12.2.4直角三角形全等的判定定理
12.2 第4课时 用“HL”判定两个直角三角形全等课件2024—2025学年人教版数学八年级上册

夯实基础 能力提升
夯实基础 能力提升 思维拓展
(3)如图3,过点A分别作AM⊥x轴于点M,AN⊥y轴于点N, ∴∠ANB=∠AMC=90°. ∵点A(2,2),∴AN=AM=2. ∵AB=AC,由(1)知BN=MC, ∴OC-OB=OM+MC-(BN-ON)=OM+ON=4.
夯实基础 能力提升 思维拓展
解:(1)证明:如图1,在Rt△ADB和Rt△AEC中,AB=AC, AD=AE, ∴Rt△ADB≌Rt△AEC(HL),∴EC=DB. (2)证明:如图2,连接AF.由(1)知EC=DB. ∵∠AEF=∠D=90°,AF=AF,AD=AE, ∴Rt△ADF≌Rt△AEF(HL), ∴DF=EF,∴CF=EF+CE=DF+DB.
夯实基础 能力提升 思维拓展
5.如图,∠B=∠E=90°,AC=DF,AB=DE.求证:BF= EC.
证明:∵∠B=∠E=90°, ∴在 Rt△ABC 和 Rt△DEF 中,AACB==DDEF,, ∴Rt△ABC≌Rt△DEF(HL), ∴BC=EF, ∴BC-FC=EF-FC,即BF=EC.
夯实基础 能力提升 思维拓展
2 直角三角形全等的判定方法综合
思维拓展
7.下列条件中不一定能判定两个直角三角形全等的是
( D) A.两条直角边对应相等 B.有两条边对应相等 C.一条边和一锐角对应相等 D.一条边和一个角对应相等
夯实基础 能力提升 思维拓展
12.2(4)斜边、直角边判定三角形全等(HL)

“SSS” “ SAS ” “ ASA ” “ AAS ”
“ SSS ”“ SAS ” “ ASA ” “ AAS ” “ HL ”
灵活运用各种方法证明直角三角形全等
应用
再见
A
(南宁中考)如图,在ΔABC中,D是BC的中点, DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF。 (1)图中有几对全等的三角形?请一一列出。 (2)选择一对你认为全等的三角形进行论证。
E B D
F C
解:(1)图中共有三对全等的三角形,分别是: △BDE≌△CDF, △ADE≌△ADF, △ABD≌△ACD。 (2)∵DE⊥AB,DF⊥AC,∴ ∠BED = ∠CFD = 90°。 ∵D是BC的中点,∴BD=CD 在Rt△BDE和Rt△CDF中 BD=CD BE=CF ∴Rt△BDE≌Rt△CDF(HL)
α
a C
c
A
N
直角三角形全等的判定方法 斜边和一条直角边对应相等的两个直 角 三角形全等. 简写:“斜边、直角边”或 “HL” A 数学表达式: 在Rt△ABC 和Rt△ DEF中 A B=DE A C= DF
∴
C D F
B
Rt△ABC≌Rt△ DEF(H L)
E
你现在能够用几种方法说明两个直角三角形全等?
SSS AAS ASA SAS HL
前四个判定方法都需要三个条件,而“HL” 只有两个条件,你怎么看?
注意: 1、HL只能判定直角三角形全等,不 能判定一般三角形全等。
2、判定一般三角形全等的方法可以判 定直角三角形全等。
A
AC=DF ∠A=∠D ( ASA ) (1) _______,
BC=EF (SAS) (2) AC=DF,________ (3) AB=DE,BC=EF ( HL ) AB=DE( HL ) (4) AC=DF, ______ (5) ∠A=∠D, BC=EF ( AAS ) ∠B=∠E (6) ________,AC=DF ( AAS ) F
12.2.4全等三角形的判定(第4课时HL)八年级数学上册(人教版)

情境引入
人教版数学八年级上册
上节课我们学习了什么方法可以判定两个三角形全等? 三条边分别相等的三角形全等(SSS). 两边和它们的夹角分别相等的两个三角形全等(SAS). 两角和它们的夹边分别相等的两个三角形全等(ASA) 两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS) 除了上面的方法,还有其他方法能判定两个三角形全等吗? 我们继续探索三角形全等的条件.
D FE
A
B
课堂检测
人教版数学八年级上册
2.如图,C是路段AB的中点,两人从C同时出发,以相同的速
度分别沿着两条直线行走,并同时到达D,E两地.DA⊥AB,
EB⊥AB.D,E与路段AB的距离相等吗?为什么?
解:相等,理由如下:AC=BC.
∵同时出发,同时到达,且速度相同,
∴AE=DF∥CD.
AC=A′C′, BC=B′C′,
B┐
C
A′
∴Rt△ABC≌Rt△A′B′C′(HL).
提醒:用“HL”证明两个直角三角形全等,书写时两
个三角形符号前面要加上“Rt”.
┐
B′
C′
典例精析
人教版数学八年级上册
例1:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.
求证:BC=AD.
证明:∵AC⊥BC,BD⊥AD,
1.如图,AE⊥BC,DF⊥BC,E,F是垂足,且AE=DF, AB=DC,求证:∠ABC=∠DCB.
证明:∵AE⊥BC,DF⊥BC, ∴在Rt△ABE和Rt△DCF中, AE=DF AB=CD ∴Rt△ABE≌Rt△DCF(HL) ∴∠ABC=∠DCB.
小试牛刀
人教版数学八年级上册
2.已知:如图,AB⊥BC,AD⊥DC,AB=AD,求证:BC=DC. 证明:连接AC.
12.2.4 “斜边、直角边”判定三角形全等

方法一:测量斜边和一个对应的锐角(AAS); 方法二:测量没遮住的一条直角边和一个对应的锐角 (ASA或AAS). 工作人员测量了每个三角形没有被遮住的直角边和斜边, 发现它们分别相等,于是他就肯定“两个直角三角形是全 等的”.你相信他的结论吗?
二、探究新知 多媒体出示教材探究5. 任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′, 使∠C′=′C′ 剪下来,放到Rt△ABC上,它们全等吗? 画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB. 想一想,怎么样画呢?
本节课教学,主要是让学生在回顾全等三角形判定的基础 上,进一步研究特殊的三角形全等的判定的方法,让学生 充分认识特殊与一般的关系,加深他们对公理的多层次的 理解.在教学过程中,让学生充分体验到实验、观察、比 较、猜想、归纳、验证的数学方法,一步步培养他们的逻 辑推理能力.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 •4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
三、巩固练习 如图,两根长度为12米的绳子,一端系在旗杆上,另一 端分别固定在地面两个木桩上,两个木桩离旗杆底部的 距离相等吗?请说明你的理由.
12.2.4直角三角形全等的判定 课件 2024—2025学年人教版数学八年级上册

复习旧知
老师提出问题,学生回答:
1、判定两个三角形全等的方法:
、
、
、
2、如图,Rt△ABC中,直角边是
、
,
斜边是
3、如图,AB⊥BE于C,DE⊥BE于E,
(1)若∠A=∠D,AB=DE,
则△ABC与△DEF
(填“全等”或“不全等” )
根据
(用简写法)
(2)若∠A=∠D,BC=EF,
则△ABC与△DEF
巩固练习
3、判断两个直角三角A)两条直角边对应相等 (B)斜边和一锐角对应相等 (C)斜边和一条直角边对应相等 (D)两个锐角对应相等
巩固练习
4、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量 这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等 吗?说说你的理由。
N
A
B
CM
C′
(1) 先画 ∠MC′N=90°;
N
A
B
C M B′
C′
(2) 在射线 C′M 上截取 B′C′=BC;
N
A
A′
B
C M B′
C′
(3) 以点 B′ 为圆心,AB 长为半径画弧,交射线 C′N 于 A′;
画图思路
A
B
C M B′
(4) 连接 A′B′.
思考:通过上面的探究,你能得出什么结论?
12.2.4 直角三角形全等的判定 2024-2025学年人教版数学八年级上册
素养目标
1、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的 过程; 2、掌握直角三角形全等的条件,并能运用其解决实际问题。 3、探索直角三角形全等条件及其运用的过程中,能够思考并进行简单的推理。
12.2.4直角三角形全等的判定—“HL” 课件 +2023—2024学年人教版八年级数学上册

学以致用
练习2
如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,
AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由.
学习探究
任务二 运用“斜边、直角边(HL)”判定方法证明 两个直角三角形全等
活动3:已知:如图,AB⊥BD,CD⊥BD,AD=BC. 求证:(1)AB=DC;(2)AD∥BC.
情境导入 【思考1】 如果他只带了一个卷尺,能否完成这个任务?
(1)一边一锐角分别相等的两个直角三角形全等.(“ASA”、“AAS”) (2)两直角边分别相等的两个直角三角形全等.(“SAS”)
学习探究
任务一
探索并掌握“斜边、直角边(HL)” 判定两个直角三角形全等
【思考2】一个卷尺可以测得哪些数据?只满足斜边和一条直角边对 应相等的两个直角三角形能全等吗?
与同伴比较,这些直角三角形有怎么样的关系流发言.
学习探究
➢【互学 】
(3分钟)
互学要求:
(组长主持,主动参与,分工合作) ①有序交流:C2先说,其余补充; ②汇总意见:组长汇总,作好记录;
归纳作法:
③准备展示:任务分工,全员展示.
第一步:作∠MC′N=90°.
2.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF。
求证:AE =DF.
学习反思
这节课你学会了哪些知识? 你还有哪些疑惑?
一般三角形
三角形全等 的判定
SSS SAS
也可用来判定直角三角形全等 ASA AAS
直角三角形 HL
课后作业
分层作业: 1. 必做题:P44 T7、T8 2. 选做题:P44 T11
第二步:在射线C′M上截取A′C′=4cm.
12.2第4课时直角三角形全等的判定(HL)
第4课时 直角三角形全等的判定(HL)
2.如图 12-2-45 所示,P 是∠BAC 内一点,且点 P 到 AB,AC 的距离 PE,PF 相等,则直接得到 Rt△PEA≌Rt△PFA 的依据是( C )
A.AAS C.HL
B.ASA D.SSS
图 12-2-45
第4课时 直角三角形全等的判定(HL)
(1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30°,求∠ACF 的度数.
图 12-2-56
第4课时 直角三角形全等的判定(HL)
解:(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°. 在 Rt△ABE 和 Rt△CBF 中,AAEB= =CCFB, , ∴Rt△ABE≌Rt△CBF(HL). (2)∵∠ABC=90°,AB=CB,∴∠BAC=45° ∵∠CAE=30°,∴∠BAE=∠BAC-∠CAE=45°-30°=15°. 由(1)知 Rt△ABE≌Rt△CBF, ∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=15°+45°=60°.
第4课时 直角三角形全等的判定(HL)
14.如图 12-2-57,已知 AD,AF 分别是两个钝角三角形 ABC 和 ABE 的高,如果 AD=AF,AC=AE.求证:BC=BE.
图 12-2-57
第4课时 直角三角形全等的判定(HL)
证明:∵AD,AF 分别是两个钝角三角形 ABC 和 ABE 的高, ∴∠ADC=∠AFE=90°. 在 Rt△ADC 和 Rt△AFE 中,AACD= =AAEF, , ∴Rt△ADC≌Rt△AFE(HL),∴CD=EF. 在 Rt△ABD 和 Rt△ABF 中,AABD= =AABF, ,∴Rt△ABD≌Rt△ABF(HL), ∴BD=BF,∴BD-CD=BF-EF, 即 BC=BE.
直角三角形全等的判定(HL)教学设计
课题:12.2.4直角三角形全等的判定(HL)课型:新授课【教学内容】直角三角形全等的判定(HL)【学习目标】1.知识与技能:(1)探索并掌握直角三角形全等的判定方法“HL”;(2)能够合理选择恰当的直角三角形判定方法来解决问题。
2.过程与方法:经历探索直角三角形全等判定方法的过程,体会利用操作、证明、归纳获得数学结论的过程,培养学生反思的习惯和理性的思维习惯。
3.情感态度与价值观:通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性。
【学习重点】掌握判定两个直角三角形全等的特殊方法-HL。
【学习难点】灵活应用直角三角形的判定方法解决问题。
【教法学法】探究、讨论、归纳法【教学准备】直角三角形板、两张透明纸、圆规直尺【课时安排】1课时【教学流程】预习提纲1.斜边与一条直角边分别相等的两个直角三角形.(简写成“”或“”).2.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC (填“全等”或“不全等”)根据(用简写法).3.略.4.课后练习题……(略).课堂流程教案一、情境导入、目标引领(时间:5分钟)1、判定两个三角形全等的方法有:、、、。
2、这些方法能判定直角三角形全等吗?3、思考:对于两个直角三角形,除了直角相等外,还要添几个条件,这两个直角三角形就全等呢?我们知道直角三角形是特殊的三角形,所以可以用一般三角形全等的判定方法: SSS 、SAS、ASA、AAS。
只要添加一边一锐角或两直角边分别相等,这两个直角三角形就全等了。
4.问题:如果两个直角三角形满足斜边和一条直角边分别相等,那么这两个直角三角形全等吗?二、自主学习、合作探究(时间:10分钟)探究:动手画一画(小组比较)1.任意画出一个Rt△ABC,∠C=90°,再画一个Rt△A´B´C´,使得∠C´= 90°,B´C´=BC,A´B´= AB。
人教版八年级数学上册12.2.4《直角三角形全等的判定》教学设计
人教版八年级数学上册12.2.4《直角三角形全等的判定》教学设计一. 教材分析《直角三角形全等的判定》是人教版八年级数学上册第12.2.4节的内容,本节课主要让学生掌握HL(斜边-直角边)判定两个直角三角形全等的方法,并能够运用该方法解决实际问题。
本节课是学生在学习了三角形的基本概念、全等三角形的性质及判定方法的基础上进行的,是对全等三角形判定方法的进一步拓展和深化。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、全等三角形的性质及判定方法,能够运用SSS、SAS、ASA、AAS判定两个三角形全等。
但是,对于直角三角形全等的判定方法,学生可能还比较陌生,需要通过实例分析、自主探究等方式,让学生理解和掌握HL判定两个直角三角形全等的方法。
三. 教学目标1.让学生掌握HL(斜边-直角边)判定两个直角三角形全等的方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和合作交流能力。
四. 教学重难点1.教学重点:掌握HL(斜边-直角边)判定两个直角三角形全等的方法。
2.教学难点:如何让学生理解和运用HL判定两个直角三角形全等。
五. 教学方法1.情境教学法:通过生活实例,引发学生的思考,激发学生的学习兴趣。
2.自主探究法:引导学生通过合作交流、动手操作,自主发现HL判定两个直角三角形全等的方法。
3.讲解法:教师对HL判定两个直角三角形全等的方法进行讲解,帮助学生理解和掌握。
4.练习法:通过适量练习,让学生巩固所学知识,提高运用能力。
六. 教学准备1.教学课件:制作课件,展示直角三角形全等的判定方法。
2.学习材料:准备相关的学习材料,如三角形模型、直角三角形等。
3.教学设备:准备黑板、粉笔、投影仪等教学设备。
七. 教学过程1.导入(5分钟)通过一个生活实例,如建筑工人测量高度,引入直角三角形全等的概念。
提问:如何判断两个直角三角形全等呢?2.呈现(10分钟)展示直角三角形全等的判定方法,引导学生观察、思考,引导学生发现HL判定两个直角三角形全等的方法。
12.2.4直角三角形全等的判定(HL)教案
举例:在教学过程中,教师应重点讲解HL判定法的原理和运用步骤,通过示例演示和练习题,让学生熟练掌握这一判定方法。同时,强调直角三角形全等在解决几何问题中的重要性,如计算边长、角度等。
2.教学难点
-理解HL判定法背后的逻辑关系,尤其是斜边和直角边对应关系;
-在复杂图形中识别并运用HL判定法;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形全等判定HL的基本概念。HL是指当两个直角三角形的斜边和直角边分别相等时,这两个三角形全等。这一判定方法是解决几何问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例中直角三角形全等的判定过程,了解HL在实际中的应用,以及它如何帮助我们解决问题。
-解决与直角三角形全等相关的综合问题。
举例:
a)难点突破:教师应详细解释HL判定法中斜边和直角边对应关系,通过直观图示和实际操作,让学生理解全等的条件。例如,可以设计对比实验,让学生比较全等和不全等的直角三角形,从中感悟到对应边的重要性。
b)识别运用:针对复杂图形,教师应引导学生如何从众多信息中提取关键直角三角形的边角关系,并应用HL判定法。例如,可以给出一些包含多个直角三角形的图形,让学生识别哪些部分可以用HL判定法证明全等。
3.重点难点解析:在讲授过程中,我会特别强调斜边和直角边相等这一判定条件和其在解决问题中的应用。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与直角三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用模型或教具演示HL判定法的基本原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
1.如图,在△ABC中,AB=AC,AD是BC边上的高. A 求证:BD=CD,∠BAD=∠CAD.
证明:∵AD是BC边上的高, ∴∠ADB=∠ADC=90°. 在Rt△ABD和Rt△ACD中, AB=AC (已知) AD=AD (公共边)
∴ BD=CD,∠BAD=∠CAD. (全等三角形的对应边相对,对应角相等)
2.如图,AB=CD,AE ⊥BC,DF ⊥BC,CE=BF. 求证:AE=DF. 证明:∵ AE⊥BC,DF⊥BC ∴△ABE和△DCF都是直角三角形。
又∵CE=BF C ∴CE-EF=BF-EF 即CF=BE。 在Rt△ABE和Rt△DCF中 CE=BF AB=DC D F A E B
∴Rt△ABE≌Rt△DCF(HL) ∴AE=DF
( HL ) A ( 2) ( HL ) BD=AC (3) ∠ DAB= ∠ CBA( AAS ) (4) ∠ DBA= ∠ CAB ( AAS ) ( 1) AD=BC
C
B
例5 如图:AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD. D
证明: ∵AC⊥BC,BD⊥AD, ∴∠C和∠D都是直角。
D
B
C
E
F
动手画一画
任意画出一个Rt△ABC,∠C=90°. 再画一个Rt△A´B´C´,使得∠C´= 90°, B´C´=BC,A´B´= AB.
按照下面的步骤画Rt△A´B´C´ B ⑴ 作∠MC´N=90°; ⑵ 在射线C´M上取线段B´C为半径画弧,交 射线C´N于点A´; ⑷ 连接A´B´.
A
C
在Rt△ABC和Rt△BAD中,
B
AB=BA (公共边) AC=BD (已知) (HL) ∴Rt△ABC≌ Rt △BAD
∴BC=AD(全等三角形对应边相等)
1.如图,在△ABC中,AB=AC, AD是BC边上的高. 求证:BD=CD,∠BAD=∠CAD.
B
A
D
C
2.如图,点C为AD的中点,过点C的线段 B BE⊥AD,且AB=DE. 求证:CB=CE.
M B´
C N A´
∟ ∟
C´
斜边和一条直角边分别相等的两个直角三 角形全等,简写为“斜边、直角边”或“HL”.
B B'
几何语言:
A
C
A'
C'
∵在Rt△ABC和Rt△A´B´C´中 AB=A´B´ BC=B´C´ (HL) ∴ Rt△ABC≌ Rt△A´B´C´
如图, ∠ACB =∠ADB=90,要证明 △ABC≌ △BAD,还需一个什么条件?把 这些条件都写出来,并在相应的括号内填写 出判定它们全等的理由。 D
则利用 A AS ③若测得AC=DE,∠C=∠E, 则利用 A AS ④若测得AC=DE,∠A=∠D, ⑤若测得AC=DE,∠A=∠D,AB=DE, 则利用 S AS 可判定全等;
情境问题2:
A D
B
C
E
F
如果工作人员只带了一把尺,能 完成这项任务吗?
情境问题2:
工作人员是这样做的,他测量了每个三角 形没有被遮住的直角边和斜边,发现它们分 别对应相等,于是他就肯定“两个直角三角 形是全等的”.你相信他的结论吗? A
B D C
∴Rt△ABD≌Rt △ACD(HL)
2.如图,点C为AD的中点,过点C的线段 BE⊥AD,且AB=DE. B 求证:CB=CE. C 证明:∵BE⊥AD于点C, A ∴∠ACB=∠DCE=90°. 又∵C是AD的中点, E ∴AC=DC 在Rt△ABC和Rt△DCE中, AB=DE AC=DC ∴Rt△ACD≌Rt △BCE(HL) ∴ DA=EB
情境问题1:
舞台背景的形状是两个直角三角形,为 了美观,工作人员想知道这两个直角三角 形是否全等,但每个三角形都有一条直角 边被花盆遮住无法测量。
情境问题1:
A
∠B=∠F=90 °
D
B
C
E
F
可判定全等; 可判定全等; 可判定全等; 可判定全等;
①若测得AB=DF,∠A=∠D, 则利用 A SA
②若测得AB=DF,∠C=∠E, 则利用 A AS
2.如图,AB=CD,AE ⊥BC,DF ⊥BC,CE=BF. 求证:AE=DF. D C F A E B
1.如图,C是路段AB的中点,两人从C同时出发, 以相同的速度分别沿两条直线行走,并同时到达 D,E两地,此时,DA⊥AB,EB⊥AB,D、E与 路段AB的距离相等吗?为什么? 证明:∵DA⊥AB,EB⊥AB, ∴∠A和∠B都是直角。 又∵C是AB的中点, ∴AC=BC ∵C到D、E的速度、时间相同, ∴DC=EC 在Rt△ACD和Rt△BCE中, AC=BC DC=EC ∴Rt△ACD≌Rt △BCE(HL) ∴ DA=EB
D
谈谈你本节课的收获
1、斜边、直角边(HL)定理:斜边和 一条直角边对应相等的两个三角形全等 2、证明两个直角三角形全等,不仅 可以用HL定理,还可以用SAS、ASA、 SSS、AAS定理来证明两个三角形全等
1.如图,C是路段AB的中点,两人从 C同时出发,以相同的速度分别沿两 条直线行走,并同时到达D,E两地, 此时,DA⊥AB,EB⊥AB,D、E与 路段AB的距离相等吗?为什么?
学习准备:
1.如图,在Rt△ABC中,直角分别 是 AC 、 BC , 斜边是____. AB 2.判定两个三角形全等的方法有: SSS 、 SAS 、 ASA 、 AAS
对于任意的两个三角 形都能利用这四种方 法判定是否全等
.
• 1. 通过演示实验,探索直角三角形全等 的条件; • 2. 学会用斜边直角边公理判定直角三角 形全等; • 3. 体验用所学知识解决数学问题的乐趣.