差分滤波器设计
共模滤波器和差模滤波

共模滤波器和差模滤波共模滤波器和差模滤波器是电子电路中常用的滤波器类型,用于处理信号中的共模干扰和差模信号。
共模滤波器主要用于抑制共模干扰,而差模滤波器主要用于增强差模信号。
本文将分别介绍这两种滤波器的原理、应用和特点。
一、共模滤波器共模滤波器是一种用于抑制共模干扰的滤波器。
在电子电路中,当信号传输过程中存在共模干扰时,会导致信号质量下降。
共模干扰是指在传输线上,两个信号相互干扰而产生的噪声。
共模干扰可以由电源波动、地线干扰等多种原因引起。
共模滤波器的工作原理是通过设计特定的电路结构和参数,将共模干扰信号滤除。
常见的共模滤波器包括电容耦合器、差分放大器和共模电感等。
其中,电容耦合器通过将信号的共模分量滤除,只传输差分信号,从而抑制共模干扰;差分放大器则是通过将信号的差模分量放大,相对于共模分量的增益较高,从而减小共模干扰的影响;共模电感则是利用电感元件的特性,在传输线上产生反向的磁场,抵消共模干扰。
共模滤波器的应用非常广泛,在各种电子设备中都有使用。
例如,在音频设备中,共模滤波器可以用于抑制电源干扰和地线干扰,提高音质;在通信设备中,共模滤波器可以用于抑制电磁干扰,提高信号传输质量。
共模滤波器的特点是可以有效地抑制共模干扰,提高信号质量。
但是,由于共模滤波器需要对共模干扰进行滤除或抵消,因此会引入一定的成本和复杂性。
此外,共模滤波器的性能受到电路参数和布局的影响,需要进行精确的设计和优化。
二、差模滤波器差模滤波器是一种用于增强差模信号的滤波器。
在很多应用中,差模信号是我们关注的主要信号,而共模信号则是噪声或干扰。
差模滤波器的作用是通过设计特定的电路结构和参数,将差模信号滤出,并增强其幅度。
差模滤波器的工作原理是通过放大差模信号,同时抑制或滤除共模信号。
常见的差模滤波器包括差分放大器和差分电感等。
差分放大器是差模滤波器中最常用的一种,它通过放大差模信号,同时抑制共模信号,从而提高差模信号的幅度。
差分电感则是利用电感元件的特性,在传输线上产生增强的磁场,增强差模信号。
matlab 生成irr滤波器系数差分方程

让我们深入探讨一下MATLAB中产生IIR滤波器系数差分方程的方法。
IIR滤波器是一种经典的数字滤波器,它具有无限脉冲响应(Infinite Impulse Response)的特点。
在MATLAB中,产生IIR滤波器系数差分方程可以通过多种方法实现,我们将逐步介绍其中的一些方法。
1. 我们需要清楚地了解IIR滤波器的概念和特点。
IIR滤波器是一种递归滤波器,它的输出不仅依赖于当前输入,还依赖于过去的输出和输入。
这种特点使得IIR滤波器在滤波效果上具有一定的优势,在一些应用中被广泛使用。
2. 接下来,我们可以使用MATLAB中的信号处理工具箱来生成IIR滤波器系数。
通过调用相关的函数和命令,我们可以指定IIR滤波器的阶数、通带频率、阻带频率等参数,然后MATLAB会自动生成对应的滤波器系数。
3. 除了使用信号处理工具箱,我们还可以手动计算IIR滤波器的系数。
这需要我们对IIR滤波器的原理有更深入的理解,可以通过巴特沃斯滤波器、切比雪夫滤波器等经典滤波器设计方法来产生系数。
4. 产生IIR滤波器系数之后,我们需要将其转化为差分方程的形式。
在MATLAB中,可以使用tf2sos函数或者zpk2sos函数来将IIR滤波器的传输函数转换为二阶节的级联形式。
5. 我们还可以通过MATLAB中的滤波器设计工具来可视化分析IIR滤波器的频率响应、脉冲响应等特性,以便更好地理解滤波器系数和差分方程之间的关系。
MATLAB中生成IIR滤波器系数差分方程的方法有多种,可以通过信号处理工具箱的函数、手动计算、转换传输函数等途径来实现。
通过深入了解和掌握这些方法,我们能够更好地应用IIR滤波器,并对数字滤波器的原理有更深入的理解。
就我个人而言,我认为掌握MATLAB中IIR滤波器系数差分方程的生成方法对于进行数字信号处理和滤波器设计是非常重要的。
通过实际操作和不断的学习,我们可以深入理解滤波器系数和差分方程之间的联系,从而在实际应用中更灵活地调整和优化滤波器的性能。
理解和设计通信系统中的差分滤波器

理解和设计通信系统中的差分滤波器当提到通信系统时,比起单端电路,差分电路总是能提供更加优良的性能。
它们具有更高的线性度、抗共模干扰信号性能等。
但是,相比较单端50欧姆系统,差分电路显得更神秘一些。
某些RF工程师认为很难设计、测试和调试它们,对于差分滤波器尤其如此。
是时候揭开差分滤波器设计的神秘面纱了。
RF信号链应用中差分电路的优点用户利用差分电路可以达到比利用单端电路更高的信号幅度。
在相同电源电压下,差分信号可提供两倍于单端信号的幅度,它还能提供更好的线性度和SNR性能。
图1.差分输出振幅差分电路对外部EMI和附近信号的串扰具有很好的抗扰性。
这是因为接收的有用信号电压加倍,噪声对紧密耦合走线的影响在理论上是相同的,它们彼此抵消。
差分信号产生的EMI 往往也较低。
这是因为信号电平的变化(dV/dt或dI/dt)产生相反的磁场,再次相互抵消。
差分信号可抑制偶数阶谐波。
以下展示了连续波(CW)通过一个增益模块的示例。
当使用一个单端放大器时,如图2所示,输出可表示为公式1和公式2。
图2.单端放大器(1) (2)当使用一个差分放大器时,输入和输出如图3所示,表示为公式3、公式4、公式5和公式6。
图3.差分放大器(3) (4) (5) (6)理想情况下,输出没有任何偶数阶谐波,使得差分电路成为通信系统一个更好的选择。
理解和设计通信系统中的差分滤波器截止频率、转折频率或拐点频率是系统频率响应的边界,此时流经系统的能量开始减少(衰减或反射),而不是自由通过。
图4.3 dB截止频率点带内纹波指通带内插入损耗的波动。
图5.带内纹波相位线性度指相移与目标频率范围内的频率成比例的程度。
图6.相位线性度群延时衡量一个穿过受测器件的信号的各种正弦成分幅度包络的时间延迟,它与各成分的频率相关。
图7.群延时表1.滤波器比较图8.巴特沃兹滤波器S21响应图9.椭圆滤波器S21响应图10.贝塞尔滤波器S21响应图11.切比雪夫I型滤波器S21响应图12.切比雪夫II型滤波器S21响应通信接收链中的IF滤波器基本上是低通滤波器或带通滤波器,它用于抑制混叠信号以及有源器件产生的杂散,包括谐波和IMD产物等。
matlab 巴特沃斯滤波器 生成差分方程

matlab 巴特沃斯滤波器生成差分方程巴特沃斯滤波器是一种常用的模拟滤波器,可以用于对信号进行滤波处理。
它基于巴特沃斯滤波器的特性,可以实现对信号的低通、高通、带通和带阻滤波。
巴特沃斯滤波器的设计关键在于生成其差分方程。
对于低通和高通滤波器,可以使用模拟滤波器设计方法来实现。
根据巴特沃斯滤波器的特性,其传递函数可以表示为:H(s) = 1 / ((s^2 + s/Q + 1)其中,s是Laplace变量,Q是质心频率与3dB带宽的比值。
根据巴特沃斯滤波器的定义,当s=jω时,传递函数H(jω)的幅度响应在截止频率处下降3dB。
因此,可以通过将s替换为jω来获得巴特沃斯滤波器的频率响应。
将传递函数H(jω)展开为分子项和分母项的比值:H(jω) = 1 / ((jω)^2 + jω/Q + 1)对分子项和分母项进行实部和虚部的分离,并利用欧拉公式将jω转化为sin(ω)和cos(ω),可以得到:H(jω) = 1 / ((-ω^2 + 1) + j(ω/Q))进一步将分子项和分母项的实部和虚部分离,得到:实部分离:1 / ((-ω^2 + 1) + j(ω/Q)) = [(-ω^2 + 1) / ((-ω^2 + 1)^2+ (ω/Q)^2)] + j(ω/Q) / ((-ω^2 + 1)^2 + (ω/Q)^2)虚部分离:1 / ((-ω^2 + 1) + j(ω/Q)) = -(ω/Q) / ((-ω^2 + 1)^2 + (ω/Q)^2) + j[(-ω^2 + 1) / ((-ω^2 + 1)^2 + (ω/Q)^2)]根据巴特沃斯滤波器的设计要求,可以将实部分离中的ω/Q替换为sinh(ωc)和cosh(ωc),其中ωc为截止频率。
进一步化简可以得到:实部分离:[(-ω^2 + 1) / ((-ω^2 + 1)^2 + sinh^2(ωc))] + j[sinh(ωc) / ((-ω^2 + 1)^2 + sinh^2(ωc))]虚部分离:-(sinh(ωc)) / ((-ω^2 + 1)^2 + sinh^2(ωc)) + j[(-ω^2 + 1) / ((-ω^2 + 1)^2 + sinh^2(ωc))]通过比较实部分离和虚部分离中的ω项系数,可以得到差分方程的系数。
差分放大器之滤波器设计

Benefits of Differential Signal Processingn The Benefits Become Apparent when Trying to get the Most Speed and/or Resolution out of a Designo Avoid Grounding/Return Noise Problemso Better Distortion/Dynamic Range–For the same Amplitude Differential Signal the Outputs do notSwing as Close to the Rail–Lower Distortion especially the 2ndso Analog Signals in High-performance Systems Start and End Differential–Almost Always the Signal Source from the Real World isDifferential–High-speed ADCs Have Differential InputsSingle-ended Components CannotReject Ground Noisen Each Part of the Circuit Has a Different Reference Pointn No Matter How Careful you are with Grounding High Frequency Ground Currents will Cause Some Problems which May be Difficult to Work Aroundn Op Amp Can not Reject This Ground NoiseVSIGNALDifferential Amps Have Effective CMRRn Differential Signal does not Need a Referencen Ground and Other Noise Sources are Common to Both Inputso CMRR of Differential Amp is EffectiveVSIGNALWhy Differential Signal Processing isnot More Commonn Differential Signals are Commonly used Today for ADC and Line Drivingn Differential Signaling is not Generally Considered for Other Uses Because:o Discrete Differential Designs can Be Difficult to Implement –Some Applications can not Tolerate the Higher Cost o Not Many Differential ICs are Available–Transformers must be Usedn As Speeds and Resolution Increase the Benefits of Differential Signaling Become More NecessaryDifferential Input/Output High-speed AmpsAD8131/2/8High Speed Differential Amps for Challenging DesignsVnnnWhat’s Inside the AD8131/2/8 Diff Amps?nInternal CM Feedback forces Forces both outputs to be balanced,oEqual in amplitude 180–Balance is unaffected by R nDifferential feedback effectively creates 2 summing nodeso Forces Both Inputs to the same voltage when the loop is closed oHigh Input Z, Low Output ZV IN-V IN+Understanding How They Work w/ Alternate Circuit ConfigurationsV OCMR GV INLike Non-inverting Op AmpLike Inverting Op AmpV OCMR V INMore About the V OCM Pinn V OCM Pin separates our diff amps from other diff amp configurationso Creates Best Available Balance @ High Frequencies o Can be used with AC signal for Modulation as well as DC Reference Voltagesn Easy Level Shifto From Ground Referenced Signals (+/-5V supplies) to Single +5V Supply Signals for ADCso Better Distortion in signal chain for +/-5V, than +5Vo Connect to the ADC reference or any other reference voltageAD8131/2/8 vs. Dual Op AmpConfigurationsn Compared to Dual Op Amp Configuration for Differential Driving:o2 Op Amps, G = +1 and G = -1–Output Dynamics are Different at High Frequencies ÕPoor output balance; EMI emissionso No Easy Way to Change Common Mode Output Levelo Distortion Products are Additive–AD8131/2/8 even harmonics are Nulled by the CommonMode Feedback and Odd Harmonics are low by designAD8131/2/8 vs. Transformersn AD8131/2/8 are similar to Center-taped Transformerso Differential or Single-ended In with Differential Outo CM Output Adjustmentn AD8131/2/8 :o Bandwidth to DCo Does not require I/O impedance matchingo Can have signal power gaino Smaller in sizeo Lower cost than most transformerso Has higher reliabilityUsing the AD8138 in Active Filtersn Op amps have inverting and non-inverting inputs available.n AD8138 inputs are both invertingo Filter topologies must be inverting types.Filter Designn Low-pass, High-pass and Band-pass Are Possible o Butterworth, Bessel andMF filtersn MF filters are 2nd Order (conjugate pole pairs) o Higher order filters may be realized by stacking sectionso Multiple Feedback Filter topologies provide a DC path for the input bias current.Differential Filter Characterizationn Low Pass, High pass and band-pass active filters were designed, built and testedo As shown in the following slides, theoretical and actual results closely agree.n AD8138 needs Small resistor values (10-47 Ohms) in series with the feedback circuitry to prevent oscillation at approximately 300 MHz.n AD8132 does not Require a small resistorn Feedback capacitance greater than a few pF may result in high frequency de-stabilization of the AD8132/8.Ex.: 2 Pole Low Pass SchematicDifferential Input to Single-ended Out AmpsAD8129/30AD8129/30 Receiversn Active Feedback Topology, Like theAD830o High CMRR @ High Freqo High Input Impedance–o Feedback network Independent ofsignal pathn Use as:o Differential Receiver–o Difference Ampo High Frequency InAmpAD8129/30 vs. Op Amp Configurations n Compared to Single Op Amp DifferentialAmp Configuration for Receivero Poor CMRR•Unbalanced Input Impedances•Requires resistor matching for good CMRRn Compared to 3 Op Amp Receivero Lots of parts and Design Timeo Extra Amps in Signal path lowers BWAD8129/30 vs. Transformers n AD8129/30 are similar to Transformerso Differential In with Single-ended Outo Output Reference Adjustmentn AD8129/30 :o Bandwidth to DCo Can have signal power gaino Smaller in sizeo Lower cost than most transformerso Has higher reliabilityFor Use with High-speed ConvertersADCs Perform Better when DrivenDifferentiallyT H D [d B ]nEspecially as Frequency IncreasesAD8138 Driving an AD9224 12-bit40 MSPS A/D on +5V SupplynAD9224 Reference CML output drives V oEasy level shift using V nThe AD8138 provides low-distortion drive on +5V or +/-5V Supplies.150ΩSource3V Circuit: AD8132 Driving an AD920310-bit 40 MSPS A/DnAD8132 Provides +/-1V output swing on 3V supply with low distortion for low cost ADCsn V OCM nResistor and capacitor between Amp and ADC needed to filter Switched-input current glitches1k1k.1The AD8138 is the World’s Best Amplifier for Driving High-speed ADCs0-20-40-60-80-100-120[d B ]5•1Vp-p signal @ 20MHzDiff amps to Help Reduce Clock Jitter n Some ADCs have Differential Clock Inputs to Minimize Ground Noise Effects on Jittero Ground Noise is only one source of jitter which decreases the performance of the fastest ADCsn As Discussed before, With Differential Signals the Ground Noise becomes Common Modeo AD8131/2/8 can be used to send the clock signal from its source into the ADCo Isolating Analog and Digital Groundso Minimizing Radiated EMIBuffered Differential Out for12-16 bit High-speed DACsn“Virtual GND” Reduces Effect ofImpedanceo To Achieve Larger Output Power without having a large compliance voltage on the DAC Outputo When Level Shifting is Needed use VDifferential to Singled-end Buffer for 12-16 bit High-speed DACsn AD8129/30 can be used to Isolate the reactive load of the filter from the DAC output.o Filter cap may be needed to reduce excessive slewrate on the amp input to improve amp settlingn To Achieve Larger Output Power without having a large compliance voltage on the DAC Outputo When Level Shifting is Needed use Ref input of the AD8129/30For Driving and Receiving High-speed SignalsDifferential Driver and Receivern Balanced Driver Minimizes EMI Generation nHigh CMRR Receiver Minimizes EMI Pick-up500Ω500ΩAD8130V s+V s+V s-V s-V fBV ocmCable Driving Challenge100kHzG a i n0 dBAD8138 Output Balance Vs Frequency-70-60-50-40-30-201[O u t p u t B a l a n c e E r r o r d B c ]Drive / Receive Requirementsn Drivero Balance needed to minimizeradiated EMIo Simple to use, no Z matchingrequiredo High BW to transmit boostedsignalReceive-Side EqualizationDrive Side High Frequency Boost 10pFn Integrator on input adds zero to boost signal @ high frequency n For Equalization when Driving Long Cableso Gain Limited by Output swing capabilityAD8132 Makes Simple Very High SpeedFull-wave Rectifier49.9n Useful for measuring RMS of AC Signalsn Operates to greater than 300 MHzADI Multi-Purpose Differential Amp Family Part #FeaturesBandwidthSlew RatePositionFast FETs™The NEW Standard for JFET Amplifiersn Very Easy to Usen Negligible I bias and I noisen R-R outputn Wide supply rangen Low Supply Currentn Low PricenAD8033/4o 75MHz Bandwidth o 80V/µs Slew Rateo 3.2mA/Amp Typical Supply Currento Rail-to-Rail outputo Wide Supply Range 5-24V oVery Low Pricing–$1.19 @ 1K -AD8033 (Single)–$1.59 @ 1K -AD8034 (Dual)oPart Status –Final Silicon –Release QtrÕAD8033 (3Q02) ÕAD8034 (2Q02)Fast FETs ™Low-Cost High-Speed AD8033/4S O T 23-8Fast FETs™High-Performance High-Speed AD8065/6n AD8065/66o140MHz Bandwidtho160V/o7o6.5mA/Amp Typical supply currento Rail-to-Rail outputo Low offset voltage and drifto Wide Supply Range 5-24Vo Price @ 1K––o Part Status––Ultra Low-Distortion and Noise Amplifier AD8007/8n Extremely Low SFDRo-96dB@5MHzo-86dB@20MHzo-55dB@70MHzn Low Noiseo 2.6o22n High Speedo600MHz Bandwidtho1000V/n Low Powero9mA/Amp Typical supply currentn Pricing @ 1ko$1.19 -o$1.99 -n Part Statuso Final Silicono Release Qtr––Low-Power High-Speed Amplifier AD8038/9n Low Powero 1.1mA/Amp Typical supply currentn High Speedo315MHz Bandwidtho425V/n Low Noiseo250pA/o7nV/n Low SFDRo-86dB @ 1MHzo-77dB @ 5MHzn Price @ 1Ko$0.85 -o$1.20 -n Part Statuso Final Silicono Release Qtr––Summary of New ProductsGenericAD8033AD8034AD8065AD8066AD8007AD8008AD8038AD8039。
matlab 差分信号 处理

MATLAB差分信号处理一、概述MATLAB是一种高级的技术计算语言和交互式环境,广泛应用于工程、科学和金融等领域。
在信号处理方面,MATLAB具有强大的功能,能够对各种类型的信号进行分析和处理。
差分信号处理是信号处理领域中的一个重要分支,它主要用于分析离散信号序列中的变化。
在MATLAB中,有许多内置的函数和工具箱可以用于差分信号处理,包括差分方程、差分器、滤波器等。
本文将介绍MATLAB中的差分信号处理的基本原理和常用方法,以及如何利用MATLAB进行差分信号处理的实际操作。
二、差分信号的基本概念1.差分信号差分信号是指连续信号或离散信号中相邻采样点之间的差值。
对于离散信号序列{x1, x2, x3, ..., xn},其差分信号可以表示为{Δx1, Δx2,Δx3, ..., Δxn-1},其中Δxi = xi+1 - xi。
2.差分运算差分运算是指对信号进行差分处理的操作,通常包括一阶差分、二阶差分等。
一阶差分是指计算相邻采样点的差值,而二阶差分是指对一阶差分信号再次进行差分运算。
三、MATLAB中的差分信号处理1.差分方程MATLAB中可以利用差分方程对信号进行差分处理。
差分方程可以表示为y(n) = a0*x(n) + a1*x(n-1) + a2*x(n-2) + ... + b1*y(n-1) +b2*y(n-2) + ...,其中x(n)为输入信号,y(n)为输出信号,a0, a1, a2,...为输入系数,b1, b2,...为输出系数。
利用MATLAB中的filter函数可以实现对信号的差分方程处理。
2.差分器MATLAB中还提供了差分器函数diff,可以计算离散信号序列的一阶和二阶差分。
对于离散信号序列x = [x1, x2, x3, ..., xn],利用diff函数可以得到一阶差分信号dx = [x2-x1, x3-x2, x4-x3, ..., xn-xn-1],以及二阶差分信号d2x = [x3-2*x2+x1, x4-2*x3+x2, x5-2*x4+x3, ..., xn-1-2*xn-2+xn-3]。
基于MATLAB的IIR数字滤波器设计与仿真
基于MATLAB的IIR数字滤波器设计与仿真一、概述在现代数字信号处理领域中,数字滤波器扮演着至关重要的角色。
其通过对输入信号的特定频率成分进行增强或抑制,实现对信号的有效处理。
无限脉冲响应(IIR)数字滤波器因其设计灵活、实现简单且性能优良等特点,得到了广泛的应用。
本文旨在基于MATLAB平台,对IIR数字滤波器的设计与仿真进行深入研究,以期为相关领域的研究与应用提供有益的参考。
IIR数字滤波器具有无限长的单位脉冲响应,这使得其在处理信号时能够展现出优秀的性能。
与有限脉冲响应(FIR)滤波器相比,IIR滤波器在实现相同性能时所需的阶数更低,从而减少了计算复杂度和存储空间。
在需要对信号进行高效处理的场合,IIR滤波器具有显著的优势。
MATLAB作为一款功能强大的数学软件,提供了丰富的函数和工具箱,使得数字滤波器的设计与仿真变得简单而高效。
通过MATLAB,我们可以方便地实现IIR滤波器的设计、分析和优化,从而满足不同应用场景的需求。
本文将首先介绍IIR数字滤波器的基本原理和特性,然后详细阐述基于MATLAB的IIR数字滤波器的设计方法和步骤。
接着,我们将通过仿真实验验证所设计滤波器的性能,并对其结果进行分析和讨论。
本文将总结IIR数字滤波器设计与仿真的关键技术和注意事项,为相关领域的研究人员和工程师提供有益的参考和启示。
1. IIR数字滤波器概述IIR(Infinite Impulse Response)数字滤波器是数字信号处理中常用的一类滤波器,它基于差分方程实现信号的滤波处理。
与FIR (Finite Impulse Response)滤波器不同,IIR滤波器具有无限长的单位脉冲响应,这意味着其输出不仅与当前和过去的输入信号有关,还与过去的输出信号有关。
这种特性使得IIR滤波器在实现相同的滤波效果时,通常具有更低的计算复杂度,从而提高了处理效率。
IIR滤波器的设计灵活多样,可以根据不同的需求实现低通、高通、带通和带阻等多种滤波功能。
(完整版)CIC滤波器的原理与设计
CIC 的冲击响应{1,010,()n D h n ≤≤-=其他,D 为CIC 滤波器的阶数(即抽取因子),Z 变换后11()1Dz H z z ---=-,当积分梳状滤波器的阶数不等于抽取器的抽取倍数时,令N=DM(N 为滤波器的 阶数,D 为抽取倍数)则积分梳状滤波器的传递函数为:)1(11)(1DM z zz H ----=M 是梳状滤波器中的延时因子,故称M 为差分延时因子;其频率总响应为12()()()jw jw jwH e H e H e ==sin(/2)sin(/2)wDM w =1()()22wDM wDM Sa Sa -⋅⋅x x x Sa /)sin()(=为抽样函数,且1)0(=Sa ,所以CIC 滤波器在0=ω处的幅度值为N ,即:DM e H j =)(0; 一般数字滤波器的指标:()20lg()()20lg ()a pa p a s a s H j H j H j H j ααΩ=ΩΩ=Ω通带最大衰减阻带最小衰减即:CIC 幅频特性响应曲线图由其频率响应函数可以看出其主瓣电平最大为D ,旁瓣电平为21.51()sin(3/2)/sin(3/2)sin(3/2)j DMH e DM DM ωπωπππ=⋅==,旁瓣与主瓣的差值 (用dB 数表示)为: dB A DM s 46.1323lg 20lg201===πα 可计算出旁瓣与主瓣的差值约为13.46,意味着阻带衰减很差,单级级联时旁瓣电平很大,为降低旁瓣电平,增加阻带衰减采用级联的方式,N 级频率响应为:)2()2()()2/sin()2/sin()(ωωωωωQ Q Q Qj Q Sa DM Sa DM DM e H -⋅⋅=⎥⎦⎤⎢⎣⎡=, 可得到N 级CIC 的旁瓣抑制 dB Q Q A DM Q Qs )46.13(23lg 20)lg(201⨯=⋅==πα 分析一下发现在Q 级联时多出了Q DM 这个处理增益,因此分析一下尽量减少带内容差(通带衰减),即,在通带内,幅度应尽量平缓;下面就它的幅平响应曲线来分析:00()20lg ()()20lg()ps j a p jw a j a s jw a H e H eH e H e αα==1、设在红线w1处抽取的信号带宽很窄,为无混叠信号的带宽,能很好的对窄带信号进行滤波,去除掉高频信号噪声;且在绿线w2=2pi/DM-w1处衰减值足够大,则在其信号带宽内,红线到绿线,信号给CIC 滤波器带来的混叠就可以忽略,计算此时阻带衰减:)2/sin()2/sin(lg 20()(lg 2022012w DM w DM e H e H A jw j ==·引入带宽比例因子b=B/(fs/DM ), B 为抽取信号的带宽,D 为抽取因子,M 为延时因子;fs 为输入端采样率,则w1=b*2pi/DM ;带入可化简得:b A lg 201-≈; (假设b=0.01;即fs=100MHz ,D=20,信号带宽为50khz,此时衰减为40dB);可见单级的CIC 滤波器的无混叠信号带宽内的阻带衰减能达到40dB;;并不怎么大,适用于较粗略的滤波,适合放在第一级抽取;如果采用级联的方式可以加大无混叠信号带宽;但是满足的通带不够窄;2、在红线w1处幅度不能下降太多,通带内幅值容差不能太大,否则会引起高频失真;设该带内容差为s δ,则,)()(lg 2010jw j s e H e H =δ将w1带入可简化得)sin(lg 20b bs ππδ≈,当N 级时,其带内容差也会增大;由上面分析可知,阻带衰减和带内容差,只与带宽比例因子b 有关,Df Bb s /=,分析可知,在信号带宽一定的前提下,应尽可能采用小的抽取因子,或增大输入采样率;故一般把它放在抽取系统的第一级,所以在配置CIC 时,信号带宽,采样率,抽取因子,综合考虑,下面是阻带衰减和通带衰减的一个表:表1:大抽取因子下的通带衰减由CIC频幅响应图可以发现,幅频特性的零点位于1/M处(M取值为整数),这说明差分因子M决定了零点的位置;抽取因子D狭定了抽取后信号的采样频率,它同差分延时因子M一起还决定了主瓣和旁瓣的宽度;级数Q可以用来控制阻带衰减,Q越大阻带衰减越大,通带内的混叠就越小,但Q越大,通带内主瓣衰减也越大,所以Q不可太大,不宜超过5级。
FIR滤波器和IIR滤波器原理及实现
FIR滤波器和IIR滤波器原理及实现FIR和IIR滤波器是数字信号处理中常用的滤波器类型,用于从输入信号中提取或抑制特定频率成分。
它们分别基于有限脉冲响应(FIR)和无限脉冲响应(IIR)的原理设计而成。
下面将分别介绍FIR和IIR滤波器的原理及实现方式。
一、FIR滤波器H(z)=b0+b1•z^(-1)+b2•z^(-2)+...+bM•z^(-M)其中,b0、b1、..、bM是FIR滤波器的系数,M为滤波器的阶数。
1.确定滤波器的设计要求,包括通带和阻带的边界频率、通带和阻带的衰减要求等。
2.根据设计要求,选择合适的滤波器设计方法,如FIR滤波器可以通过窗函数设计、频率采样法设计等。
3.根据设计方法计算得到滤波器的系数,即b0、b1、..、bM。
4.将计算得到的系数应用到差分方程中,实现滤波器。
5.将输入信号通过差分方程进行滤波处理,得到输出信号。
二、IIR滤波器IIR滤波器是一种具有无限长度的单位脉冲响应的滤波器,它具有反馈回路,可以实现对信号频率的持续平滑。
IIR滤波器的离散时间系统函数可以表示为:H(z)=[b0+b1•z^(-1)+b2•z^(-2)+...+bM•z^(-M)]/[1+a1•z^(-1)+a2•z^(-2)+...+aN•z^(-N)]其中,b0、b1、..、bM和a1、a2、..、aN分别为IIR滤波器的前向和反馈系数,M和N分别为前向和反馈滤波器的阶数。
实现IIR滤波器的步骤如下:1.确定滤波器的设计要求,选择合适的滤波器类型(低通、高通、带通、带阻等)。
2.根据设计要求,选择合适的设计方法(脉冲响应不变法、双线性变换法等)。
3.根据设计方法计算得到滤波器的系数,即b0、b1、..、bM和a1、a2、..、aN。
4.将计算得到的系数应用到差分方程中,实现IIR滤波器。
5.将输入信号通过差分方程进行滤波处理,得到输出信号。
IIR滤波器的优点是可以实现较窄的通带和截止频率,具有良好的频率响应特性,但由于反馈回路的存在,容易出现稳定性问题,设计和实现相对较为复杂。
差分LC滤波器在通信电路中的设计和应用
0 引ቤተ መጻሕፍቲ ባይዱ
随着无线通信 的快 速发展,在无线通信领域 的射 中频和 射中频芯片设计中, 尤其是零 中频或直接变频 的通信系统 中,
出现了越来越多的差分电路。因为差 分电路不仅 可抑制 一部
是直接建立模 型并通过仿真软件逐步优化来设计 ;另一种 是
通过设计一个单端 L C滤波器再进行转化 。 考虑 到差分信 号的对称性 , 理论上来说, 射 中频差分 L C 滤波器这两个差分支路的值 、 尺寸 、 结构和版图一般是对称 的, 差分 L C滤波器 的基本模型可 以如下 图 l 来表示:
d u c e d 。 Ke ywo r d s :d i fe r e n t i a l LC il f t e r s;t h ed e s i g nwa y;Ap p l i c a t o ni nwi r e l e s s c o mmu ni c a t i o n
GU0 Yu e i f n g, Hu T a n g, Zh o uT a o
( Ha n g z h o u i n i c T e l e c o mmu n i c a t i o n S y s t e m C o . L t d, Ha n g z h o u 3 1 0 0 1 2 C h i n a )
使 之可 以更 好 的在 实践 中得 以应 用 , 这 些 问题 仍 然有 待研 究 和解 决 。
载 贼
= 蔷
计算时 , 应 根据 实际测得值进 行适当的校正 。
4 . 3 其他 因素 m
器具有结构简单 、 可靠性较高、 成本低 、 插损 比较小的特点, 是 抑制射 中频差 分信 号外带干扰 的很好选 择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Application ReportSLWA053B–November2007–Revised April2010 Design of Differential Filters for High-Speed Signal Chains Ken Chan High Speed-Wireless InfrastructureABSTRACTDifferential filters have many desirable attributes.The task of designing differential filters can seem daunting at first.Single-ended filters designed in any filter design package can be converted to a differential implementation.This application report explores simple conversion techniques for low-pass, high-pass,and band-pass LC filters.1IntroductionDifferential signals have many desirable attributes in high-speed signal chains:namely,common-mode rejection from a balanced signal path and matched filter response,immunity from single-ended component parasitic effects,decoupling the signal from requiring a ground reference,and rejection of even-orderharmonics.However,most LC filter design information,techniques,and software are for single-endedsystems.This application report highlights some simple translations that can be made to convert thesingle-ended designs to fully differential designs.Some examples are used to demonstrate thesetranslations.The design of single-ended passive analog LC filters has been simplified greatly by various pieces ofsoftware that can be obtained freely on the Internet.An Internet search for LC filter design yields many results,any of which can be used for this tutorial.This application report uses ELSIE(i.e.,LC)which is freely available for download from the following link as a trial version with some limitations on filter order and usage.For commercial applications,the fullversion should be purchased.For purposes of this application report,the free version is sufficient./elsiedownload.htmlThe SPICE simulator used in this tutorial is the TINA-TI SPICE simulator which can be downloaded from the Texas Instruments Web site at the following link./docs/toolsw/folders/print/tina-ti.htmlThe full TINA version can be purchased from its vendor for access to its full feature set.2Single-Ended to Differential-Ended Filter Translation:2.1Low-Pass,High-Pass,and Band-Pass Filter ImplementationsThe process of designing a differential filter requires the design of a single-ended filter that meets the filter requirements.Freely available tools may be used to generate a single-ended filter with the desirablefrequency response.The low-pass,high-pass and band-pass differential filter implementations arediscussed in the following sections.The single-ended LC low-pass filter can be converted to a differential filter by repeating and folding the design around GND to create the Vin+and Vin-.The GND is removed and the center capacitor values are recalculated:the C is half-value(sum of two series C).The L in the horizontal parallel series paths are kept the same and the load resistor is doubled(sum of two series R).The process is illustrated inFigure1.1 SLWA053B–November2007–Revised April2010Design of Differential Filters for High-Speed Signal ChainsVinR26L2522Hm R25100WR28L2622Hm 100W22HmR31L2822Hm 100W22Hm WVout-Vin-L322Hm R10100W V OUTV V R2100WL122Hm OUTOUT-WL322Hm R10100W V OUTV V R2100WL122Hm R1200WOUT OUT-Figure 1.Conversion Process From Single-Ended to a Differential FilterFigure 2.Shunt Capacitor Input Low-Pass FilterFigure 3.Series Inductor Low-Pass FilterAll four of these produce the same response as shown in Figure 4.2Design of Differential Filters for High-Speed Signal Chains SLWA053B–November 2007–Revised April 2010WC21.1 nFR10V INOUTV V R2C11.1 nFWOUT OUT-Figure 4.Low-Pass Filter Response for All Four Low-Pass Filters.Similar circuits can be translated for a simple LC high-pass filter.The circuit is folded along the GND point,the vertical series elements are added and the horizontal elements remain the same.This results in doubling the vertical inductors and load,similar to the approach used for the low-pass filters.Figure 5.Series Capacitor Input High-Pass Filter3SLWA053B–November 2007–Revised April 2010Design of Differential Filters for High-Speed Signal ChainsC41.1 nFR6V OUTVVR8C51.1 nFOUTOUT-Figure 6.Shunt Inductor High-Pass FilterAll four high-pass filters have the same frequency response as shown in Figure 7.Figure 7.Frequency Response for All Four High-Pass FiltersThis same principle holds for more complex BPF architectures.The single-ended filter is reflected around the GND point,the GND is removed,and the middle elements are added together.Figure 8provides an example of a third-order Butterworth BPF.4Design of Differential Filters for High-Speed Signal Chains SLWA053B–November 2007–Revised April 2010V INOUTC7 55.5 pFV INOUTC8 55.5 pFV IN-OUT-Figure 8.Example of Third-Order Butterworth Band-Pass FilterFigure 9.Frequency Response of the Third-Order Butterworth Band-Pass FilterFigure 10provides an example of a third-order Cauer BPF with some parallel horizontal elements.Performing the translation results in the network on the right.Both these filters have the same frequency response.5SLWA053B–November 2007–Revised April 2010Design of Differential Filters for High-Speed Signal ChainsV INOUTC18 51 pFC15 185 pFV INOUTV IN-OUT-C22 51 pFC19 185 pFImplementation and Simulation NotesFigure 10.Example of Third-Order Cauer Band-Pass FilterFigure 11.Frequency Response of Third-Order Cauer Band-Pass Filter3Implementation and Simulation NotesNote that all of the networks should show a 6-dB loss due to the voltage divider created by the 100-Ωsource impedance and the 100-Ωtermination impedance.In the voltage source simulation,the transfer function response is determined with the voltage signal source at the input to the source impedance,in effect grouping the response of the source-to-termination resistor divider into the response of the filter.A 2x VCVS was used at the output of the voltage source to account for this fixed 6-dB loss in the resistor divider and to highlight the actual response of the LC network.6Design of Differential Filters for High-Speed Signal Chains SLWA053B–November 2007–Revised April 2010 Summary 4SummaryThe task of designing differential LC filters can seem daunting at first.But by using some basicsingle-ended filter design tools and applying some simple translations,it is possible to design differential LC filters to have the same response as the single-ended filter.The examples in this document haveshown that this method can be applied to any singled-ended LC filter network to produce a passiveequivalent differential filter.7 SLWA053B–November2007–Revised April2010Design of Differential Filters for High-Speed Signal ChainsIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDLP®Products Communications and /communicationsTelecomDSP Computers and /computersPeripheralsClocks and Timers /clocks Consumer Electronics /consumer-appsInterface Energy /energyLogic Industrial /industrialPower Mgmt Medical /medicalMicrocontrollers Security /securityRFID Space,Avionics&/space-avionics-defenseDefenseRF/IF and ZigBee®Solutions /lprf Video and Imaging /videoWireless /wireless-appsMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2010,Texas Instruments Incorporated。