八年级数学上册轴对称知识点总结好)

合集下载

8年级上册数学第三单元《第十三章 轴对称》知识点总结

8年级上册数学第三单元《第十三章 轴对称》知识点总结

第十三章轴对称一、概念1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、让学生知道轴对称图形(一个图形,有一条或多条对称轴)和轴对称(两个图形,只有一条对称轴)的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为(x,- y).点(x, y)关于y轴对称的点的坐标为(-x, y).注意:像类似点(x,y)关于X=1对称的题目要学会做法2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等注意:知道角平分线交点(到边相等)和垂直平分线交点(到点相等)的区别四、等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)注意:三线合一不能直接来判定等腰三角形,需要证明全等。

八年级数学复习考点1 轴对称及轴对称图形的意义

八年级数学复习考点1 轴对称及轴对称图形的意义

ABCDP八年级数学复习考点1 轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。

4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。

二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。

变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。

变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。

三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2.(2006 山西省3分)下列图形中是轴对称图形的是( )。

3.(2006河南省3分)下列图形中,是轴对称图形的有( )ABABlB A CDA.4个B.3个C.2个D.1个4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.(2006苏州市3分)如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1100.那么∠BCD 的度数等于 ( ) A. 400B.500C .60D.7006.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )7.(2006 湛江市6分)如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.(2006宜昌市3分)从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。

八年级上册数学知识点复习:轴对称

八年级上册数学知识点复习:轴对称

15-16 学期八年级上册数学知识点复习:轴对称知识点对朋友们的学习特别重要,大家必定要仔细掌握,查词典数学网为大家整理了15-16 学期八年级上册数学知识点复习:轴对称,让我们一同学习,一同进步吧!1.对称轴:假如一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直均分线。

(2)角均分线上的点到角两边距离相等。

(3)线段垂直均分线上的随意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直均分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边平等角 )4.等腰三角形的顶角均分线、底边上的高、底边上的中线相互重合,简称为“三线合一”。

5.等腰三角形的判断:等角平等边。

6.等边三角形角的特色:三个内角相等,等于60°,7.等边三角形的判断:三个角都相等的三角形是等腰三角形。

有一个角是 60°的等腰三角形是等边三角形有两个角是 60°的三角形是等边三角形。

8.直角三角形中, 30°角所对的直角边等于斜边的一半。

第1页/共3页1 / 3唐宋或更早以前,针对“经学”“律学”“算学”和“书学”各科目,其相应教授者称为“博士”,这与此刻“博士”含义已经相去甚远。

而对那些特别解说“武事”或解说“经籍”者,又称“讲课老师”。

“教授”和“助教”均原为学官称呼。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的解说者;尔后者则于西晋武帝时代即已建立了,主要辅助国子、博士培育生徒。

“助教”在古代不单要作入流的学问,其教书育人的职责也十分清晰。

唐朝国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

八年级数学上册轴对称知识点总结(好)

八年级数学上册轴对称知识点总结(好)

轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分可以完整重合。

这条直线叫做对称轴。

相互重合的点叫做对应点。

2、轴对称:两个图形沿一条直线对折,此中一个图形可以与另一个图形完整重合。

这条直线叫做对称轴。

相互重合的点叫做对应点。

3、轴对称图形与轴对称的差别与联系:(1)差别。

轴对称图形议论的是“一个图形与一条直线的对称关系” ;轴对称议论的是“两个图形与一条直线的对称关系” 。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形” 即是轴对称;把轴对称的“两A'HID D'J B'K C'个图形看作一个整体”即是轴对称图形。

4、轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连接“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线相互平行。

5、线段的垂直均分线:( 1)定义。

经过线段的中点且与线段垂直的直线,叫做线段的垂直均分线。

m 如图2,图 1∵ CA=CB ,直线 m⊥ AB 于 C,∴直线 m 是线段 AB 的垂直均分线。

A BC图 2 ( 2)性质。

线段垂直均分线上的点与线段两头点的距离相等。

m图 3如图 3,PA BC ∵CA=CB ,直线 m⊥AB 于 C,点 P 是直线 m 上的点。

∴ PA=PB 。

( 3)判断。

与线段两头点距离相等的点在线段的垂直均分线上。

如图 3,∵ PA=PB,直线 m 是线段 AB 的垂直均分线,∴点 P 在直线 m 上。

6、等腰三角形:(1)定义。

有两条边相等的三角形,叫做等腰三角形。

相等的两条边叫做腰。

第三条边叫做底。

顶两腰的夹角叫做顶角。

腰角腰腰与底的夹角叫做底角。

说明:顶角 =180°- 2 底角底角底角底角 =180 顶角 1 顶角底边90 - 图 42 2可见,底角只好是锐角。

( 2)性质。

等腰三角形是轴对称图形,其对称轴A是“底边的垂直均分线” ,只有一条。

第13章轴对称知识点归纳教案八年级数学人教版上册

第13章轴对称知识点归纳教案八年级数学人教版上册

轴对称1、图形的轴对称知识点1:轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做轴对称。

折叠后重合的点是对应点,叫做对称点,这条直线叫做对称轴。

轴对称的识别:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

知识点2:轴对称图形如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

这条直线就是它的对称轴。

下面的图形是用数学家名字命名的,其中是轴对称图形的是()A.赵爽弦图B.费马螺线C.科克曲线D.斐波那契螺旋线知识点3:对称轴定义:能够使两个图形折叠后完全重合的折痕所在的直线叫做对称轴。

成轴对称的两个图形或轴对称图形的对称轴是任意一对对应点所连线段的垂直平分线,因此,只要找到其任意一对对应点,作出所连线段的垂直平分线就可以得到对称轴。

知识点5:轴对称的性质①关于某条直线对称的两个图形是全等形②如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③两个图形关于某直线对称,如果它们的对应线段或对应线段的延长线相交,那么交点在对称轴上。

知识点6:做轴对称图形的一般步骤①作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足,并延长;(2)在延长线上从垂足出发截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点。

②作已知图形关于某直线的对称图形的一般步骤(1)找——在原图形上找特殊点(如线段的端点、线与线的交点)(2)作——作各个特殊点关于已知直线的对称点(3)连——按原图对应连接各对称点知识点7:平面直角坐标系中的轴对称点(x,y)关于横轴(x轴)的对称点为(x,-y)点(x,y)关于纵轴(y轴)的对称点为(-x,y)点(x,y)关于原点(0,0)的对称点为(-x,-y)点(x,y)关于(a,b)的对称点为(2a-x,2b-y)题型考点:①根据轴对称求坐标或字母的取值的方法两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数。

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点在初中数学中,轴对称是一个非常重要的知识点。

轴对称是指在一个平面上,如果有一条直线,把这个平面分成两个对称的部分,那么我们就说这个平面是轴对称的。

八年级上册的数学课程中,轴对称被涉及到了,下面我们来详细地探讨一下轴对称的相关知识点。

一、轴对称的定义和性质轴对称的定义如上所述,即沿着一条直线进行对称,这条直线就称为轴线或者对称轴。

在轴对称的情况下,通过轴对称得到的镜像图形和原图形完全重合,这也就是轴对称的性质。

轴对称有如下的性质:(1)轴对称图形共有或自成一类轴对称得到的镜像图形和原图形完全重合,因此当把某个图形做轴对称后,得到的图形和原图形形状相同,只是位置不同。

所以,轴对称得到的镜像图形和原图形共有或自成一类。

(2)轴对称的两个对称图形的距离等于轴到这两个图形的距离我们知道,轴对称的求法是以轴线为轴进行对称,而轴线到对称位置不同的点的距离不同,因此,轴对称的两个对称图形的距离等于轴到这两个图形的距离。

(3)轴对称保持长度、角度不变轴对称能够保持长度和角度不变的原因是,轴对称的两个对称图形都是完全重合的,所以它们的长度和角度是相同的。

二、轴对称的基本步骤下面我们来看轴对称的基本步骤:(1)确定轴对称的轴线首先,要确定轴对称的轴线,它必须是平面内的一条直线。

(2)确定轴对称的中心点确定轴对称的中心点,这个点一般都在轴线上,它是轴线的中点。

(3)确定轴对称的象限确定轴对称的象限,即确定轴对称得到的镜像图形和原图形的位置关系。

(4)确定轴对称的顺序确定轴对称的顺序,从哪一端开始进行对称。

一般情况下,我们可以从离中心点近的位置开始对称。

三、轴对称的应用轴对称的应用十分广泛,下面我们来看一下轴对称在实际生活中的应用:(1)轮子的轴对称自行车、汽车等车辆的轮子都采用了轴对称的原理。

(2)建筑物的轴对称建筑物在建造过程中也采用了轴对称的方法,比如古希腊罗马建筑中的神殿、半圆形壳体建筑等。

八年级数学上册《轴对称》讲义

八年级数学上册《轴对称》讲义

轴对称知识点一、轴对称图形轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点二、轴对称1.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形与轴对称的区别:轴对称是指两个图形,而轴对称图形是一个图形.知识点三、轴对称与轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.类型一、轴对称变换1.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为(1,6)A -,(5,3)B -,(3,1)C -.(1)ABC ∆关于y 轴对称的图形△111A B C (其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点(1,0),且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形△222A B C (其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标.类型二、线段垂直平分线知识点① 线段垂直平分线的性质2. 如图,已知ABC ∆,AB 、AC 的垂直平分线的交点D 恰好落在BC 边上.(1)判断ABC ∆的形状;(2)若点A 在线段DC 的垂直平分线上,求AC BC的值.知识点② 线段垂直平分线的判定3. 如图所示,在ABC ∆中,AB AC =,BE CD =,且BD 与CE 相交于点O ,求证:点O 在线段BC 的垂直平分线上.类型三、利用轴对称的性质求图形的面积4. 在ABC ∆中,90BAC ∠=︒,点A 关于BC 边的对称点为A ',点B 关于AC 边的对称点为B ',点C 关于AB 边的对称点为C ',若1ABC S ∆=,求A B C S '''.类型四、“将军饮马”问题5. 如图,点P、Q为MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.类型五、角平分线与线段垂直平分线的综合6. 如图,在△ABC中,AD是∠BAC平分线,线段AD的垂直平分线分别交AB于点F,交BC的延长线于E(1)在图①中,连接DF,证明DF//AC(2)在图①中,连接AE,证明∠EAC=∠B(3)如图②,若线段CD上存在一点M,使∠MPD=∠ACD,AM与EF交于点P,连接DP 并延长与AC交于点N,求证:AN=DM.①②【复习巩固】一.选择题(共7小题)1.如图,ABC ∆中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求EAF ∠的度数为何?( )A .113︒B .124︒C .129︒D .134︒2.如图所示,在四边纸片ABCD 中,//AD BC ,//AB CD ,将纸片沿EF 折叠,点A ,D 分别落在A ',D '处,且A D ''经过点B ,FD '交BC 于点G ,连接EG ,若EG 平分FEB ∠,//EG A D '',80D FC '∠=︒,则A ∠的度数是( )A .65︒B .70︒C .75︒D .80︒3.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .AP BN =C .M AP M BP ∠=∠D .ANM BNM ∠=∠4.如图,在ABC ∆中,AB 边的中垂线DE ,分别与AB 边和AC 边交于点D 和点E ,BC 边的中垂线FG ,分别与BC 边和AC 边交于点F 和点G ,又BEG ∆周长为16,且1GE =,则AC 的长为( )A .13B .14C .15D .165.如图,50∠的平分线BE交AD于点E,连接∠=︒,AD垂直平分线段BC于点D,ABCABC∠的度数是()EC,则AECA.115︒B.75︒C.105︒D.50︒6.如图,四边形ABCD中,AB AD=,点B关于AC的对称点B'恰好落在CD上,若110∠=︒,BAD则ACB∠的度数为()A.40︒B.35︒C.60︒D.70︒7.如图,P是AOB∠两边上的点,点P关于OA的对称点Q恰∠外的一点,M,N分别是AOB好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若 2.5PN=,PM=,3 MR=,则线段QN的长为()7A.1 B.1.5 C.2 D.2.5二.解答题(共3小题)8如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得PA PB+的值最小,画出图形并证明.9.如图,OBC ∆中,BC 的垂直平分线DP 交BOC ∠的平分线于D ,垂足为P .(1)若60BOC ∠=︒,求BDC ∠的度数;(2)若BOC α∠=,则BDC ∠= (直接写出结果).10.如图,ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .(1)若60A ∠=︒,24ABD ∠=︒,求ACF ∠的度数;(2)若5BC =,:5:3BF FD =,10BCF S ∆=,求点D 到AB 的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称知识点总结1、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

2、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

3、轴对称图形与轴对称的区别与联系:(1)区别。

轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:
(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

5、线段的垂直平分线:(1)定义。

经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。

如图2,
∵CA=CB,
直线m⊥AB于C,
∴直线m是线段AB的垂直平分线。

(2)性质。

线段垂直平分线上的点与线段两端点的距离相等。

如图3,
∵CA=CB,
直线m⊥AB于C,
点P是直线m上的点。

∴PA=PB 。

(3)判定。

与线段两端点距离相等的点在线段的垂直平分线上。

如图3,∵PA=PB,
直线m是线段AB的垂直平分线,
m
C
A B
图1
图2
m
C
A B
P
图3
∴点P 在直线m 上 。

6、等腰三角形:
(1)定义。

有两条边相等的三角形,叫做等腰三角形。

①相等的两条边叫做腰。

第三条边叫做底。

②两腰的夹角叫做顶角。

③腰与底的夹角叫做底角。

说明:顶角=180°- 2底角 底角=
顶角顶角2
1
-902180︒=-︒ 可见,底角只能是锐角。

(2)性质。

①等腰三角
形是轴对称
图形,其对称轴是“底边的垂直平分
线” ,只有
一条。

②等边对等角。

如图5,在△ABC 中
∵AB=AC
∴∠B=∠C 。

③三线合一。

(3)判定。

①有两条边相等的三角形是等腰三角形。

如图5,在△ABC 中, ∵AB=AC
∴△ABC 是等腰三角形 。

②有两个角相等的三角形是等腰三角形。

如图5,在△ABC 中 ∵∠B=∠C
∴△ABC 是等腰三角形 。

7、等边三角形:
(1)定义。

三条边都相等的三角形,叫做等边三角形。

说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。

(2)性质。

①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线” ,有三条。

②三条边上的中线、高线及三个内角平分线都相
交于一点。

③等边三角形的三个内角都等于60°。

如图6,在△ABC 中
∵AB=AC=BC
∴∠A=∠B=∠C=60°。

D'
D C'
B'
A'
K J I H 底边
底角底角顶



D
C
B
A
图5
A
B
C
图4
(3)判定。

①三条边都相等的三角形是等边三角形。

如图6,在△ABC中
∵AB=AC=BC
∴△ABC是等边三角形。

②三个内角都相等的三角形是等边三角形。

如图6,在△ABC中
∵∠A=∠B=∠C
∴△ABC是等边三角形。

③有一个内角是60°的等腰三角形是等边三角形。

如图6,在△ABC中
∵AB=AC(或AB=BC,AC=BC)
∠A=60°(∠B=60°,∠C=60°)
∴△ABC是等边三角形。

(4)重要结论。

在Rt△中,30°角所对直角边等于斜边的一半。

如图7,
∵在Rt△ABC中,
∠C=90°,∠A=30°
∴BC=
2
1AB
或AB=2BC
8、平面直角坐标系中的轴对称:(1))
,(
)
,(b
a
x
b
a-
横不变,纵反向
轴对称
关于
(2))
,
(
)
,(b
a
y
b
a-
横反向,纵不变
轴对称
关于
说明:要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需根据作出各顶点的对称点,再顺次连结各对称点。

对称点的作法见11(1)。

9、对称轴的画法:
在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。

注意:①有的轴对称图形只有一条对称轴,有的不止一条,要画出所有的对称轴。

②成轴对称的两个图形只有一条对称轴。

10、常见的轴对称图形:
(1)英文字母。

A B D E H I K M O T U V W X Y
(2)中文。

日,目,木,土,十,士,中,一,二,三,六,米,山,甲,由,田,天,又,只,支,圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等。

(3)数字。

0 3 8
(4)图形。

图7 图6
说明:①圆有无数条对称轴。

②正n边形有n条对称轴。

11、掌握几个作图:
(1)作出点A关于直线m对称的点A/ 。

作法:如图
①以点A为圆心,适当的长为半径画圆弧。

使圆弧与直线MN交于两点C、D。

②分别以点C,D 为圆心,大于CD
2
1的长为半径画圆弧,设两条圆弧交于点E。

③作射线AE,设交直线mn于点F。

○4在射线AE上截取FA/=FA,点A/即为所求。

(2)课本34页例题。

(3)课本37页9、10题。

(4)课本42页12.2-8 图2
(5)。

相关文档
最新文档