文档
最新文档