轴对称知识点的总结

合集下载

轴对称知识点的归纳

轴对称知识点的归纳

轴对称与轴对称图形一、知识点:1 .什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2 .什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3 .轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰二角形、等边三角形、角、线段、相交的两条直线等。

4 •线段的垂直平分线:1垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

--------- ---------A B(也称线段的中垂线)5 .轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6 .怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1 :判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁例2 :下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形方法1 方法2 方法3例4 :如图,已知:A ABC和直线丨,请作出A ABC关于直线丨的对称三角形例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例5 :如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图例6:如图,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?确定发光点S的位置,并将光路图补充完整也B例7:如图,要在河边修建一个水泵站,向张庄A、李庄B送水。

关于轴对称的知识点

关于轴对称的知识点

关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。

折叠后重合的点是对应点,也叫做对称点。

【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。

成轴对称的两个图形一定全等。

】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。

【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。

】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。

4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。

5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。

②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。

③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。

【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。

②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。

】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。

7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。

(2)角平分线上的点到角两边的距离相等。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C-轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结轴对称是指物体具有在某一平面上的镜像对称性质。

在数学和几何学中,轴对称是一种特殊的对称形式,是对称性的重要表现形式之一。

下面将对轴对称的知识点进行总结。

一、轴对称的概念轴对称是指物体或图形在某一平面上的镜像对称性质。

这个平面被称为轴线或对称轴。

沿着轴线对物体进行镜像变换,使得物体的每一个点与镜像点相关联,二者之间的距离保持不变。

轴对称可以存在于二维图形、立体物体以及其他几何结构中。

二、轴对称的特点1. 图形的每一点都关于轴线对称,对称点在轴线上。

2. 对称图形的延长线与轴线重合,对称图形的每一条直线都是轴线上两个对称点的中垂线或垂直平分线。

3. 对称图形的面积、周长和内角和与其镜像图形相等。

4. 对称图形的对称中心与图形的每一个点距离的平方和最小。

三、轴对称的判定方法1. 观察图形是否有明显的对称形状,例如正方形、圆等。

2. 通过自身对折或平移观察是否可以重合。

3. 镜像变换:通过将图形投影到一个平面上,并观察是否与投影前的图形重合完成。

四、轴对称的应用1. 图案设计:轴对称的图案可以给人以和谐、美感的感受,常用于服装、陶瓷、织物等设计中。

2. 建筑设计:许多建筑物在设计中运用了轴对称的原则,例如古代的宫殿、寺庙等,可以使建筑更加庄重、稳定。

3. 生物学:许多生物体的结构具有轴对称性,例如动物的身体结构,植物的花朵等都存在轴对称现象,这也是生命体的一种基本特征。

4. 数学研究:轴对称是数学中的一个重要概念,广泛应用于几何、代数和图论等领域的研究中。

特别是在图论中,轴对称是许多图形算法的基础。

五、轴对称的相关定理1. 轴对称的性质可以应用于线段、角、多边形、三角形等几何概念的研究中,例如轴对称定理、轴对称三角形定理等。

2. 轴对称可以通过镜像变换来实现,这也与线性变换和矩阵运算有关。

研究轴对称问题可以进一步理解和应用线性代数等数学知识。

六、轴对称与其他对称性质的关系1. 轴对称是平移对称的一种特殊形式。

轴对称知识点

轴对称知识点

轴对称知识点归纳一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点4.轴对称与轴对称图形的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

练习:1.下列四个图案中,轴对称图形的个数是( )2.下列命题中,不正确的是( )(A)关于直线对称的两个三角形一定全等.(B)两个圆形纸片随意平放在水平桌面上构成轴对称图形.(C)若两图形关于直线对称,则对称轴是对应点所连线段的垂直平分线. (D)等腰三角形一边上的高、中线及这边对角平分线重台. 3.下列四个图案中.具有一个共有性质则下面四个数字中,满足上述性质的一个是( )(A)6 (B)7 (C)8 (D)94.等腰三角形的一个内角是50。

,则另外两个角的度数分别是( ) (A) 65°,65°. (B) 50°,80°. (C) 65°,65°或50°,80°. (D) 50°,50°.5.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是( ) (A) 9cm (B) 12cm (C) 1215cm cm 或 (D) 15cm .二、填空题(每小题5分,共20分)6.等腰三角形是 对称图形,它至少有 条对称轴. 7.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时 针与分针的位置如图所示,此时时间是 .8.已知△ABC 是轴对称图形.且三条高的交点恰好是C 点,则△ABC 的形状是 . 9.已知点A(一2,4),B(2,4),C(1.2),D(1-2),E(一3,1),F(3,1)是平面坐标系内的6个点,选择其中三个点连成一个三角形,剩下三个点连成另一个三角形,若这两个三角形关于y 轴对称,就称为一组对称三角形,那么,坐标系中可找出 组对称三角形. 10.如图,△ABC 中,AB=AC .∠A=36°,AB 的中垂线DE 交AC 于D ,交AB 于E.下述结论(1)BD 平分∠ABC ;(2)AD=BD=BC ;(3)△BDC 的周长等于AB+BC ;(4)D 是AC 中点,其中正确的命题序号是 .二、(重点)线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析一、知识点总结:1.轴对称的定义:如果一个图形经过其中一条直线折叠后,能够与自身完全重合,则这条直线被称为这个图形的轴对称线,这个图形是轴对称的。

2.旋转对称:如果一个图形能够围绕其中一点旋转一定的角度后,能够与自身完全重合,则这个图形是旋转对称的。

3.轴对称图形的特点:轴对称图形的特点是,对称轴两侧的各点关于对称轴对应,即对称轴上的一点与对应点互为图形的对称点。

4.轴对称的判定方法:判断一个图形是否为轴对称图形,可以按照以下方式进行判定:(1)观察是否能找到一个或多个对称轴;(2)沿对称轴将图形折叠,看是否能够重合。

5.制作轴对称图形:制作一个轴对称图形可按照以下步骤进行:(1)在纸上画出一条轴对称线;(2)沿着对称线将图形的一边折叠;(3)检查折叠后的图形与未折叠的图形是否重合,如重合则完成。

二、章节检测解析:以小学三年级数学教材为例,进行《轴对称》的章节检测解析。

教材章节:第三章图形与设计1.知识点掌握情况:首先,学生需要了解轴对称的概念、特点和判定方法,并能够制作轴对称图形。

2.基础练习题:对于基础的练习题,要求学生绘制给定图形的对称线,并判断是否为轴对称图形。

3.综合应用题:在综合应用题中,要求学生设计自己的轴对称图形,并描述其特点。

4.拓展思考题:为了拓展学生的思维,可以提出一些拓展思考题,如“如何判断一个图形是否为旋转对称图形”、“如何找到一个图形的所有对称轴”等。

总结:通过针对《轴对称》这一章节的检测解析,学生可以对轴对称的知识点进行复习和巩固。

同时,综合应用题和拓展思考题能够提高学生的思维能力和创造力。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结轴对称是几何学中常见的一个概念。

当我们谈论轴对称时,我们指的是物体关于一个轴对称的性质。

轴对称可以说是对称的一种表现形式,它在日常生活和学习中都有广泛的应用。

下面,让我们来总结一些轴对称的知识点。

1. 轴对称的定义和特征轴对称即物体相对于一条轴线对称,即物体的两侧镜像对称。

它是一种对称性质,具有以下特征:1)轴对称的物体是镜像对称的,即两侧完全一样。

2)轴对称的物体可以是二维平面上的图形,也可以是三维空间中的立体。

3)轴对称的轴线可以是任意方向和位置的直线。

2. 轴对称的图形轴对称的图形在数学中有特定的分类。

常见的轴对称图形有以下几种:1)正方形:正方形是一种四边相等、四个角都是直角的图形,它具有四条轴对称线。

2)矩形:矩形是一种四边都是直角的图形,它具有两条轴对称线。

3)圆形:圆形是一种无边界的闭曲线,它具有无数条轴对称线。

每条直径都是轴对称线。

4)等边三角形:等边三角形是一种三边相等的图形,它具有三条轴对称线。

除了以上几种常见的轴对称图形之外,还有许多其他图形也具有轴对称的性质。

3. 轴对称的应用轴对称在日常生活和学习中有许多实际应用。

以下是一些常见的应用:1)艺术设计:轴对称图案在艺术设计中非常常见。

对称的图案给人以稳定和和谐的感觉,能够吸引人的眼球。

2)建筑设计:许多建筑物在设计中运用了轴对称的原理。

例如,许多教堂和宫殿都以对称的形式呈现。

3)机械制造:在机械制造中,轴对称的零件更易于加工和安装。

因为轴对称设计能够保证零件的两侧完全一致,减少了制造误差。

4)生物学:很多生物体也具有轴对称的特征。

例如,人类的面部、昆虫的翅膀等都具有轴对称的形状。

总之,轴对称是一种非常重要的几何概念和性质。

它在数学、艺术、建筑、机械制造等领域都有广泛的应用。

通过学习轴对称的知识,我们可以提高自己的观察能力和创造力。

希望本文所总结的轴对称知识点能够对您有所帮助。

轴对称课本知识点总结

轴对称课本知识点总结

轴对称课本知识点总结一、轴对称的概念轴对称是指一个图形围绕某条中心轴线旋转180度,旋转后的图形和原图形完全重合。

在二维几何中,轴对称是一种重要的对称形式,常见于各种图形和实物之中。

二、轴对称的性质1. 轴对称图形的两个部分互相对称,互为镜像。

2. 轴对称图形的对称中心为图形的轴心。

3. 轴对称图形每一点的对应点与对称中心的距离相等。

三、轴对称的图形1. 对称图形:直线对称图形是最简单的轴对称图形,常见的有点、线段、正多边形等。

2. 音符:音符是一个常见的轴对称图形,它围绕中心轴线旋转180度后,可以和原音符完全重合。

3. 字母、数字:如字母A、M、H等和数字0、8等都是轴对称图形。

四、轴对称的判断方法1. 观察法:观察图形围绕某一条中心轴线旋转180度后是否和原图形重合。

2. 设坐标法:设定坐标轴,通过图形的对称特点来判断是否轴对称。

3. 折叠法:将图形折叠在对称轴上,判断折叠后两部分是否完全重合。

五、轴对称的应用1. 轴对称图形的设计:在各种设计中,轴对称图形的运用可以使设计更加美观。

2. 轴对称图形的制作:通过手工制作,可以制作各种轴对称图形的手工作品。

3. 轴对称图形的应用:在建筑、工程、美术、工艺等领域都有轴对称图形的应用。

六、轴对称的作用1. 保持图形的对称美:轴对称可以使图形保持一定的对称美。

2. 方便图形的绘制:对称图形通过轴对称可以方便地进行绘制和复制。

七、轴对称的练习1. 描绘轴对称图形:通过规定的对称轴来描绘对称图形。

2. 判断轴对称图形:判断给定图形是否对称,并找出对称轴。

3. 补全轴对称图形:在已知半图形的基础上补全对称图形。

八、轴对称的拓展知识1. 轴对称的组合:两个或多个轴对称图形组合成一个新的轴对称图形。

2. 轴对称的面积计算:轴对称图形的面积计算可以通过对称轴进行分割和计算。

九、轴对称的应用案例1. 建筑设计中的轴对称图形应用:在建筑设计中,轴对称图形的应用可以使建筑更加美观大方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称与轴对称图形、知识点:1 .什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2 。

什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3. 轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性.联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰二角形、等边三角形、角、线段、相交的两条直线等.4. 线段的垂直平分线:I 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

(也称线段的中垂线) A B5. 轴对称的性质:⑴成轴对称的两个图形全等.⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.6. 怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1 :判断题:①角是轴对称图形,对称轴是角的平分线; ()②等腰三角形至少有1条对称轴,至多有3条对称轴; ( )③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2 :下图曾被哈佛大学选为入学考试的试题•请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形•例3 :如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4 :如图,已知:方法ABC和直线I ,请作出法Δ^BC关于直线I的对法三角形.例5 :如图,DA 、CB 是平面镜前同一发光点 S 发出的经平面镜反射后的反射光线,请通过画图确例6:如图,撞击黑球E ,才能使黑球先碰撞台边AB 反弹后再击中白球F ?例7:如图,要在河边修建一个水泵站,向张庄 送水。

修在河边什么地方,可使使用的水管最短?A 、李庄BC试问怎样定发光点S 的位置,并将光路图补充完整。

例8 :如图,OA、OB是两条相交的公路,点P是一个邮电所,现想在0A、OB上各设立一个投递点,要想使邮电员每次投递路程最近,问投递点应设立在何处?线段、角的轴对称性一、知识点:1 •线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线.②线段的垂直平分线上的点到线段两端的距离相等。

③到线段两端距离相等的点,在这条线段的垂直平分线上。

结论:线段的垂直平分线是到线段两端距离相等的点的集合2. 角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线.②角平分线上的点到角的两边距离相等.③到角的两边距离相等的点,在这个角的平分线上。

结论:角的平分线是到角的两边距离相等的点的集合二、举例:例1 :已知ABC中,AB=AC=10 , DE垂直平分AB ,交AC于E,已知厶BEC的周长是16.求IBABC的周长.例2 :如图,已知∠ AoB及点C、D,求作一点P,使PC=PD,并且使点P到0A、OB的距离相等。

例3 :如图,已知直线l及其两侧两点A、B CB(1)在直线I上求一点P,使PA=PB;(2)在直线I上求一点Q,使I平分∠ AQB C例4 :如图,直线a、b、C表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?如何选?例5:已知:如图,在上吗?为什么?例6 :如图,已知:AD和BC相交于0,∠ 1 = ∠ 2,∠ 3= ∠ 4。

试判断AD和BC的关系,并说明理由。

D例7 :于F,已知:如图,交DE于G,△ ABC中,BC边中垂线ED交BC于E,交BA延长线于D,过C作CF⊥ BDD1 1DF=2B C试说明∠ FCB=2∠B例8 :已知:在∠ ABC中,D是∠ ABC平分线上一点,E、F分别在AB、AC上,且DE=DF。

试判断∠ BED与∠ BFD的关系,并说明理由2、已知:在Δ ABC中,D是BC上一点,DE丄BA于E,DF丄AC于F,且DE=DF.。

试判断线段AD与EF有何关系?并说明理由3、如图,已知:在△ ABC中,∠ BAC= 90 ° BD平分∠ ABC,DE⊥ BC于E。

试说明BD垂直平分AE等腰三角形的轴对称性一、知识点:3. 等腰三角形的性质:①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;②等腰三角形的两个底角相等;(简称“等边对等角”)③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合. (简称“三线合一”)4. 等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)②直角三角形斜边上的中线等于斜边上的一半。

3. 等边三角形:①等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。

②等边三角形的性质:等边三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600。

③等边三角形的判定:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于60。

的等腰三角形是等边三角形。

4. 三角形的分类:-斜三角形:三边都不相等的三角形。

三角形只有两边相等的三角形。

等腰三角形等边三角形、举例:例1、如图,已知D、E两点在线段BC上,AB = AC,AD= AE,试说明BD=CE的理由?例2 :如图,已知:△ ABC中,AB= AC,BD和CE分别是∠ ABC和∠ AC审的角平分线E且相交于O点。

①试说明△ OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系?并说明理由。

例3 :如图,已知: AD和BC相交于O,∠ 1 = ∠ 2,∠ 3= ∠ 4。

试判断AD和BC的关系,并说明理由。

D例4 :如图,已知:△ ABC 中,∠ C=900求∠ DCE 的度数。

例5 :如图,已知:△ ABC 中,BD 、CE 分别是AC 、AB 边上的高,G F 分别是BC 、DE 的中点 试探索FG 与DE 的关系例6 :如图,已知:△ ABC 中,/ C=900,AC=BC M 是AB 的中点, 试判断△ MEF 的形状?并说明理由。

例7 :如图,已知:△ ABC 为等边三角形,延长 试说明CE=DE OD 、E 是AB 边上的两点,且 AD=AC , BD=BCBC 至U D ,延长 BA 至U E , AE=BD ,连结 EC 、ED ,B C例8 :如图,在等边厶ABC中,P为厶ABC内任意一点,PD⊥ BC于D,PE⊥ AC于E,PF⊥ AB于F, AM丄BC于M,试猜想AM、PD、PE、PF之间的关系,并证明你的猜想.等腰梯形的轴对称性、知识点:5. 等腰梯形的定义:①梯形的定义:一组对边平行,另一组对边不平行为梯形。

梯形中,平行的一组对边称为底,不平行的一组对边称为腰②等腰梯形的定义:两腰相等的梯形叫做等腰梯形。

6. 等腰梯形的性质:①等腰梯形是轴对称图形,是两底中点的连线所在的直线。

②等腰梯形同一底上两底角相等。

③等腰梯形的对角线相等。

3. 等腰梯形的判定:③在同一底上的2个底角相等的梯形是等腰梯形。

④补充:对角线相等的梯形是等腰梯形。

二、举例:例1:填空:1、等腰梯形的腰长为12cm ,上底长为15cm ,上底与腰的夹角为120 °,则下底长为 _______ Cm .2、如果一个等腰梯形的二个内角的和为1000,那么此梯形的四个内角的度数分别为______________3、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是______ ;例5 :如图,在等腰梯形 ABCD 中,AD // BC , AB=CD , M 为BC 中点,贝V :(1)点M 到两腰AB 、CD 的距离相等吗?请说出你的理由。

⑵若连结AM 、DM ,那么△ AMD 是等腰三角形吗?为什么?⑶又若N 为AD 的中点,那么MN 丄AD 一定成立•你能说明为什么吗 ?4、 已知等腰梯形的一个底角等于 600,它的两底分别为 13cm 和37cm ,它的周长为 ______________ ;5、 如图,在梯形 ABCD 中,AD // BC , AB = CD,∠ A = 120 °,对角线 BD 平分∠ ABC ,贝U∠ BDC 的度数是 _______ ;又若AD = 5 ,贝U BC = _________ .6、如图,在等腰梯形 ABCD 中,AD // BC , AB = AD , BD = BC ,则∠ C= ______ 。

例2 :如图,等腰梯形 ABCD 中,AD // BC ,对角线 AC 、BD 相交于点O •试说明:AO = D0.例3 :如图, 梯形 ABCD 中,AD // BC , AC=BD 。

试说明:梯形例4 :如图,在等腰梯形 ABCD 中,AD // BC , AD = 3cm , 的周长比厶BCE 的周长大2 Cm ,试求AB 的长.ABEDEΛΔ^FBMC例6、如图,在等腰梯形ABCD中,AD Il BC,AB= CD, E为CD中点,AE与BC的延长线交于F。

⑴判断&ABF和S梯形ABCD有何关系,并说明理由. A D⑵判断&ABE和S梯形ABCD有何关系,并说明理由。

' ∖ E(3)上述结论对一般梯形是否成立?为什么?- ..B C FAD+BC= AB .则:例7、如图,在梯形ABCD中,AD H BC,E为CD的中点,(1) AE、BE分别平分∠ DAB ∖∠ABC吗?为什么?(2) AE丄BE吗?为什么?例8 :在梯形ABCD 中,∠ B= 900,AB= 14cm ,AD = 18cm , BC= 21cm ,点P 从点A 开始沿AD边向点D以1 cm/s的速度移动,点Q从点C开始沿CB向点B以2cm∕s的速度移动,如果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?B中心对称与中心对称图形、知识点:1、图形的旋转:在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

旋转前、后的图形全等。

对应点到旋转中心的距离相等.每一对对应点与旋转中心的连线所成的角彼此相等。

2、中心对称:把一个图形绕着某一个点旋转180 °,如果它能够与另一个图形重合,那么称这两个图形关于这一点对称。

相关文档
最新文档