南昌市十所省重点中学2015年二模突破冲刺交流试卷(06)高三数学(理科)(解析版)

合集下载

江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺理科综合试卷(一).pdf

江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺理科综合试卷(一).pdf

,全部选对的得6分,选对但不全的得3分,有选错的得0分。
.在电场强度大小为E的匀强电场中,将一个质量为m、电荷量为q的带电小球由静止开始释放,带电小球沿与竖直
方向成θ角的方向做直线运动. 关于带电小球的电势能ε和机械能W的判断,不正确的是( )
A.若sinθKQ(2分)。
(3)(6分)①2 NO3-5H2N2+2OH-4H2O(2分)
(3)防止Fe2+被氧化 (1分)
(4)1:4 (2分)
(5)FeCO3(S)
Fe2+(aq) +CO32-(aq) ,CO32-与乳酸反应浓度低,平衡向右移动, 使碳酸亚铁溶
解得到乳酸亚铁溶液 (2分)
(6)13.9/a×100% (2分)
选做题
36.、(15分)
(1)加快溶解速率(分)(分)
D.Cu3P既是氧化产物又是还原产物
分别取等质量的Mg、Fe细小颗粒进行下列操作:I,将镁铁混合均匀后,一次性加入量的稀硫酸,得到图AB;?
II.分别向镁铁的两试管中逐滴缓慢滴入等浓度稀硫酸(滴速相同),得到关系为CD,则下列图示正确的是(? )
A.原子半径:A<D<C<B B.最简单氢化物的稳定性:D<C C.A与C形成的化合物溶于水所得溶液显碱性?D.B与
-
A. 1项
B. 2项
C.3项
D.4项
2.下面是以小麦为实验材料所进行的实验,其中叙述正确的是( )
A. 向发芽种子的研磨液中加入斐林试剂,立即呈现砖红色沉淀,说明含有还原性糖
B.观察小麦根尖成熟区表皮细胞,可看到有丝分裂图像,判断出细胞中的染色体数
C.进行“观察DNA和RNA在细胞中的分布”的实验时,小麦叶片需要用酒精进行脱色处理,观察到绿色主要分布在细

江西省南昌市高三数学第二次模拟考试试题(扫描版)理

江西省南昌市高三数学第二次模拟考试试题(扫描版)理

江西省南昌市2015届高三数学第二次模拟考试试题(扫描版)理2015 年 高 三 测 试 卷数学(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.13.214.13π 15.1316. 2212x y -=三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由点,C B 的坐标可以得到34AOC π∠=,23AOB π∠=,…………………2分 所以cos cos()COB AOC AOB ∠=∠+∠1()2222=---4=-;……6分 (Ⅱ)因为c =23AOB π∠=,所以3C π=,所以2sin sin a b A B ===,………8分所以22sin 2sin()3a b A A π+=+-2sin()6A π=+,2(0)3A π<<, (11)分所以当3A π=时,a b +最大,最大值是.………………………………………………12分18.解:(Ⅰ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,所以运动会期间至少两天空气质量优良的概率是2713P =.…………………………………6分 (Ⅱ)随机变量ξ所有可能取值有:0,1,2,3;………………………………………………7分(0)P ξ==113,(1)P ξ==613,(2)P ξ==613,(3)P ξ==113,……………………9分 所以随机变量ξ的分布列是:……………………10分随机变量ξ的数学期望是1661012313131313E ξ=⨯+⨯+⨯+⨯=2113. (12)分 19.(Ⅰ)证明:在梯形ABCD 中,因为2AD DC CB ===,4AB =,4212cos 22CBA -∠==,所以60,ABC ∠=︒由余弦定理求得AC =90ACB ∠=︒即BC⊥又因为平面AEFC ⊥平面ABCD ,所以BC ⊥平面所以BC AG ⊥,………………………………………3分 在矩形AEFC 中,tan 1AE AGE EG ∠==,4AGE π∴∠=tan 1CF CGF GF ∠==,4CGF π∠=, 所以2CGF AGE π∠+∠=,即AG CG ⊥,所以AG ⊥平面BCG ;……………………………………………………………………………6分(Ⅱ)FC AC ⊥,平面AEFC ⊥平面ABCD ,所以FC ⊥平面ABCD ,以点C 为原点,,,CA CB CF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则)(0,0,0),(0,2,0),1,0)C A B D -,G ,…………………………8分平面BCG 的法向量(3,0,GA =,设平面GCD 的法向量(,,)n x y z =,则00n CG n CD ⎧⋅=⎪⎨⋅=⎪⎩,从而00x z y +=⎧⎪-=,令1x =则(1,3,1)n =-,…………………………………………………………………………10分所以cos ,n GA <>==,…………………………………………………11分而二面角D —GCB为钝角,故所求二面角的余弦值为5-. (12)分 20.解:(Ⅰ)当l 垂直于OD 时||AB最小,因为||2OD ==,所以2r ==,…………………………………2分因为圆1C 222:(0)x y r r +=>的一条直径是椭圆2C 的长轴,所以2a =, 又点D 在椭圆22222:1(0)x y C a b a b +=>>上,所以291414b b +=⇒=, 所以圆1C 的方程为224x y +=,椭圆2C 的方程为22143x y +=;………………………5分(Ⅱ)椭圆2C 的右焦点F 的坐标是(1,0),当直线m 垂直于x 轴时,||PQ = ||4MN =,四边形PMQN 的面积S = 当直线m 垂直于y 轴时,||4PQ =,||3MN =,四边形PMQN 的面积6S =, (6)分当直线m 不垂直于坐标轴时,设n 的方程为(1)y k x =-(0)k ≠,此时直线m 的方程为1(1)y x k =--,圆心O到直线m 的距离为:d=,所以||PQ ==8分将直线n 的方程代入椭圆2C 的方程得到:()22224384120k x k x k +-+-=,||MN = 所以:四边形PMQN 的面积1||||2S PQ MN =⋅===∈, 综上:四边形PMQN的面积的取值范围是.…………………………………………12分21.解:(Ⅰ)21221'()22x ax f x x a x x -+=+-=(0)x >,记2()221g x x a x =-+………1分(一)当0a ≤时,因为0x >,所以()10g x >>,函数()f x 在(0,)+∞上单调递增;……2分(二)当0a <≤24(2)0a =-≤△,所以()0g x ≥,函数()f x 在(0,)+∞上单调递增;…………………………………………………………………………………………………3分(三)当a >0()0x g x >⎧⎨>⎩,解得x ∈,所以函数()f x在区间(,)22a a +上单调递减,在区间)+∞上单调递增.…………………………5分(Ⅱ)由(1)知道当(1a ∈时,函数()f x 在区间(0,1]上单调递增,所以(0,1]x ∈时,函数()f x 的最大值是(1)22f a =-,对任意的(1a ∈,都存在0(0,1]x ∈使得不等式20()ln ()f x a m a a +>-成立,等价于对任意的(1a ∈,不等式222ln ()a a m a a -+>-都成立,……………………………………6分即对任意的(1a ∈,不等式2ln (2)20a ma m a +-++>都成立, 记2()ln (2)2h a a ma m a =+-++,则(1)0h =, 1(21)(1)'()2(2)a ma h a ma m a a --=+-+=,因为(1a ∈,所以210a a ->,当1m ≥时,对任意(1a ∈,10ma ->,所以'()0h a >,即()h a在区间上单调递增,()(1)0h a h >=成立;…………………………………………………………………………9分当1m <时,存在0(1a ∈使得当0(1,)a a ∈时,10ma -<,'()0h a <,()h a 单调递减,从而()(1)0h a h <=,所以(1a ∈时,()0h a >不能恒成立.综上:实数m 的取值范围是[1,)+∞.……………………………………………………………12分22.解:AF 是圆的切线,且18,15AF BC ==,∴由切割线定理得到2218(15)12AF FB FC FB FB FB =⋅⇒=⋅+⇒=, (3)分,AB AD ABD ADB =∴∠=∠,则,//FAB ABD AF BD ∠=∠∴,…………………………………………………………………6分又//AD FC ,∴四边形ADBF 为平行四边形.12,,18AD FB ACF ADB F AC AF ==∠=∠=∠∴==,//,18AE AD AD FC AE BC ∴=-,解得8AE =。

江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺数学(理)试题(三)

江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺数学(理)试题(三)

2
2
3 区间 (1, ) 内是( )
2
A.减函数且 f ( x) 0 B.减函数且 f ( x) 0 C.增函数且 f ( x) 0 D.增函数且 f ( x) 0
6.下列说法中,正确的个数是(

( 1)在频率分布直方图中,中位数左边和右边的直方图的面积相等
.
( 2)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变
1 SS
(2 k 1)(2 k 1)
k k1
S a?


输出 k
结束
12.某几何体三视图如图 (单位: cm),
则该几何体的外接球表面积是(

A . 800 cm3 B . 1025 cm3
C. 625 cm3 D . 1200 cm3 第Ⅱ卷(共 90 分) [来源 :Z , xx, k. Com]
M , N (点 M 在点 N 的左侧) ,且
y
C
T
A
OM
N
x
21. (本题满分 12 分 )
B
已知函数 f ( x) ln x mx2 , g (x) 1 mx2 x ( m R) ,令 2
F (x) f (x) g ( x) 。
(Ⅰ)当 m
1 时,求函数 f (x) 的单调递增区间;
2
(Ⅱ)若关于 x 的不等式 F ( x) mx 1 恒成立,求整.数. m 的最小值;
1的左、右焦点分别为
F1 、 F2 ,
过 F1 作圆 x2 y2 a2 的切线分别交双曲线的左、右两支于
点 B 、 C ,且 | BC | | CF2 | ,则双曲线的渐近线方程为(

A . y 3x

江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺数学(理)试题(二)

江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺数学(理)试题(二)

请考生在第 22、 23、 24 量题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分 10 分)选修 4 一 1:几何证明选讲
如图,点 A 在直径为 15 的⊙ O 上, PBC是过点 O的割线,且 PA=10, PB=5.. (Ⅰ )求证: PA 与⊙ O相切; S ACB的值.
设直线 PA1 与平面 A1BD 所成的角为 ,
PA1 DE
3a
所以 sin |
|
,
| PA1 | | DE | 4a2 4a 5
A
①若 a 0, 则 sin
| PA1 DE | | PA1 | | DE |
3a
0 ,, 9 分
4a2 4a 5
②若 a 0, 则 sin
PA1 DE
|
|
| PA1 | | DE |
3a 4a2 4a 5
3
4
4 a
5 a2
1

t (t
2 ), y
5t 2 4t 4
a
3
因为函数 y 5t 2 4t 4 在 t
2 上单调递增,所以 ymin
48
5ห้องสมุดไป่ตู้
4
32
3
93
9
即 (sin 2 )max 27 32
所以 (tan2 )max
(sin2 )max 1 (sin2 )max
27 5
3 15
所以 PA1H 是直线 PA1 与平面 A1BD 所成的角 , ,,,,,,,,,
8分
设 PB x 0 x 3 , 则 BH
x , PH
2
3
x
x ,DH=BD-BH=2-
2

(优辅资源)江西省南昌市十所省重点中学命制高三第二次模拟突破冲刺数学(理)试题(六) Word版含答案

(优辅资源)江西省南昌市十所省重点中学命制高三第二次模拟突破冲刺数学(理)试题(六) Word版含答案

高三数学(理科)交流评比卷 命题人:高三数学组 内容:综合试题一、选择题(本题共12小题,每小题5分,共60分)1.已知集合{}|11,|01x M x x N x x ⎧⎫=-<<=≤⎨⎬-⎩⎭,则M N I =( ) A .{}|01x x ≤< B .{}|01x x << C .{}|0x x ≥ D .{}|10x x -<≤2.若复数z 满足()11z i +=,则z 的共轭复数在复平面内对应的点位于( )A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列结论错误..的是 ( ) A .命题“若2340x x --=,则4x =”的逆否命题为“若24,340x x x ≠--≠则” B .“4x =”是“2340x x --=”的充分不必要条件C .已知命题p “若0m >,则方程20x x m +-=有实根”,则命题p 的否定为真命题D .命题“若220m n +=,则0m n ==”的否命题“若220m n +≠,则00m n ≠≠或”4.已知函数()f x 的定义域为[]12,,则函数(2sin())3f x π-的定义域为( )A .72,226k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈) B .52,266k k ππππ⎡⎤++⎢⎥⎣⎦ (k Z ∈)C . RD . 2,262k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈)5.已知函数()343f x x ax =-,在12x =处取得极小值,记()()1'g x f x =,程序框图如图所示,若输出的结果1225S >,则判断框中可以填入的关于 n 的判断条件是( )A. 12n ≤? B .13n ≤? C .12n >? D .13n >? 6.在我国古代著名的数学专著《九章算术》里有—段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,曰增十三里:驽马初日行九十七里,曰减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢?( ) A .12日 B .16日 C .8日 D .9日7.在平面直角坐标系中,角α的终边与单位圆交于点P )54,53(,角β的终边与单位圆交于点Q ,Q 是第三象限点,且向量与 的夹角为43π,则cos β=( )A . 1328-B .523-C .12-D .1027-8.函数()2xf x x a=+的图象可能是( )A .(1)(3)B .(1)(2)(4) C.(2)(3)(4) D .(1)(2)(3)(4)9.在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥底面ABCD ,4PA AB ==,E ,F ,H 分别是棱PB ,BC ,PD 的中点,则过E ,F ,H 的平面截四棱锥P ABCD -所得截面面积为( )A .B . D .+10.四棱锥P ABCD -的三视图如图所示,四棱锥P ABCD -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为( )A .12πB .24π C.36π D .48π11.已知抛物线2:4C y x =的焦点为F ,定点()0 2A ,,若射线FA 与抛物线C 交于点M ,与抛物线C 的准线交于点N ,则:MN FN 的值是( )A .)2-.2(1+ D .1:12.若不等式22ln 30x x x ax +++≥对(0,)x ∈+∞恒成立,则实数a 的最小值是( ) A .4- B .0 C .2 D .4二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.已知数列{}n a 的前n 项和为n S ,且满足()221n n S n a =+-,则数列{}n a 的通项公式n a = .14.在ABC △中,角A 、B 、C 所对的边分别为 a b c ,,,且3 6A C c ==,,()2cos cos 0a c B b C --=,则ABC △的面积是 .15.若不等式组1026x y x y x y a≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是 .16.已知直线l 与椭圆)0(12222>>=+b a bx a y 相切于第一象限的点),(00y x P ,且直线l 与y x ,轴分别交于点B A ,,当为原点)O AOB (∆的面积最小时,为焦点)(2121,60F F PF F ︒=∠,此时在21PF F ∆中,21PF F ∠的角平分线长为a m3,则实数m 的值为 .三、解答题(本大题共6小题,共70分.解答题应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知函数2()sin cos )cos f x x x x x ωωωω=+-的图象相邻的两个对称中心为⎪⎭⎫⎝⎛0,12π和7,012π⎛⎫⎪⎝⎭,其中ω为常数. (Ⅰ)求函数()f x 单调递增区间;(Ⅱ)在锐角ABC V ,内角,,A B C 对边,,a b c 且满足2sin a b A =,求)(C f 的取值范围.18.(本小题满分12分)某商场对甲、乙两种品牌的商品进行为期100天的营销活动,为调查这100天的日销售情况,随机抽取了10天的日销售量(单位:件)作为样本,样本数据D 1C 1B 1A 1DCBA的茎叶图如图.若日销量不低于50件,则称当日为“畅销日”.(Ⅰ)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;(Ⅱ)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的22⨯列联表,并判断是否有99%的把握认为品牌与“畅销日”天数有关.附:()()()()()22n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)19.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧面11ADD A ⊥底面ABCD,11D A D D ==ABCD 为直角梯形,其中// , BC AD AB AD ⊥,222AD AB BC ===.(Ⅰ)求证:1BD AC ⊥(Ⅱ)设点P 为线段BD 上一点 ,且DB BP 31=,求11APD C V -。

江西省南昌市2015届高三第二次模拟考试数学理科试题有答案(扫描版)

江西省南昌市2015届高三第二次模拟考试数学理科试题有答案(扫描版)

2015 年 高 三 测 试 卷数学(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分.13.214.13π 15.1316.2212x y -= 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由点,C B 的坐标可以得到34AOC π∠=,23AOB π∠=,…………………2分 所以cos cos()COB AOC AOB ∠=∠+∠1()2222=-⨯--4=-;……6分 (Ⅱ)因为c =23AOB π∠=,所以3C π=,所以2sin sin a b A B ===,………8分所以22sin 2sin()3a b A A π+=+-2sin()6A π=+,2(0)3A π<<,……………………11分 所以当3A π=时,a b +最大,最大值是12分18.解:(Ⅰ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,所以运动会期间至少两天空气质量优良的概率是2713P =.…………………………………6分(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3;………………………………………………7分(0)P ξ==113,(1)P ξ==613,(2)P ξ==613,(3)P ξ==113,……………………9分所以随机变量ξ的分布列是:随机变量ξ的数学期望是1661012313131313E ξ=⨯+⨯+⨯+⨯=2113.……………………12分 19.(Ⅰ)证明:在梯形ABCD 中,因为2AD DC CB ===,4AB =,4212cos 22CBA -∠==,所以60,ABC ∠=︒由余弦定理求得AC=90ACB ∠=︒即BC⊥又因为平面AEFC ⊥平面ABCD ,所以BC ⊥平面所以BC AG ⊥,………………………………………3分 在矩形AEFC 中,tan 1AE AGE EG ∠==,4AGE π∴∠=tan 1CF CGF GF ∠==,4CGF π∠=,所以2CGF AGE π∠+∠=,即AG CG ⊥,所以AG ⊥平面BCG ;……………………………………………………………………………6分(Ⅱ)FC AC ⊥,平面AEFC ⊥平面ABCD ,所以FC ⊥平面ABCD , 以点C 为原点,,,CA CB CF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则)(0,0,0),(0,2,0),1,0)C A B D-,G ,…………………………8分平面BCG 的法向量(3,0,GA =,设平面GCD 的法向量(,,)n x y z =,则0n CG n CD ⎧⋅=⎪⎨⋅=⎪⎩,从而00x z y +=⎧⎪-=,令1x =则(1,3,1)n =-,…………………………………………………………………………10分 所以cos ,n GA <>==,…………………………………………………11分 而二面角D —GCB 为钝角, 故所求二面角的余弦值为.………………………………………………………………12分 20.解:(Ⅰ)当l 垂直于OD 时||AB 最小,因为||OD =2r ==,…………………………………2分因为圆1C 222:(0)x y r r +=>的一条直径是椭圆2C 的长轴,所以2a =,又点D 在椭圆22222:1(0)x y C a b a b +=>>上,所以291414b b+=⇒=, 所以圆1C 的方程为224x y +=,椭圆2C 的方程为22143x y +=;………………………5分 (Ⅱ)椭圆2C 的右焦点F 的坐标是(1,0),当直线m 垂直于x 轴时,||PQ = ||4MN =,四边形PMQN 的面积S =当直线m 垂直于y 轴时,||4PQ =,||3MN =,四边形PMQN 的面积6S =,…………6分……………………10分当直线m 不垂直于坐标轴时,设n 的方程为(1)y k x =-(0)k ≠,此时直线m 的方程为1(1)y x k=--, 圆心O 到直线m的距离为:d =,所以||PQ ==,…………8分 将直线n 的方程代入椭圆2C 的方程得到:()22224384120k x k x k +-+-=,||MN =所以:四边形PMQN 的面积1||||2S PQ MN =⋅===∈,综上:四边形PMQN的面积的取值范围是.…………………………………………12分21.解:(Ⅰ)21221'()22x ax f x x a x x-+=+-=(0)x >,记2()221g x x ax =-+………1分 (一)当0a ≤时,因为0x >,所以()10g x >>,函数()f x 在(0,)+∞上单调递增;……2分(二)当0a <≤时,因为24(2)0a =-≤△,所以()0g x ≥,函数()f x 在(0,)+∞上单调递增;…………………………………………………………………………………………………3分(三)当a >0()0x g x >⎧⎨>,解得x∈,所以函数()f x 在区间上单调递减,在区间(0,),()2a a +∞上单调递增.…………………………5分(Ⅱ)由(1)知道当(1a ∈时,函数()f x 在区间(0,1]上单调递增, 所以(0,1]x ∈时,函数()f x的最大值是(1)22f a =-,对任意的a ∈,都存在0(0,1]x ∈使得不等式20()ln()f x a m a a +>-成立,等价于对任意的(1a ∈,不等式222ln ()a a m a a -+>-都成立,……………………………………6分即对任意的(1a ∈,不等式2ln (2)20a ma m a +-++>都成立, 记2()ln (2)2h a ama m a =+-++,则(1)0h =,1(21)(1)'()2(2)a ma h a ma m a a --=+-+=,因为(1a ∈,所以210a a->, 当1m ≥时,对任意(1a ∈,10ma ->,所以'()0h a >,即()h a 在区间上单调递增,()(1)0h a h >=成立;…………………………………………………………………………9分 当1m <时,存在0(1a ∈使得当0(1,)a a ∈时,10ma -<,'()0h a <,()h a 单调递减,从而()(1)0h a h <=,所以(1a ∈时,()0h a >不能恒成立.综上:实数m 的取值范围是[1,)+∞.……………………………………………………………12分 22.解:AF 是圆的切线,且18,15AF BC ==,∴由切割线定理得到2218(15)12AF FB FC FB FB FB =⋅⇒=⋅+⇒=,…………………3分 ,AB AD ABD ADB =∴∠=∠,则,//FAB ABD AF BD ∠=∠∴,…………………………………………………………………6分 又//AD FC ,∴四边形ADBF 为平行四边形.12,,18AD FB ACF ADB F ACAF ==∠=∠=∠∴==,//,18AE ADAD FC AE BC∴=-,解得8AE =。

江西省南昌市十所省重点中学2015届高三数学二模突破(一)试题 理(含解析)新人教A版

江西省南昌市十所省重点中学2015届高三数学二模突破冲刺(一)试题理(含解析)新人教A版【试卷综述】这套试题基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,体现了稳中求进的精神.,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移.以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能.【题文】第Ⅰ卷【题文】一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

【题文】1.已知全集,集合,,则集合( ) A.B.C. D.【知识点】集合的运算A1【答案】【解析】C 解析:由题意易知,所以故选C.【思路点拨】先求出,再求出即可。

【题文】2. 设复数(为虚数单位),的共轭复数为,则( ) A. B 2 D.1【知识点】复数代数形式的乘除运算;复数求模.L4【答案】【解析】A 解析:由z=﹣1﹣i,则,所以=.故选A.【思路点拨】给出z=﹣1﹣i,则,代入整理后直接求模.【题文】3. 在正项等比数列中,,前项和为,且成等差数列,则的值为( )A. 125B. 126C. 127D. 128【知识点】等差数列的前n项和;等差数列的通项公式;等比数列的通项公式.D2 D3 D4 【答案】【解析】C 解析:设正项等比数列{an}的公比为q(q>0),且a1=1,由﹣a3,a2,a4成等差数列,得2a2=a4﹣a3.即.因为q>0.所以q2﹣q﹣2=0.解得q=﹣1(舍),或q=2.则.故选C.【思路点拨】设出等比数列的公比,由已知条件列式求出公比,则等比数列的前7项和可求.【题文】4. 已知函数,为了得到函数的图象,只需要将的图象( )A. 向右平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度【知识点】函数y=Asin(ωx+φ)的图象变换.C4【答案】【解析】D 解析:由于函数=sin2x,函数g(x)=sin2x+cos2x=sin(2x+)=sin2(x+),故将y=f(x)的图象向左平移个单位长度,即可得到g(x)的图象,故选D.【思路点拨】利用二倍角公式、两角和差的正弦公式化简函数f(x)和g(x)的解析式,再根据函数y=Asin(ωx+∅)的图象变换规律,得出结论.【题文】5. 若的展开式中第四项为常数项,则( )A.4 B.5 C.6 D.7【知识点】二项式系数的性质.J3【答案】【解析】B 解析:由于的展开式中第四项为T4=•••=••是常数项,故=0,n=5,故选B.【思路点拨】由于的展开式中第四项为T4=••是常数项,故=0,由此求得n的值.【题文】6.给四面体的六条棱分别涂上红,黄,蓝,绿四种颜色中的一种,使得有公共顶点的棱所涂的颜色互不相同,则不同的涂色方法共有( )A.96 B.144 C. 240 D. 360【知识点】排列组合J2【答案】【解析】A 解析:先从红,黄,蓝,绿四种颜色中选一种,有种,排列种数有,故不同的涂色方法共有,故选A.【思路点拨】先从红,黄,蓝,绿四种颜色中选一种,再进行排列即可。

2015年江西省南昌市高考数学二模试卷(理科)

2015年江西省南昌市高考数学二模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.i为虚数单位,=()A.3+4iB.4+3iC.-iD.+i【答案】D【解析】解:===.故选:D.利用复数的运算法则即可得出.本题考查了复数的运算法则,属于基础题.2.已知集合A={x|x2-2x>0},B={x|log2(x+1)<1},则A∩B等于()A.(-∞,0)B.(2,+∞)C.(0,1)D.(-1,0)【答案】D【解析】解:由A中不等式变形得:x(x-2)>0,解得:x<0或x>2,即A=(-∞,0)∪(2,+∞),由B中不等式变形得:log2(x+1)<1=log22,即0<x+1<2,解得:-1<x<1,即B=(-1,1),则A∩B=(-1,0),故选:D.求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.下列结论错误的是()A.命题:“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”B.“a>b”是“ac2>bc2”的充分不必要条件C.命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”D.若“p∨q”为假命题,则p,q均为假命题【答案】B【解析】解:A.命题:“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”,正确;B.“a>b”是“ac2>bc2”必要不充分条件,不正确;C.“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”,正确;D.若“p∨q”为假命题,则p,q均为假命题,正确.故选:B.A.利用逆否命题的定义即可判断出真假;B.利用不等式的性质、充要条件定义,即可判断出真假;C.利用命题的否定定义,即可判断出真假;D.利用复合命题真假的判定方法,即可判断出真假.本题考查了简易逻辑的判定方法、不等式的性质,考查了推理能力,属于基础题.4.将函数y=sin(2x-)的图象向左移动个单位,得到函数y=f(x)的图象,则函数y=f (x)的一个单调递增区间是()A.[-,]B.[-,0]C.[-,]D.[,]【答案】C【解析】解:将函数y=sin(2x-)的图象向左移动个单位,得到函数y=f(x)=sin(2x+-)=sin(2x+)的图象.故由2k≤2x+≤2kπ,k∈Z可解得函数y=f(x)的单调递增区间是:k≤x≤kπ,k∈Z.故当k=0时,x∈[-,].故选:C.根据函数y=sin(2x-)的图象向左平移个单位,得到函数y=f(x)的图象,确定函数f(x)的解析式,从而可得函数f(x)的一个单调递增区间.本题考查图象的变换,考查三角函数的性质,解题的关键是熟悉变换的方法,确定函数的解析式,属于基本知识的考查.5.若实数x,y满足条件,则z=x-3y的最小值为()A.-5B.-3C.1D.4【答案】A【解析】解:作出约束条件所对应的可行域(如图),变形目标函数可得y=x-z,平移直线y=x可知,当直线经过点A(1,2)时,截距-z取最大值,z取最小值,代值计算可得z的最小值为z=1-3×2=-5故选:A作出可行域,变形目标函数,平移直线y=x可得当直线经过点A(1,2)时,截距-z取最大值,z取最小值,代值计算可得.本题考查简单线性规划,准确作图是解决问题的关键,属中档题.6.已知{a n}是等差数列,a3=5,a9=17,数列{b n}的前n项和S n=3n,若a m=b1+b4,则正整数m等于()A.29B.28C.27D.26【答案】A【解析】解:假设a n=a0+(n-1)d,可知a9-a3=6d=12,则d=2,而a3=5,则a0=1.所以b1=S1=3,b4=S4-S3=54,则b1+b4=57,因此a m=a0+(m-1)d=1+2(m-1)=57=b1+b4,从而可得m=29.故选:A.利用{a n}是等差数列,a3=5,a9=17,求出a0=1,d=2,求出b1+b4=57,即可求出m.本题考查等差数列的通项,考查学生的计算能力,比较基础.7.下列程序图中,输出的B是()A.-B.-C.0D.【答案】C【解析】解:模拟执行程序框图,可得A=,i=1A=,B=-,i=2,满足条件i≤2015,A=π,B=0,i=3,满足条件i≤2015,A=,B=,i=4,满足条件i≤2015,A=,B=-,i=5,满足条件i≤2015,A=2π,B=0,i=6,满足条件i≤2015,…观察规律可知,B的取值以3为周期,由2015=3×671+2,故有B=-,i=2015,满足条件i≤2015,B=0,i=2016,不满足条件i≤2015,退出循环,输出B的值为0.故选:C.模拟执行程序框图,依次写出每次循环得到的A,B,i的值,观察规律可知B的取值以3为周期,故当i=2015时,B=0,当i=2016时不满足条件i≤2015,退出循环,输出B的值为0.本题主要考查了循环结构的程序框图,依次写出每次循环得到的A,B,i的值,观察规律可知B的取值以3为周期是解题的关键,属于基本知识的考查.8.安排A、B、C、D、E、F六名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A不安排照顾老人甲,义工B不安排照顾老人乙,安排方法有()种.A.30B.40C.42D.48【答案】C【解析】解:当A照顾老人乙时,共有种不同方法;当A不照顾老人乙时,共有种不同方法.∴安排方法有24+18=42种.故选:C.根据义工A,B有条件限制,可分A照顾老人乙和A不照顾老人乙两类分析,A照顾老人乙时,再从除B外的4人中选1人,则甲和丙为;A不照顾老人乙时,老人乙需从除A、B外的4人中选2人,甲从除A外的剩余3人中选2人.本题考查有条件限制排列组合问题,关键是正确分类,是基础的计算题.9.已知函数f(x)=,,>,函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是()A.5B.6C.7D.8【答案】B【解析】解:函数y=f(x)-g(x)的零点就是函数y=f(x)与y=g(x)图象的交点.在同一坐标系中画出这两个函数的图象:由图可得这两个函数的交点为A,O,B,C,D,E,共6个点.所以原函数共有6个零点.故选:B.函数y=f(x)-g(x)的零点就是函数y=f(x)与y=g(x)图象的交点,因此分别作出这两个函数的图象,然后据图判断即可.本题考查了利用数形结合的思想解决函数零点个数的判断问题,同时考查了函数的零点,方程的根以及函数图象的交点之间关系的理解.10.某几何体的三视图如图所示,则该几何体的体积是()A.2B.C.4D.【答案】B【解析】解:由三视图知:几何体是四棱锥,如图所示,ABCD的面积为2×=2,△SAD中,SD=AD=,SA=2,∴cos∠SDA==,∴sin∠SDA=,∴S△SAD==2设S到平面ABCD的距离为h,则=2,∴h=所以几何体的体积是=,故选:B.由三视图知:几何体是四棱锥,如图所示,求出相应数据即可求出几何体的体积.本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是关键.11.已知函数f(x)=+sinx(e为自然对数的底),则函数y=f(x)在区间[-,]上的大致图象是()A. B. C. D.【答案】A【解析】解:由函数f(x)=+sinx(e为自然对数的底),x∈[-,],可得y′=+cosx≥+=≥=0,而上述式子中的两个等号不能同时成立,故有y′>0,故函数y在区间[-,]上单调递增,故选:A.求得函数的导数y′的解析式,再利用基本不等式求得在区间[-,]上,y′>0,可得函数y在区间[-,]上单调递增,结合所给的选项,得出结论.本题主要考查导数公式,利用导数研究函数的单调性,基本不等式的应用,函数的图象特征,属于中档题.12.已知数列{a n}满足a1=1,|a n-a n-1|=(n∈N,n≥2),且{a2n-1}是递减数列,{a2n}是递增数列,则12a10=()A.6-B.6-C.11-D.11-【答案】D【解析】解:由|a n-a n-1|=,则|a2n-a2n-1|=,|a2n+2-a2n+1|=,∵数列{a2n-1}是递减数列,且{a2n}是递增数列,∴a2n+1-a2n-1<0,且a2n+2-a2n>0,则-(a2n+2-a2n)<0,两不等式相加得a2n+1-a2n-1-(a2n+2-a2n)<0,即a2n-a2n-1<a2n+2-a2n+1,又∵|a2n-a2n-1|=>|a2n+2-a2n+1|=,∴a2n-a2n-1<0,即,同理可得:a2n+3-a2n+2<a2n+1-a2n,又|a2n+3-a2n+2|<|a2n+1-a2n|,则a2n+1-a2n=,当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,…,,,这2m-1个等式相加可得,a2m-a1=-()+(),∴=.∴12a10=.故选:D.根据数列的单调性和|a n-a n-1|=,由不等式的可加性,求出a2n-a2n-1=和a2n+1-a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的偶数项对应的通项公式,则12a10可求.本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.二、填空题(本大题共4小题,共20.0分)13.已知向量=(1,),向量,的夹角是,•=2,则||等于______ .【答案】2【解析】解:∵||=又∵即:∴故答案为:2由向量的坐标可求的向量的模再由向量数量积的定义即可得出答案.本题考察了向量的坐标以及向量数量积的定义,求出的模是关键,属于基础题.14.若在圆C :x 2+y 2=4内任取一点P (x ,y ),则满足 < > 的概率= ______ .【答案】【解析】解:满足< >的区域如图面积为=(x -x 3)| =, 由几何概型公式可得在圆C :x 2+y 2=4内任取一点P (x ,y ),则满足< >的概率为 ; 故答案为:.分别求出圆的面积以及满足不等式组的区域面积,利用几何概型公式解答.本题考查了几何概型的公式运用;关键是利用定积分求出区域的面积.利用几何概型公式解答.15.观察下面数表:设1027是该表第m 行的第n 个数,则m +n 等于 ______ . 【答案】 13【解析】解:根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数, 第一行1个数,第二行2=21个数,且第1个数是3=22-1第三行4=22个数,且第1个数是7=23-1第四行8=23个数,且第1个数是15=24-1…第10行有29个数,且第1个数是210-1=1023,第2个数为1025,第三个数为1027;所以1027是第10行的第3个数,所以m =10,n =3,所以m +n =13; 故答案为:13.根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数,第一行1个数,第二行2个数,第三行4个数,第四行8个数,…第10行有29个数,分别求出左起第1个数的规律,按照此规律,问题解决 本题主要考查归纳推理的问题,关键是根据数表,认真分析,找到规律,然后进行计算,即可解决问题.16.过原点的直线l与双曲线C:-=1(a>0,b>0)的左右两支分别相交于A,B两点,F(-,0)是双曲线C的左焦点,若|FA|+|FB|=4,=0.则双曲线C的方程= ______ .【答案】【解析】解:设|FB|=x,则|FA|=4-x,∵过原点的直线l与双曲线C:-=1(a>0,b>0)的左右两支分别相交于A,B两点,F(-,0)是双曲线C的左焦点,∴|AB|=2,∵=0,∴x2+(4-x)2=12,∴x2-4x+2=0,∴x=2±,∴|FB|=2+,|FA|=2-,∴2a=|FB|-|FA|=2,∴a=,∴b=1,∴双曲线C的方程为.故答案为:.设|FB|=x,则|FA|=4-x,利用勾股定理,建立方程,求出|FB|=2+,|FA|=2-,可得a,b,即可得出结论.本题考查双曲线方程与性质,考查学生的计算能力,确定几何量是关键.三、解答题(本大题共8小题,共94.0分)17.已知△ABC是圆O(O为坐标原点)的内接三角形,其中A(1,0),B(-,-),角A,B,C的对边分别为A,B,C.(Ⅰ)若点C的坐标是(-,),求cos∠COB;(Ⅱ)若点C在优弧上运动,求a+b的最大值.【答案】解:(Ⅰ)由点C,B的坐标可以得到∠AOC=,∠AOB=,…(2分)所以cos∠COB=cos(∠AOC+∠AOB)=-×=-;…(6分)(Ⅱ)因为c=,∠AOB=,所以C=,所以,…(8分)所以a+b=2sin A+2sin(-A)=2sin(A+),(0<A<),…(11分)所以当A=时,a+b最大,最大值是2.…(12分)【解析】(Ⅰ)由点C,B的坐标可以得到∠AOC,∠AOB,即可由cos∠COB=cos(∠AOC+∠AOB)得解.(Ⅱ)由正弦定理可得a+b=2sin A+2sin(-A)=2sin(A+),由题意求得角C可得A的范围,从而可求a+b的最大值.本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于基本知识的考查.18.如图是某市11月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200,表示空气质量重度污染,该市某校准备举行为期3天(连续3天)的运动会,在11月1日至11月13日任选一天开幕(Ⅰ)求运动会期间至少两天空气质量优良的概率;(Ⅱ)记运动会期间,空气质量优良的天数为ξ,求随机变量ξ的分布列和数学期望【答案】解:(Ⅰ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,所以运动会期间至少两天空气质量优良的概率是P2=.…(6分)(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3;…(7分)P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,…(9分).所以随机变量ξ的分布列是:随机变量ξ的数学期望是E ξ=0×+1×+2×+3×=.…(12分) 【解析】(Ⅰ)说明该校运动会开幕日共有13种选择,列出运动会期间至少两天空气质量优良的数目,然后求解概率.(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3,求出概率,得到ξ的分布列,然后求解期望.本题考查古典概型的概率的求法,离散型随机变量的分布列以及期望的求法,考查计算能力.19.如图,梯形ABCD 中,DC ∥AB ,AD=DC=CB=2,AB=4,矩形AEFC 中,AE= ,平面AEFC ⊥平面ABCD ,点G 是线段EF 的中点(Ⅰ)求证:AG ⊥平面BCG(Ⅱ)求二面角D-GC-B 的余弦值.【答案】(Ⅰ)证明:在梯形ABCD 中,因为AD=DC=CB=2,AB=4,所以∠ABC=60°, 由余弦定理求得AC=2 , 从而∠ACB=90°, 即BC ⊥AC ,又因为平面AEFC ⊥平面ABCD , 所以BC ⊥平面AEFC , 所以BC ⊥AG ,在矩形AEFC 中,tan ∠AGE=, 则∠AGE=,tan ∠CGF=,则∠CGF=, 所以∠CGF+∠AGE=,即AG ⊥CG ,所以AG ⊥平面BCG ;(Ⅱ)FC ⊥AC ,平面AEFC ⊥平面ABCD , 所以FC ⊥平面ABCD ,以点C 为原点,CA ,CB ,CF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则C (0,0,0),A (2 ,0,0),B (0,2,0),D ( ,-1,0),G ( ,0, ),平面BCG 的法向量 =( ,0,- ), 设平面GCD 的法向量 =(x ,y ,z ),则,从而,令x=1,则y=,z=-1,则=(1,,-1),所以cos<,>==,而二面角D-GCB为钝角,故所求二面角的余弦值为-.【解析】(Ⅰ)根据线面垂直的判定定理证明AG⊥CG,即可证明AG⊥平面BCG(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角D-GC-B的余弦值.本题主要考查空间线面垂直的判定,以及二面角的求解,利用向量法是解决二面角的常用方法.20.已知圆C1:x2+y2=r2(r>0)的一条直径是椭圆C2:+=1(a>b>0)的长轴,过椭圆C2上一点D(1,)的动直线l与圆C1相交于点A、B,弦AB长的最小值是(1)圆C1和椭圆C2的方程;(2)椭圆C2的右焦点为F,过点F作两条互相垂直的直线m、n,设直线m交圆C1于点P、Q,直线n与椭圆C2于点M、N,求四边形PMQN面积的取值范围.【答案】解:(1)由题意可得a=r,点D在圆内,当AB⊥C1D时,直线AB被圆截得的弦长最短,且为2=2=,解得r=2,即a=2,点D代入椭圆方程,有+=1,解得b=,则有圆C1的方程为x2+y2=4,椭圆C2的方程为+=1;(2)设过点F(1,0)作两条互相垂直的直线m:y=k(x-1),直线n:y=-(x-1),圆心C1到直线m的距离为d=,则|PQ|=2=2,由y=-(x-1)和椭圆+=1,可得(3k2+4)y2-6ky-9=0,判别式显然大于0,y1+y2=,y1y2=-,则|MN|=•=,则有四边形PMQN面积为S=|PQ|•|MN|=•2•=12•=12•,由于k2>0,即有1+k2>1,S>12×=6,且S<12×=4,则四边形PMQN面积的取值范围是(6,4).【解析】(1)由题意可得a=r,点D在圆内,当AB⊥C1D时,直线AB被圆截得的弦长最短,由弦长公式计算即可得到r=2,再将D的坐标代入椭圆方程,即可求得b,进而得到圆和椭圆的方程;(2)设出直线m,n的方程,运用圆和直线相交的弦长公式和直线和椭圆方程联立,运用韦达定理和弦长公式,分别求得|PQ|,|MN|,再由四边形的面积公式,化简整理计算即可得到取值范围.本题考查直线和圆、椭圆的位置关系,同时考查直线被圆、椭圆截得弦长的问题,运用圆的垂径定理和弦长公式,以及韦达定理是解题的关键.21.已知函数f(x)=lnx+x2-2ax+1(a为常数)(1)讨论函数f(x)的单调性;(2)若对任意的a∈(1,),都存在x0∈(0,1]使得不等式f(x0)+lna>m(a-a2)成立,求实数m的取值范围.【答案】解:函数f(x)=lnx+x2-2ax+1(a为常数)(1)f′(x)=+2x-2a=,x>0,①当a≤0时,f′(x)>0成立,若f′(x)≥0,则2x2-2ax+10≥0,△=4a2-8,当-时,f′(x)≥0恒成立,所以当a时,f(x)在(0,+∞)上单调递增,②当a>时,∵2x2-2ax+10≥0,x>或0<<2x2-2ax+10<0,<<,∴f(x)在(0,),()上单调递增,在(,)单调递减,(2)∵a∈(1,),+2x-2a>0,∴f′(x)>0,f(x)在(0,1]单调递增,f(x)max=f(1)=2-2a,存在x0∈(0,1]使得不等式f(x0)+lna>m(a-a2)成立,即2-2a+lna>m(a-a2),∵任意的a∈(1,),∴a-a2<0,即m>恒成立,令g(a)=,∵m>恒成立最后化简为g′(a)==∵任意的a∈(1,),>0,∴g(a)=,a∈(1,)是增函数.∴g(x)<g()=+=∴实数m的取值范围m≥【解析】(1)求解f′(x)=+2x-2a=,x>0,判断2x2-2ax+10的符号,分类得出①当a≤0时,f′(x)>0成立,当-时,f′(x)≥0恒成立,即可得出当a时,f(x)在(0,+∞)上单调递增,②当a>时,求解不等式2x2-2ax+10≥0,2x2-2ax+10<0,得出f(x)在(0,),()上单调递增,在(,)单调递减,(2)f(x)max=f(1)=2-2a,存在x0∈(0,1]使得不等式f(x0)+lna>m(a-a2)成立,即2-2a+lna>m(a-a2),m>恒成立,构造函数g(a)=,利用导数求解即可转化为最值即可判断.利用导数工具讨论函数的单调性,是求函数的值域和最值的常用方法,同学们在做题的同时,可以根据单调性,结合函数的草图来加深对题意的理解.22.在圆内接四边形ABCD中,AC与BD交于点E,过点A作圆的切线交CB的延长线于点F.若AB=AD,AF=18,BC=15,求AE的长.【答案】解:∵AF是圆的切线,且AF=18,BC=15,∴由切割线定理可得AF2=FB•FC,∴182=FB(FB+15),∴FB=12,∵AB=AD,∴∠ABD=∠ADB,∵AF是圆的切线,∴∠FAB=∠ADB,∴∠FAB=∠ABD,∴AF∥BD,∵AD∥FC,∴四边形ADBF为平行四边形,∴AD=FB=12,∵∠ACF=∠ADB=∠F,∴AC=AF=18,∵,∴,∴AE=8.故答案为:8.【解析】由切割线定理,求出FB,再证明四边形ADBF为平行四边形,求出AD=AB,利用,可求AE的长.本题考查与圆有关的比例线段,考查切割线定理,考查学生的计算能力,属于中档题.23.以平面直角坐标系的原点为极点,以x轴的正半轴为极轴建立极坐标系,已知圆O 的参数方程是和直线l的极坐标方程是ρsin(θ-)=.(Ⅰ)求圆O和直线l的直角坐标方程;(Ⅱ)求直线l与圆O公共点的一个极坐标.【答案】解:(Ⅰ)圆O的参数方程可以化为:,所以圆O的直角坐标方程是:.转化为:x2+y2-x-y=0直线l的极坐标方程可以化为:,所以直线l的直角坐标方程为:x-y+1=0;(Ⅱ)由,解得:,故直线l与圆O公共点为(0,1),该点的一个极坐标为(1,).【解析】(Ⅰ)首先把圆的参数方程转化为直角坐标方程,进一步把标准形式转化为一般式,再把直线的极坐标形式转化为直角坐标的形式.(Ⅱ)利用两个方程建立方程组,解出交点坐标,最后把直角坐标形式转化为极坐标的形式.本题考查的知识要点:极坐标方程与直角坐标方程的互化,直线与圆的位置关系,解方程组的应用,点的直角坐标和极坐标的互化,主要考查学生的应用能力.24.设函数f(x)=|2x+1|-|x-3|.(Ⅰ)解不等式f(x)>0;(Ⅱ)已知关于x的不等式a-3|x-3|<f(x)恒成立,求实数a的取值范围.【答案】解:(Ⅰ)不等式f(x)>0等价于|2x+1|>|x-3|,两边平方得:4x2+4x+1>x2-6x+9,即3x2-10x-8>0,解得x<-或x>4,所以原不等式的解集是:(-∞,-)∪(4,+∞);(Ⅱ)不等式a-3|x-3|<f(x)等价于a<|2x+1|+2|x-3|,因为|2x+1|+2|x-3|≥|(2x+1)-2(x-3)|=7,即有a<7.所以a的取值范围是(-∞,7).【解析】(Ⅰ)运用两边平方法,去绝对值,再由二次不等式的解法,即可得到所求解集;(Ⅱ)运用参数分离和不等式恒成立思想方法,由绝对值不等式的性质,求得右边的最大值,即可得到所求a的范围.本题考查绝对值不等式的解法,主要考查绝对值不等式的性质和平方法解绝对值的方法,考查运算能力,属于中档题.。

江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺数学(理)试题(一)

江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺数学(理)试题(一)江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺数学(理)试题(一)第Ⅰ卷一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U R =,集合{}|2A x x =≥,{|05}B x x =≤<,则集合)U C A B ?=(( ) A .{|02}x x << B .{|02}x x <≤ C .{|02}x x ≤<D.{|02}x x ≤≤2. 设复数i z --=1(为虚数单位),z 的共轭复数为z ,则=?-|)1(|z z ( )3. 在正项等比数列}{n a 中,11=a ,前n 项和为n S ,且423,,a a a -成等差数列,则7S 的值为( )A. 125B. 126C. 127D. 1284. 已知函数()cos f x x x =,为了得到函数()sin 2cos 2g x x x =+的图象,只需要将()y f x =的图象( ) A. 向右平移4π个单位长度 B. 向左平移4π个单位长度C. 向右平移8π个单位长度D. 向左平移8π个单位长度5. 若n 的展开式中第四项为常数项,则n =( )A .4B .5C .6D .76.给四面体ABCD 的六条棱分别涂上红,黄,蓝,绿四种颜色中的一种,使得有公共顶点的棱所涂的颜色互不相同,则不同的涂色方法共有( )A . 96B .144 C. 240 D. 360 7.已知离心率为e 的双曲线和离心率为22的椭圆有相同的焦点P F F ,,21是两曲线的一个公共点,若321π=∠PF F ,则e 等于( )9. 已知变量y x ,满足约束条件若52-≥+y x 恒成立,则实数a 的取值范围为( )A. (-∞,-1]B. [-1,+∞)C. [-1,1]D. [-1,1)10.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( ) A. 3108cm B.1003cm C.92 3cm D.84 3cm11.已知函数xx x a x f +-+=1)1(2ln )((R a ∈)定义域为)1,0(,则)(x f 的图像不可能是( )A. B. C. D.12.设x R ∈,若函数()f x 为单调递增函数,且对任意实数x ,都有()1xf f x e e ??-=+(e 是自然对数的底数),则()ln 2f =()第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,共20分。

南昌市十所省重点中学二模突破冲刺交流试卷(10).doc

高中化学学习材料唐玲出品南昌市十所省重点中学2015年二模突破冲刺交流试卷(10)高三理综化学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第33—40为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子量: C—12 H—1 Cl—35.5 S—32 O—16 Fe--56第I卷一、选择题:本题共18小题,每小题6分,在每小题给出的4个选项中,只有一项是符合题目要求的。

7.化学与生活、社会密切相关,下列有关说法中正确的是A. “低碳生活”是指生活中尽量使用含碳量较低的物质B. 燃煤中加入CaO后可减少酸雨的发生及温室气体的排放C. 纤维素在人体内可水解为葡萄糖,是人类重要的营养物质之一D. 鼓励汽车、家电“以旧换新”,可减少环境污染,发展循环经济,促进节能减排8. 在混合体系中,确认化学反应先后顺序有利于问题的解决,下列反应先后顺序判断正确的是A.在含等物质的量的FeBr2、FeI2的溶液中缓慢通入Cl2:I-、Br-、Fe2+B.在含等物质的量的Fe3+、Cu2+、H+的溶液中加入Zn:Fe3+、Cu2+、H+、Fe2+C.在含等物质的量的Ba(OH)2、KOH的溶液中通入CO2:KOH、Ba(OH)2、BaCO3、K2CO3 D.在含等物质的量的AlO2-、OH-、CO32-溶液中,逐滴加入盐酸:AlO2-、Al(OH)3、OH-、CO32-9.组成和结构可用表示的有机物共有(不考虑立体结构()A.24种 B.28种 C.32种 D.36种10. 常温下在10mL 0.1mol/L Na2CO3溶液中逐滴加入0.1mol/L HCl溶液,溶液的pH逐渐降低,此时溶液中含碳元素的微粒物质的量的百分含量(纵轴)也发生变化(CO2因逸出未画出,且因气体逸出引起的溶液体积变化),如图所示:下列说法正确的是:()A.在0.1mol/L Na2CO3溶液中:C(Na+)+ C(H+)= C(CO32-)+ C(HCO3-) +C(OH-)B.当溶液的PH=7时,溶液的总体积为20 mLC.在B点所示的溶液中,浓度最大的阳离子是Na+D.在A点所示的溶液中,C(CO32-)= C(HCO3-)> C(H+)> C(OH-)11.短周期主族X、Y、Z、W、Q的原子序数依次增大,X+中只含有1个质子,Y原子的最外层电子数是内层电子数的2倍,Z 和 Q同主族且能形成两种常见化合物,W是短周期中原子半径最大的元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年江西省南昌市十所省重点中学 高考数学二模试卷(理科)(六)一、选择题:本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合}5.0log |{},02|{42<=<--=x x B x x x A ,则( ) A.φ=B A B.A B ⊆ C.R B C A R = D.B A ⊆【考点】: 集合的包含关系判断及应用. 【专题】: 集合. 【分析】: 先根据不等式的解法求出集合A ,再根据对数的单调性求出集合B ,根据子集的关系即可判断.【解答】: 解:∵x 2﹣x ﹣2<0, ∴(x ﹣2)(x+1)<0, 解得﹣1<x <2 ∴A=(﹣1,2), ∵log 4x <0.5=log 42, ∴0<x <2, ∴B=(0,2), ∴B ⊆A , 故选:B 【点评】: 本题考查了不等式的解法和函数的性质,以及集合的包含关系,属于基础题.2.(5分)在复平面内,复数对应的点的坐标为( )A . (0,﹣1)B .C .D .【考点】: 复数代数形式的乘除运算. 【专题】: 数系的扩充和复数. 【分析】: 利用复数的运算法则、几何意义即可得出. 【解答】: 解:复数===﹣i 对应的点的坐标为(0,﹣1), 故选:A . 【点评】: 本题考查了复数的运算法则、几何意义,属于基础题. 3.(5分)已知y=f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y=f (|x|);②y=f (﹣x );③y=xf (x );④y=f (x )+x . A . ①③ B . ②③ C . ①④ D . ②④【考点】:函数奇偶性的判断.【专题】:计算题.【分析】:由奇函数的定义:f(﹣x)=﹣f(x)逐个验证即可【解答】:解:由奇函数的定义:f(﹣x)=﹣f(x)验证①f(|﹣x|)=f(|x|),故为偶函数②f[﹣(﹣x)]=f(x)=﹣f(x),为奇函数③﹣xf(﹣x)=﹣x•[﹣f(x)]=xf(x),为偶函数④f(﹣x)+(﹣x)=﹣[f(x)+x],为奇函数可知②④正确故选D【点评】:题考查利用函数的奇偶性的定义判断函数的奇偶性,是基础题.4.(5分)已知向量,,若向量满足与的夹角为120°,,则=()A.1 B.C.2 D.【考点】:平面向量数量积的运算.【专题】:平面向量及应用.【分析】:运用坐标求解,=(x,y),得出x﹣2y=﹣5,根据夹角公式得出=,即=,整体代入整体求解即可得出=2.选择答案.【解答】:解:设=(x,y)∵,,∴4=(﹣1,2),|4|=,∵,∴﹣x+2y=5,即x﹣2y=﹣5,∵向量满足与的夹角为120°∴=,即=,∵=,∴=2.故||=2,故选:D . 【点评】: 本题综合考查了平面向量的数量积的运算,运用坐标求解数量积,夹角,模,难度不大,计算准确即可完成题目.5.(5分)设}{n a 是公差不为零的等差数列,满足27262524a a a a +=+,则该数列的前10项和等于( )A . ﹣10B . ﹣5C . 0D . 5【考点】: 等差数列的前n 项和. 【专题】: 等差数列与等比数列. 【分析】: 设出等差数列的首项和公差,把已知等式用首项和公差表示,得到a 1+a 10=0,则可求得数列的前10项和等于0.【解答】: 解:设等差数列{a n }的首项为a 1,公差为d (d ≠0), 由,得,整理得:2a 1+9d=0,即a 1+a 10=0, ∴.故选:C . 【点评】: 本题考查了等差数列的通项公式,考查了等差数列的前n 项和,是基础的计算题. 6.(5分)某同学想求斐波那契数列0,1,1,2,…(从第三项起每一项等于前两项的和)的前10项的和,他设计了一个程序框图,那么在空白矩形框和判断框内应分别填入的语句是( )A.c=a;i≤9 B.b=c;i≤9 C.c=a;i≤10 D.b=c;i≤10【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:由斐波那契数列从第三项起每一项等于前两项的和,由程序框图从而判断空白矩形框内应为:b=c,模拟执行程序框图,当第8次循环时,i=10,由题意不满足条件,退出执行循环,输出S的值,即可得判断框内应为i≤9.【解答】:解:由题意,斐波那契数列0,1,1,2,…,从第三项起每一项等于前两项的和,分别用a,b来表示前两项,c表示第三项,S为数列前n项和,故空白矩形框内应为:b=c,第1次循环:a=0,b=1,S=0+4=1,i=3,求出第3项c=1,求出前3项和S=0+1+1=2,a=1,b=1,满足条件,i=4,执行循环;第2次循环:求出第4项c=1+1=2,求出前4项和S=0+1+1+2=4,a=1,b=2,满足条件,i=5,执行循环;…第8次循环:求出第10项c,求出前10项和S,此时i=10,由题意不满足条件,退出执行循环,输出S的值.故判断框内应为i≤9.故选:B.【点评】:本题考查的知识点是程序框图解决实际问题,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断.算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.7.(5分)若不等式组表示的平面区域是面积为的三角形,则m的值为()A.B.C.D.【考点】:二元一次不等式(组)与平面区域.【专题】:不等式的解法及应用.【分析】:作出不等式组对应的平面区域,利用三角形的面积,即可得到结论.【解答】:解:作出不等式组对应的平面区域如图,若对应的区域为三角形,则m<2,由,得,即C(m,m),由,得,即B(m,),由,得,即A(2,2),则三角形ABC的面积S=×(﹣m)×(2﹣m)=,即(2﹣m)2=,解得2﹣m=,或2﹣m=﹣,即m=或m=(舍),故m=;故选:C【点评】:本题主要考查线性规划的应用,利用数形结合作出对应的图象,利用三角形的面积公式是解决本题的关键.8.(5分)F是双曲线C:﹣=1(a>0,b>0)的右焦点,过点F向C的一条渐近线引垂线,垂足为A,交另一条渐近线于点B.若2=,则C的离心率是()A.B.2 C.D.【考点】:双曲线的简单性质.【专题】:计算题;直线与圆;圆锥曲线的定义、性质与方程.【分析】:设一渐近线OA的方程为y=x,设A(m,m),B(n,﹣),由2=,求得点A的坐标,再由FA⊥OA,斜率之积等于﹣1,求出a2=3b2,代入e==进行运算.【解答】:解:由题意得右焦点F(c,0),设一渐近线OA的方程为y=x,则另一渐近线OB的方程为y=﹣x,设A(m,),B(n,﹣),∵2=,∴2(c﹣m,﹣)=(n﹣c,﹣),∴2(c﹣m)=n﹣c,﹣=﹣,∴m=c,n=,∴A(,).由FA⊥OA可得,斜率之积等于﹣1,即•=﹣1,∴a2=3b2,∴e===.故选C.【点评】:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得点A的坐标是解题的关键.9.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.4 B.21+C.3+12 D.+12【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:根据题意得出该几何体是如图红色的正6边形截得的正方体下方的几何体,利用几何体的对性求解部分表面积,再运用正6边形面积公式求解即可.【解答】:解:根据三视图得出该几何体是如图红色的正6边形截得的正方体下方的几何体,∵可得出正方体的棱长为2,∴根据分割的正方体的2个几何体的对称性,得出S1==12,红色的正6边形的面积为:6××=3∴该几何体的表面积为12+3.故选:C【点评】:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状,根据该几何体的性质求解面积公式.10.(5分)如图是函数图象的一部分,对不同的x 1,x2∈[a,b],若f(x1)=f(x2),有,则()A.f(x)在上是减函数B.f(x)在上是减函数C.f(x)在上是增函数D.f(x)在上是减函数【考点】:正弦函数的图象.【专题】:三角函数的图像与性质.【分析】:由条件根据函数y=Asin(ωx+φ)的图象特征,求得a+b=﹣φ,再根据f(a+b)=2sinφ=,求得φ的值,可得f(x)的解析式,再根据正弦函数的单调性得出结论.【解答】:解:由函数图象的一部分,可得A=2,函数的图象关于直线x==对称,∴a+b=x1+x2.由五点法作图可得2a+φ=0,2b+φ=π,∴a+b=﹣φ.再根据f(a+b)=2sin(π﹣2φ+φ)=2sinφ=,可得sinφ=,∴φ=,f(x)=2sin(2x+).在上,2x+∈(﹣,),故f(x)在上是增函数,故选:C.【点评】:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象特征,正弦函数的单调性,属于中档题.11.(5分)过抛物线C:y2=2px(p>0)的焦点且斜率为2的直线与C交于A、B两点,以AB为直径的圆与C的准线有公共点M,若点M的纵坐标为2,则p的值为()A.1 B. 2 C. 4 D.8【考点】:抛物线的简单性质.【专题】:直线与圆;圆锥曲线的定义、性质与方程.【分析】:取AB的中点N,分别过A、B、N作准线的垂线AP、BQ、MN,垂足分别为P、Q、M,作出图形,利用抛物线的定义及梯形的中位线性质可推导,|MN|=|AB|,从而可判断圆与准线的位置关系:相切,确定抛物线y2=2px的焦点,设直线AB的方程,与抛物线方程联立,由韦达定理可得AB的中点M的纵坐标为,由条件即可得到p=4.【解答】:解:取AB的中点N,分别过A、B、N作准线的垂线AP、BQ、MN,垂足分别为P、Q、M,如图所示:由抛物线的定义可知,|AP|=|AF|,|BQ|=|BF|,在直角梯形APQB中,|MN|=(|AP|+|BQ|)=(|AF|+|BF|)=|AB|,故圆心N到准线的距离等于半径,即有以AB为直径的圆与抛物线的准线相切,由M的纵坐标为2,即N的纵坐标为2,抛物线y2=2px的焦点坐标为(,0),设直线AB的方程为y=2(x﹣),即x=y+,与抛物线方程y2=2px联立,消去x,得y2﹣py﹣p2=0由韦达定理可得AB的中点N的纵坐标为,即有p=4,故选C.【点评】:本题考查直线与抛物线的位置关系、直线圆的位置关系,考查抛物线的定义,考查数形结合思想,属中档题.12.(5分)已知函数f(x)=(a﹣3)x﹣ax3在[﹣1,1]的最小值为﹣3,则实数a的取值范围是()A.(﹣∞,﹣1] B.[12,+∞)C.[﹣1,12] D.【考点】:函数的最值及其几何意义.【专题】:计算题;函数的性质及应用.【分析】:分析四个选项,可发现C、D选项中a可以取0,故代入a=0可排除A、B;再注意C、D选项,故将代入验证即可;从而得到答案.【解答】:解:当a=0时,f(x)=﹣3x,x∈[﹣1,1],显然满足,故a可以取0,故排除A,B;当时,,,所以f(x)在[﹣1,1]上递减,所以,满足条件,故排除C,故选:D.【点评】:本题考查了函数的最值的求法及排除法的应用,属于中档题.二、填空题:本大题共4小题,每小题5分1,3,5.13.(5分)展开式中的常数项为.【考点】:二项式系数的性质.【专题】:计算题;二项式定理.【分析】:在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】:解:的展开式的通项公式为T r+1=令15﹣5r=0,解得r=3,故展开式中的常数项为80,故答案为:80.【点评】:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数.14.(5分)A、B、C三点在同一球面上,∠BAC=135°,BC=2,且球心O到平面ABC的距离为1,则此球O的体积为.【考点】:球的体积和表面积.【专题】:空间位置关系与距离;球.【分析】:运用正弦定理可得△ABC的外接圆的直径2r,再由球的半径和球心到截面的距离、及截面圆的半径构成直角三角形,即可求得球的半径,再由球的体积公式计算即可得到.【解答】:解:由于∠BAC=135°,BC=2,则△ABC的外接圆的直径2r==2,即有r=,由于球心O到平面ABC的距离为1,则由勾股定理可得,球的半径R===,即有此球O的体积为V=πR3=π×()3=4.故答案为:4.【点评】:本题考查球的体积的求法,主要考查球的截面的性质:球的半径和球心到截面的距离、及截面圆的半径构成直角三角形,同时考查正弦定理的运用:求三角形的外接圆的直径,属于中档题.15.(5分)如图,在平面直角坐标系xoy中,将直线y=与直线x=1及x轴所围成的图形绕x轴旋转一周得到一个圆锥,圆锥的体积V圆锥=π()2dx=|=据此类比:将曲线y=x2(x≥0)与直线y=2及y轴所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=.【考点】:用定积分求简单几何体的体积.【专题】:导数的概念及应用;推理和证明.【分析】:根据类比推理,结合定积分的应用,即可求出旋转体的体积.【解答】:解:根据类比推理得体积V==πydy=,故答案为:2π【点评】:本题主要考查旋转体的体积的计算,根据类比推理是解决本题的关键.16.(5分)已知数列{a n}满足,S n是其前n项和,若S2015=﹣1007﹣b,且a1b>0,则的最小值为.【考点】:数列递推式;基本不等式.【专题】:点列、递归数列与数学归纳法.【分析】:由已知递推式得到a2+a3=﹣2,a4+a5=4,…,a2012+a2013=2012,a2014+a2015=﹣2014,累加可求S2015,结合S2015=﹣1007﹣b求得a1+b=1,代入展开后利用基本不等式求最值.【解答】:解:由已知得:a2+a3=﹣2,a4+a5=4,…,a2012+a2013=2012,a2014+a2015=﹣2014,把以上各式相加得:S2015﹣a1=﹣2014+1006=﹣1008,∴S2015=a1﹣1008=﹣1007﹣b,即a1+b=1,∴=.故答案为:.【点评】:本题考查了数列递推式,考查了累加法求数列的和,训练了利用基本不等式求最值,是中档题.三、解答题:本大题共5小题,共70分,解答须写出文字说明、证明过程和演算步骤.17.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,且.(Ⅰ)求角A的大小;(Ⅱ)若a=3,sinC=2sinB,求b、c的值.【考点】:余弦定理;正弦定理.【专题】:解三角形.【分析】:(1)由已知利用正弦定理余弦定理可得:=,化为2sinCcosA=sin(A+B)=sinC,即可得出;(2)利用正弦定理余弦定理即可得出.【解答】:解:(1)由正弦定理余弦定理得=,∴2sinCcosA=sin(A+B)=sinC,∵sinC≠0,∴,∵A∈(0,π),∴.(2)由sinC=2sinB,得c=2b,由条件a=3,,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2﹣bc=3b2,解得.【点评】:本题考查了正弦定理余弦定理的应用、两角和差的正弦公式、三角形内角和定理,考查了推理能力与计算能力,属于中档题.18.(12分)根据最新修订的《环境空气质量标准》指出空气质量指数在0:50,各类人群可正常活动.某市环保局在2014年对该市进行了为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为[0,10),[10,20),[20,30),[30,40),[40,50],由此得到样本的空气质量指数频率分布直方图,如图.(Ⅰ)求a的值;并根据样本数据,试估计这一年度的空气质量指数的平均值;(Ⅱ)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为ξ,求ξ的分布列,并估计一个月(30天)中空气质量能达到“最优等级”的天数.【考点】:离散型随机变量及其分布列;频率分布直方图;离散型随机变量的期望与方差.【专题】:概率与统计.【分析】:(Ⅰ)通过概率的和为1,求出a,求出50个样本中空气质量指数的平均值,即可得到由样本估计总体推出结果.(Ⅱ)利用样本估计总体,推出ξ~B(2,0.3).ξ的可能取值为0,1,2,求出概率,得到ξ的分布列,然后求解期望,得到一个月(30天)中空气质量能达到“最优等级”的天数.【解答】:解:(Ⅰ)由题意,得(0.03+0.032+a+0.01+0.008)×10=1解得a=0.02…(3分)50个样本中空气质量指数的平均值为=0.1×5+0.2×15+0.32×25+0.3×35+0.08×45=25.6.由样本估计总体,可估计2014年这一年度空气质量指数的平均值约为25.6 …(6分)(Ⅱ)利用样本估计总体,该年度空气质量指数在[0,20]内为“最优等级”,且指数达到“最优等级”的概率为0.3,则ξ:B(2,0.3).ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.∴ξ的分布列为:…(8分)Eξ=.(或者Eξ=2×0.3=0.6),…(10分)一个月(30天)中空气质量能达到“最优等级”的天数大约为30×0.3=9天.…(12分)【点评】:本题考查实数值的求法,考查平均值的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意频率分布直方图的合理运用.19.(12分)如图所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1.(Ⅰ)求证:A1B⊥AD;(Ⅱ)若AD=AB=2BC,∠A1AB=60°,点D在平面ABB1A1上的射影恰为线段A1B的中点,求平面DCC1D1与平面ABB1A1所成锐二面角的余弦值.【考点】:二面角的平面角及求法;直线与平面垂直的性质.【专题】:空间位置关系与距离;空间角.【分析】:(Ⅰ)通过已知条件易得=、∠DAB=∠DAA1,利用=0即得A1B⊥AD;(Ⅱ)通过建立空间直角坐标系O﹣xyz,平面DCC1D1与平面ABB1A1所成锐二面角的余弦值即为平面ABB1A1的法向量与平面DCC1D1的一个法向量的夹角的余弦值,计算即可.【解答】:(Ⅰ)通过条件可知=、∠DAB=∠DAA1,利用=即得A1B⊥AD;(Ⅱ)解:设线段A1B的中点为O,连接DO、AB1,由题意知DO⊥平面ABB1A1.因为侧面ABB1A1为菱形,所以AB1⊥A1B,故可分别以射线OB、射线OB1、射线OD为x轴、y轴、z轴的正方向建立空间直角坐标系O﹣xyz,如图所示.设AD=AB=2BC=2a,由∠A 1AB=60°可知|0B|=a,,所以=a,从而A(0,a,0),B(a,0,0),B1(0,a,0),D(0,0,a),所以==(﹣a,a,0).由可得C(a,a,a),所以=(a,a,﹣a),设平面DCC1D1的一个法向量为=(x0,y0,z0),由•=•=0,得,取y0=1,则x0=,z0=,所以=(,1,).又平面ABB1A1的法向量为=D(0,0,a),所以===,故平面DCC1D1与平面ABB1A1所成锐二面角的余弦值为.【点评】:本题考查二面角,空间中两直线的位置关系,向量数量积运算,注意解题方法的积累,建立坐标系是解决本题的关键,属于中档题.20.(12分)已知椭圆E:的焦距为2,A是E的右顶点,P、Q是E上关于原点对称的两点,且直线PA的斜率与直线QA的斜率之积为.(Ⅰ)求E的方程;(Ⅱ)过E的右焦点作直线与E交于M、N两点,直线MA、NA与直线x=3分别交于C、D两点,设△ACD与△AMN的面积分别记为S1、S2,求2S1﹣S2的最小值.【考点】:椭圆的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:(I)通过P、Q是E上关于原点对称的两点,且直线PA的斜率与直线QA的斜率之积为,及焦距为2,计算可得a2=4,b2=3,从而可得E的方程;(II)设直线MN的方程为x=my+1,M(x1,y1),N(x2,y2),可得直线MA的方程,联立直线MN与椭圆E的方程,利用韦达定理可得S1,S2的表达式,通过换元法计算可得结论•【解答】:解:(I)根据题意,设P(x0,y0),Q(﹣x0,﹣y0),则,,依题意有,又c=1,所以a2=4,b2=3,故椭圆E的方程为:;(II)设直线MN的方程为x=my+1,代入E的方程得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),由韦达定理知,又直线MA的方程为,将x=3代入,得,同理,所以,所以,,则2,令,则m2=t2﹣1,所以,记,则,所以f(t)在[1,+∞)单调递增,从而f(t)的最小值为,故2S1﹣S2的最小值为•【点评】:本题考查椭圆的简单性质,直线与椭圆的位置关系,韦达定理,换元法等知识,注意解题方法的积累,属于难题.21.(12分)已知函数f(x)=lnx﹣mx2,g(x)=+x,m∈R令F(x)=f(x)+g(x).(Ⅰ)当m=时,求函数f(x)的单调递增区间;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值;(Ⅲ)若m=﹣2,正实数x1,x2满足F(x1)+F(x2)+x1x2=0,证明:x1+x2.【考点】:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【专题】:函数的性质及应用;导数的综合应用.【分析】:(1)先求函数的定义域,然后求导,通过导数大于零得到增区间;(2)不等式恒成立问题转化为函数的最值问题,应先求导数,研究函数的单调性,然后求函数的最值;(3)联系函数的F(x)的单调性,然后证明即可.注意对函数的构造.【解答】:解:(1).由f′(x)>0得1﹣x2>0又x>0,所以0<x<1.所以f(x)的单增区间为(0,1).(2)令x+1.所以=.当m≤0时,因为x>0,所以G′(x)>0所以G(x)在(0,+∞)上是递增函数,又因为G(1)=﹣.所以关于x的不等式G(x)≤mx﹣1不能恒成立.当m>0时,.令G′(x)=0得x=,所以当时,G′(x)>0;当时,G′(x)<0.因此函数G(x)在是增函数,在是减函数.故函数G(x)的最大值为.令h(m)=,因为h(1)=,h(2)=.又因为h(m)在m∈(0,+∞)上是减函数,所以当m≥2时,h(m)<0.所以整数m的最小值为2.(3)当m=﹣2时,F(x)=lnx+x2+x,x>0.由F(x1)+F(x2)+x1x2=0,即.化简得.令t=x1x2,则由φ(t)=t﹣lnt得φ′(t)=.可知φ′(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.所以φ(t)≥φ(1)=1.所以,即成立.【点评】:本题考查了利用导数研究函数的单调性的基本思路,不等式恒成立问题转化为函数最值问题来解的方法.属于中档题,难度不大.【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)如图,已知AB为圆O的一条直径,以端点B为圆心的圆交直线AB于C、D 两点,交圆O于E、F两点,过点D作垂直于AD的直线,交直线AF于H点.(Ⅰ)求证:B、D、H、F四点共圆;(Ⅱ)若AC=2,AF=2,求△BDF外接圆的半径.【考点】:圆內接多边形的性质与判定;与圆有关的比例线段.【专题】:直线与圆.【分析】:(Ⅰ)由已知条件推导出BF⊥FH,DH⊥BD,由此能证明B、D、F、H四点共圆.(2)因为AH与圆B相切于点F,由切割线定理得AF2=AC•AD,解得AD=4,BF=BD=1,由△AFB∽△ADH,得DH=,由此能求出△BDF的外接圆半径.【解答】:(Ⅰ)证明:因为AB为圆O一条直径,所以BF⊥FH,…(2分)又DH⊥BD,故B、D、F、H四点在以BH为直径的圆上,所以B、D、F、H四点共圆.…(4分)(2)解:因为AH与圆B相切于点F,由切割线定理得AF2=AC•AD,即(2)2=2•AD,解得AD=4,…(6分)所以BD=,BF=BD=1,又△AFB∽△ADH,则,得DH=,…(8分)连接BH,由(1)知BH为DBDF的外接圆直径,BH=,故△BDF的外接圆半径为.…(10分)【点评】:本题考查四点共圆的证明,考查三角形处接圆半径的求法,解题时要认真审题,注意切割线定理的合理运用.【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.已知极坐标系的极点与直角坐标第的原点重合,极轴与直角坐标系的x轴的正半轴重合.点A、B的极坐标分别为(2,π)、(a∈R),曲线C的参数方程为为参数)(Ⅰ)若,求△AOB的面积;(Ⅱ)设P为C上任意一点,且点P到直线AB的最小值距离为1,求a的值.【考点】:简单曲线的极坐标方程.【专题】:坐标系和参数方程.【分析】:(1)当时,A(﹣2,0),B(2,2),由于k OB=1,可得∠AOB=135°.利用S△OAB=即可得出.(2)曲线C的参数方程为为参数),化为(x﹣1)2+y2=4,圆心C(1,0),半径y=2.由题意可得:圆心到直线AB的距离为3,对直线AB斜率分类讨论,利用点到直线的距离公式即可得出.【解答】:解:(1)当时,A(﹣2,0),B(2,2),∵k OB=1,∴∠AOB=135°.∴.(2)曲线C的参数方程为为参数),化为(x﹣1)2+y2=4,圆心C(1,0),半径y=2.∵点P到直线AB的最小值距离为1,∴圆心到直线AB的距离为3,当直线AB斜率不存在时,直线AB的方程为x=﹣2,显然,符合题意,此时.当直线AB存在斜率时,设直线AB的方程为y=k(x+2),则圆心到直线AB的距离,依题意有,无解.故.【点评】:本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形的面积计算公式、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】(共1小题,满分0分)24.设函数f(x)=|x|+|2x﹣a|.(Ⅰ)当a=1时,解不等式f(x)≤1;(Ⅱ)若不等式f(x)≥a2对任意x∈R恒成立,求实数a的取值范围.【考点】:绝对值不等式的解法.【专题】:选作题;不等式.【分析】:(Ⅰ)利用绝对值的几何意义,写出分段函数,即可解不等式f(x)≤1;(Ⅱ)由f(x)≥a2对任意x∈R恒成立等价于|k|+|2k﹣1|≥|a|对任意k∈R恒成立,即可求实数a的取值范围.【解答】:解:(Ⅰ)当a=1时,…(3分)根据图易得f(x)≤1的解集为…(5分)(Ⅱ)令x=ka(k∈R),由f(x)≥a2对任意x∈R恒成立等价于|k|+|2k﹣1|≥|a|对任意k∈R恒成立…(6分)由(1)知|k|+|2k﹣1|的最小值为,所以…(8分)故实数a的取值范围为…(10分)【点评】:本题主要考查函数的恒成立问题,绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论、转化的数学思想,属于中档题.。

相关文档
最新文档