轴对称知识点的总结

合集下载

轴对称知识点的总结

轴对称知识点的总结

轴对称与轴对称图形、知识点:1 .什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2 。

什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3. 轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性.联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰二角形、等边三角形、角、线段、相交的两条直线等.4. 线段的垂直平分线:I 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

(也称线段的中垂线) A B5. 轴对称的性质:⑴成轴对称的两个图形全等.⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.6. 怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1 :判断题:①角是轴对称图形,对称轴是角的平分线; ()②等腰三角形至少有1条对称轴,至多有3条对称轴; ( )③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2 :下图曾被哈佛大学选为入学考试的试题•请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形•例3 :如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4 :如图,已知:方法ABC和直线I ,请作出法Δ^BC关于直线I的对法三角形.例5 :如图,DA 、CB 是平面镜前同一发光点 S 发出的经平面镜反射后的反射光线,请通过画图确例6:如图,撞击黑球E ,才能使黑球先碰撞台边AB 反弹后再击中白球F ?例7:如图,要在河边修建一个水泵站,向张庄 送水。

第十二章 轴对称知识点(整理)

第十二章  轴对称知识点(整理)

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中[关于坐标轴对称]点P(x,y)关于x轴对称的点的坐标是(x,-y)【关于x轴对称的点横坐标相等,纵坐标互为相反数】点P(x,y)关于y轴对称的点的坐标是(-x,y)【关于y轴对称的点横坐标互为相反数,纵坐标相等】[关于原点对称]点P(x,y)关于原点对称的点的坐标是(-x,-y)【关于原点对称的点横坐标和纵坐标互为相反数】[关于坐标轴夹角平分线对称]点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是(-y,-x)[关于平行于坐标轴的直线对称]点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等.。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结轴对称是指物体具有在某一平面上的镜像对称性质。

在数学和几何学中,轴对称是一种特殊的对称形式,是对称性的重要表现形式之一。

下面将对轴对称的知识点进行总结。

一、轴对称的概念轴对称是指物体或图形在某一平面上的镜像对称性质。

这个平面被称为轴线或对称轴。

沿着轴线对物体进行镜像变换,使得物体的每一个点与镜像点相关联,二者之间的距离保持不变。

轴对称可以存在于二维图形、立体物体以及其他几何结构中。

二、轴对称的特点1. 图形的每一点都关于轴线对称,对称点在轴线上。

2. 对称图形的延长线与轴线重合,对称图形的每一条直线都是轴线上两个对称点的中垂线或垂直平分线。

3. 对称图形的面积、周长和内角和与其镜像图形相等。

4. 对称图形的对称中心与图形的每一个点距离的平方和最小。

三、轴对称的判定方法1. 观察图形是否有明显的对称形状,例如正方形、圆等。

2. 通过自身对折或平移观察是否可以重合。

3. 镜像变换:通过将图形投影到一个平面上,并观察是否与投影前的图形重合完成。

四、轴对称的应用1. 图案设计:轴对称的图案可以给人以和谐、美感的感受,常用于服装、陶瓷、织物等设计中。

2. 建筑设计:许多建筑物在设计中运用了轴对称的原则,例如古代的宫殿、寺庙等,可以使建筑更加庄重、稳定。

3. 生物学:许多生物体的结构具有轴对称性,例如动物的身体结构,植物的花朵等都存在轴对称现象,这也是生命体的一种基本特征。

4. 数学研究:轴对称是数学中的一个重要概念,广泛应用于几何、代数和图论等领域的研究中。

特别是在图论中,轴对称是许多图形算法的基础。

五、轴对称的相关定理1. 轴对称的性质可以应用于线段、角、多边形、三角形等几何概念的研究中,例如轴对称定理、轴对称三角形定理等。

2. 轴对称可以通过镜像变换来实现,这也与线性变换和矩阵运算有关。

研究轴对称问题可以进一步理解和应用线性代数等数学知识。

六、轴对称与其他对称性质的关系1. 轴对称是平移对称的一种特殊形式。

轴对称知识点

轴对称知识点

轴对称知识点轴对称知识点汇总在平平淡淡的学习中,大家最熟悉的就是知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

掌握知识点是我们提高成绩的关键!下面是本店铺为大家整理的轴对称知识点汇总,供大家参考借鉴,希望可以帮助到有需要的朋友。

轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一、等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析一、知识点总结:1.轴对称的定义:如果一个图形经过其中一条直线折叠后,能够与自身完全重合,则这条直线被称为这个图形的轴对称线,这个图形是轴对称的。

2.旋转对称:如果一个图形能够围绕其中一点旋转一定的角度后,能够与自身完全重合,则这个图形是旋转对称的。

3.轴对称图形的特点:轴对称图形的特点是,对称轴两侧的各点关于对称轴对应,即对称轴上的一点与对应点互为图形的对称点。

4.轴对称的判定方法:判断一个图形是否为轴对称图形,可以按照以下方式进行判定:(1)观察是否能找到一个或多个对称轴;(2)沿对称轴将图形折叠,看是否能够重合。

5.制作轴对称图形:制作一个轴对称图形可按照以下步骤进行:(1)在纸上画出一条轴对称线;(2)沿着对称线将图形的一边折叠;(3)检查折叠后的图形与未折叠的图形是否重合,如重合则完成。

二、章节检测解析:以小学三年级数学教材为例,进行《轴对称》的章节检测解析。

教材章节:第三章图形与设计1.知识点掌握情况:首先,学生需要了解轴对称的概念、特点和判定方法,并能够制作轴对称图形。

2.基础练习题:对于基础的练习题,要求学生绘制给定图形的对称线,并判断是否为轴对称图形。

3.综合应用题:在综合应用题中,要求学生设计自己的轴对称图形,并描述其特点。

4.拓展思考题:为了拓展学生的思维,可以提出一些拓展思考题,如“如何判断一个图形是否为旋转对称图形”、“如何找到一个图形的所有对称轴”等。

总结:通过针对《轴对称》这一章节的检测解析,学生可以对轴对称的知识点进行复习和巩固。

同时,综合应用题和拓展思考题能够提高学生的思维能力和创造力。

轴对称知识点整理总结

轴对称知识点整理总结

§13.1 轴对称(一)一、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.二、两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.下列各图,你能找出它们的对称轴吗?(1) (2) (3) (4) (5)§13.1 轴对称(二)一、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直平分线.二、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.三、线段垂直平分线的性质:线段垂直平分线的点到这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.[探究1]线段垂直平分线上的点与这条线段两个端点的距离相等.即AP 1=BP 1,AP 2=BP 2,… 证明.证法一:利用判定两个三角形全等.如下图,在△APC 和△BPC 中,P C P C P C A P C BR t A C B C =⎧⎪∠=∠=∠⎨⎪=⎩ ⇒ △APC ≌△BPC ⇒PA=PB.证法二:利用轴对称性质.由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,线段PA 与PB 是重合的,•因此它们也是相等的.[探究2]1.作线段AB ,取其中点P ,过P 作L ,在L 上取点P 1、P 2,连结AP 1、AP 2、BP 1、BP 2.会有以下两种可能.2.讨论:要使L 与AB 垂直,AP 1、AP 2、BP 1、BP 2应满足什么条件?探究过程:1.如上图甲,若AP 1≠BP 1,那么沿L 将图形折叠后,A 与B 不可能重合,也就是∠APP 1≠∠BPP 1,即L 与AB 不垂直.2.如上图乙,若AP 1=BP 1,那么沿L 将图形折叠后,A 与B 恰好重合,就有∠APP 1=∠BPP 1,即L 与AB 重合.当AP 2=BP 2时,亦然.§12.2作轴对称图形一.如何由一个平面图形得到它的轴对称图形.【探究】四边形ABCD 的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD 关于x 轴和y 轴对称的图形.(归纳:与已知点关于y 轴或x 轴对称的点的坐标的规律;)【引申】分别作出△PQR 关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?若△P 1Q 1R 1中P 1(x 1,y 1)关于x=1(记为m)轴对称的点的坐标P 2 (x 2,y 2) , 则m x x =+221,y 1= y 2.若△P1Q1R1中P1(x1,y1)关于y=-1(记为n)轴对称的点的坐标P2(x2,y2) ,则x1= x2,221yy=n.13.3. 1等腰三角形等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).例题与练习1.如图2其中△ABC是等腰三角形的是[ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.13.3.2等边三角形等边三角形定义:在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。

轴对称知识点归纳

轴对称知识点归纳
2、如果一个等腰梯形的二个内角的和为 1000,那么此梯形的四个内角的度数分别为.
3、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是______;
4、已知等腰梯形的一个底角等于600,它的两底分别为13cm和37cm,它的周长为_______;
5、如图,在梯形ABCD中,AD∥BC,AB=CD,∠A=120°,对角线BD平分∠ABC,则
例2:如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点。①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系?并说明理由。
例3:如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4。试判断AD和BC的关系,并说明理由。
例4:如图,已知:△ABC中,∠C=900,D、E是AB边上的两点,且AD=AC,BD=BC。
例4:如图,直线a、b、c表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?如何选?
例5:已知:如图,在ΔABC中,O是∠B、∠C外角的平分线的交点,那么点O在∠A的平分线上吗?为什么?
例6:如图,已知:AD和BC相交于O,∠1=∠2,∠3=∠4。试判断AD和BC的关系,并说明理由。
注意:①中心对称是旋转的一种特例,因此,
成中心对称的两个图形具有旋转图形的一切性质。
②成中心对称的2个图形,对称点的连线都经过对称中心,
并且被对称中心平分。
3、中心对称图形:
把一个平面图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。
例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.

中考数学轴对称知识点总结

中考数学轴对称知识点总结

中考数学轴对称知识点总结一、轴对称的基本概念1.定义:平面上有一条直线l,如果平面上的任意一点A关于这条直线l对称的点A'仍在平面上,那么,点A和点A'就是轴对称的。

2.轴对称轴:直线l二、轴对称的性质1.对称性:图形关于对称轴对称2.对称图形的性质:对称图形的性质有对称图形的性质有点的对称性,直线的对称性和图形的对称性(1)对称图形的重要性质之一是:对称图形的对应点关于对称轴的距离相等,即在同一个垂直于对称轴的直线上。

(2)对称图形的关于对称轴对称的图形有相等的面积(3)对称图形的关于对称轴对称的图形有相等的周长(4)对称图形的对称轴上的点是对称图形的特殊点,其特点就是对称点是对称图形的重要性质之一。

(5)对称图形的两点关于对称轴的坐标值成等差数列(6)对称图形的两点关于对称轴的距离等于这两个点的距离与对称轴的距离的差的绝对值。

三、轴对称的作图1.作法一:通过纸折法:将一角落对着另一个角落折叠,如图1所示,然后用笔在折线上贴上点,最后将纸展开,在对称轴处连结这些点,就得到了折线对称的形状。

2.作法二:通过线段在对称轴的投影:将要对称的形状隔绝一个水平的或垂直的对称轴,如图2所示,然后将这个形状通过容器等物体描绘再一对对称轴的一边,然后再将这个形状在对称轴的投影到对称轴另一边,最后形状保持不变。

最终得到了线段的对称形状。

四、轴对称的应用1.轴对称在几何中的应用:轴对称在几何中被广泛应用,比如用轴对称的性质证明图形的对称性、图形的面积和周长、构造图形等。

2.轴对称在日常生活中的应用:轴对称在日常生活中有许多应用,如我们在家里摆设摆件、铺地砖、装饰墙壁等都需要用到轴对称的知识。

五、轴对称的相关知识1.轴对称的判断:如果图形关于一条直线对称,那么这条直线就是对称轴,如图中所示的三角形ABC绕着O轴对称成了三角形A'B'C'。

2.轴对称的问题:轴对称的问题通常是指图形相对于轴线的位置,或者轴线的位置相对于图形的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正形、长形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:Array垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正形组成的L形图中,请你用三种法分别在下图中添画一个小正形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。

BACBACBAC方法1 方法2 方法3例5:如图,DA 、CB 是平面镜前同一发光点S 发出的经平面镜反射后的反射光线,请通过画图确定发光点S 的位置,并将光路图补充完整。

例6:如图,四边形ABCD 是长形弹子球台面,有黑白两球分别位于E 、F 两点位置上,试问怎样撞击黑球E ,才能使黑球先碰撞台边AB 反弹后再击中白球F ?例7:如图,要在河边修建一个水泵站,向庄A 、庄B 送水。

修在河边什么地,可使使用的水管最短?··ABaCADB例8:如图,OA、OB是两条相交的公路,点P是一个邮电所,现想在OA、OB上各设立一个投递点,要想使邮电员每次投递路程最近,问投递点应设立在处?线段、角的轴对称性一、知识点:1.线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。

②线段的垂直平分线上的点到线段两端的距离相等。

③到线段两端距离相等的点,在这条线段的垂直平分线上。

·PBOA结论:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。

②角平分线上的点到角的两边距离相等。

③到角的两边距离相等的点,在这个角的平分线上。

结论:角的平分线是到角的两边距离相等的点的集合二、举例:例1:已知∆ABC中,AB=AC=10,DE垂直平分AB,交AC于E,已知∆BEC的长是16。

求∆ABC的长.例2:如图,已知∠AOB及点C、D,求作一点P,使PC=PD,并且使点P到OA、OB的距离相等。

例3:如图,已知直线l及其两侧两点A、B。

(1)在直线l上求一点P,使PA=PB;(2)在直线l上求一点Q,使l平分∠AQB。

ACDOP·CBOA·Dl··AB例4:如图,直线a 、b 、c 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?如选?例5:已知:如图,在ΔABC 中,O 是∠B 、∠C 外角的平分线的交点,那么点O 在∠A 的平分线上吗?为什么?例6:如图,已知:AD 和BC 相交于O ,∠1=∠2,∠3=∠4。

试判断AD 和BC 的关系,并说明理由。

ODCB AEO DC A1 23 4cba例7:已知:如图,△ABC 中,BC 边中垂线ED 交BC 于E ,交CF ⊥BD于F ,交DE 于G ,DF=21BC ,试说明∠FCB=21∠B例8:已知:在∠ABC 中,D 是∠ABC 平分线上一点,E 、F 分别在AB 、AC 上,且DE=DF 。

试判断∠BED 与∠BFD 的关系,并说明理由.2、已知:在ΔABC 中,D 是BC 上一点,DE ⊥BA 于E ,DF ⊥AC 于F ,且DE=DF.。

试判断线段AD 与EF 有关系?并说明理由。

BC3、如图,已知:在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E。

试说明BD垂直平分AE等腰三角形的轴对称性一、知识点:3.等腰三角形的性质:①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;②等腰三角形的两个底角相等;(简称“等边对等角”)③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(简称“三线合一”) 4.等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)②直角三角形斜边上的中线等于斜边上的一半。

3.等边三角形:①等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。

②等边三角形的性质:等边三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600。

③等边三角形的判定:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于600的等腰三角形是等边三角形。

4.三角形的分类:斜三角形:三边都不相等的三角形。

三角形只有两边相等的三角形。

等腰三角形等边三角形二、举例:例1、如图,已知D、E两点在线段BC上,AB=AC,AD=AE,试说明BD=CE的理由?例2:如图,已知:△ABC 中,AB =AC ,BD 和CE 分别是∠ABC 和∠ACB 的角平分线,且相交于O 点。

①试说明△OBC 是等腰三角形;②连接OA ,试判断直线OA 与线段BC 的关系?并说明理由。

例3:如图,已知:AD 和BC 相交于O ,∠1=∠2,∠3=∠4。

试判断AD 和BC 的关系,并说明理由。

AED BCOO DCBA1 23 4ABCE例4:如图,已知:△ABC 中,∠C=900,D 、E 是AB 边上的两点,且AD=AC ,BD=BC 。

求∠DCE 的度数。

例5:如图,已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,G 、F 分别是BC 、DE 的中点。

试探索FG 与DE 的关系。

例6:如图,已知:△ABC 中,∠C=900,AC=BC ,M 是AB 的中点,DE ⊥BC 于E ,DF ⊥AC 于F 。

试判断△MEF 的形状?并说明理由。

FEDCB A· ·AFCEBD MP 例7:如图,已知:△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD ,连结EC 、ED ,试说明CE=DE 。

例8:如图,在等边△ABC 中,P 为△ABC 任意一点,PD ⊥BC 于D ,PE ⊥AC 于E ,PF ⊥AB 于F ,AM ⊥BC 于M ,试猜想AM 、PD 、PE 、PF 之间的关系,并证明你的猜想.等腰梯形的轴对称性一、知识点:5. 等腰梯形的定义:①梯形的定义:一组对边平行,另一组对边不平行为梯形。

梯形中,平行的一组对边称为底,不平行的一组对边称为腰。

②等腰梯形的定义:两腰相等的梯形叫做等腰梯形。

E DCA6.等腰梯形的性质:①等腰梯形是轴对称图形,是两底中点的连线所在的直线。

②等腰梯形同一底上两底角相等。

③等腰梯形的对角线相等。

3.等腰梯形的判定:③在同一底上的2个底角相等的梯形是等腰梯形。

④补充:对角线相等的梯形是等腰梯形。

二、举例:例1:填空:1、等腰梯形的腰长为12cm,上底长为15cm,上底与腰的夹角为120°,则下底长为cm.2、如果一个等腰梯形的二个角的和为1000,那么此梯形的四个角的度数分别为.3、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是______;4、已知等腰梯形的一个底角等于600,它的两底分别为13cm和37cm,它的长为_______;5、如图,在梯形ABCD中,AD∥BC,AB=CD,∠A=120°,对角线BD平分∠ABC,则∠BDC的度数是;又若AD=5,则BC=.6、如图,在等腰梯形ABCD中,AD∥BC,AB = AD,BD = BC,则∠C= 0。

A DCB例2:如图,等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .试说明:AO =DO .例3:如图,梯形ABCD 中,AD ∥BC ,AC=BD 。

试说明:梯形ABCD 是等腰梯形。

例4:如图,在等腰梯形ABCD 中,AD ∥BC ,AD =3cm ,BC =7cm ,E 为CD 的中点,四边形ABED 的长比△BCE 的长大2 cm ,试求AB 的长.例5:如图,在等腰梯形ABCD 中,AD ∥BC ,AB=CD ,M 为BC 中点,则:(1)点M 到两腰AB 、CD 的距离相等吗?请说出你的理由。

A DB CE(2)若连结AM 、DM ,那么△AMD 是等腰三角形吗?为什么?(3)又若N 为AD 的中点,那么MN ⊥AD 一定成立.你能说明为什么吗?例6、如图,在等腰梯形ABCD 中,AD ∥BC ,AB =CD ,E 为CD 中点,AE 与BC 的延长线交于F .(1)判断S △ABF 和S 梯形ABCD 有关系,并说明理由.(2)判断S △ABE 和S 梯形ABCD 有关系,并说明理由. (3)上述结论对一般梯形是否成立?为什么?例7、如图,在梯形ABCD 中,AD ∥BC ,E 为CD 的中点,AD+BC =AB .则:A DEFC BA D A DBCEFM(1)AE、BE分别平分∠DAB、∠ABC吗?为什么?(2)AE⊥BE吗?为什么?例8:在梯形ABCD中,∠B=900,AB=14cm ,AD=18cm ,BC=21cm,点P从点A开始沿AD边向点D以1 cm/s的速度移动,点Q从点C开始沿CB向点B以2cm/s的速度移动,如A P D果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?B CQ中心对称与中心对称图形一、知识点:1、图形的旋转:在平面,将一个图形绕一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

相关文档
最新文档